Entwicklung eines vaskularisierten Lebermodells

Dr. Johanna Schanz Fraunhofer IGB 26. Oktober 2009

Symposium October 2009:

20th Anniversary of **ZEBET** at BfR

Zellsysteme und Tissue Engineering

- Biomaterialien
- Bioreaktorentwicklung
- Avaskuläre Gewebemodelle
- Vaskularisierte Gewebemodelle
- GMP Produktion von Advanced Therapeutical Medicinal Products (ATMP)

Funktionen der Leber

Ausgangssituation

- Durch die Metabolisierung von Medikamenten in der Leber können Abbauprodukte entstehen, die andere Eigenschaften als der Ursprungstoff haben
- Hepatotoxizität ist der häufigste Grund dafür, dass Medikamente vom Markt genommen werden oder in den klinischen Studien versagen

Probleme in präklinischen Bewertung von Medikamenten:

- Ergebnisse von Tierversuchen nicht uneingeschränkt auf den Menschen übertragbar
- Bisherige humane in vitro Testsysteme meist nur über Stunden oder Tage einsetzbar

Humane in vitro Lebermodelle/Testsysteme

Humane CYP und UGT Supersomen
Humane Lebermikrosomen
Humane Leber Cytosol
Humane Leber S9 Fraktion
Humane Zelllinien
Transgene Zelllinien
Primäre Hepatozyten
Leberschnitte
Isolierte perfundierte Leber

Gut für Studien von Metabolismusmechanismen

Schneller Vitalitätsund Funktionsverlust der Hepatozyten

Aber:

Kein komplexes organoides Testsystem für Langzeitstudien

Mikroumgebung der Hepatozyten in vivo

- Optimale Versorgung durch direkte Assoziation mit Sinusoiden
- Co-Kultur mit nichtparenchymalen Zellen der Leber
- Extrazelluläre Matrix Komponenten
- Polarisierung/ 3D Kultur
- Mechanische Stimuli

Siegenthaler, Blum: Klinische Pathophysiologie (2006), p. 860, Georg Thieme Verlag KG

Mikroumgebung der Hepatozyten in vivo

- Optimale Versorgung durch direkte Assoziation mit Sinusoiden
- Co-Kultur mit nichtparenchymalen Zellen der Leber
- Extrazelluläre Matrix Komponenten
- Polarisierung/ 3D Kultur
- Mechanische Stimuli

Ladewigfärbung- Zellkerne braun, Plasma rosa, Bindegewebe blau

Perfusionsbioreaktoren

- Hohlfaserreaktoren (z.B. Modular Extracorporeal Liver Support MELS von der Charité Berlin)
- Membranreaktoren
- Perfundierte Trägerstrukturen
- Suspensionskulturen eingekapselter Zellen

Optimierte Zellversorgung

Verlängerung der Kultivierungszeit

Weniger komplex als Blutgefäßsystem

Idee der Biologischen Vaskularisierten Trägerstruktur (BioVaSc)

Verwendung einer natürlichen Matrix mit Blutgefäßsystem aus porcinen Jejunum für den Aufbau von vaskularisierten Gewebemodellen

Herstellung der BioVaSc (Biological Vascularised Scaffold)

- Perfusion mit Tensidlösung über das Gefäßsystem und durch das Darmlumen
- Behandlung mit DNase
- Spülung mit Kochsalzlösung
- γ Bestrahlung

Histologische Überprüfung der Azellularisierung

Histologische Analyse Hämalaun-Eosin und Feulgen Färbung

Verifikation durch Bestimmung der Rest-DNS

© Fraunhofer IGB

Histologische Überprüfung der Azellularisierung

Verifikation durch Bestimmung der Rest-DNS

Bioreakorsystem für die Kultivierung vaskularisierter Gewebe

Jan Hansmann Hugo Geiger Preis 2006 Lewa Preis 2006

Regelung Bioreakorsystem

PC für Steuerung und Überwachung

Arterieller Druck [mmHg]

Aufbau des Lebermodell mit Blutgefäßsystem

Prinzip der vaskularisierten 3D Gewebemodelle

Fraunhofer "Technik für den Menschen" Preis 2009

Besiedelung der vaskulären Strukturen

Life-dead Färbung eines Blutgefäßquerschnittes

Verifikation

- RT-PCR
- Western Blot
- FDG PET

Biomaterials 2005; 26: 6610-6617

Besiedelung des Darmlumens

Pan Cadherin

X630 Amplification

Anti-Ki67 (MIB-1)

X400 Amplification

Anti-CKLP34

X 630 Amplification

Anti-Hepatozyte

X1000 Amplification

Anti VEGF

X 630 Amplification

Anti-ZO-1

X630 Amplification

Funktionsnachweise

Schweinemodell

Humanmodell

Funktionsnachweise

Schweinemodell

Linke K, Schanz J, Hansmann J, Walles T, Brunner H, Mertsching H: Engineered liver-like tissue on a capillarized matrix for applied research" - Tissue Engineering 2007; 13, 1-9

Stoffwechselaktivität des Lebermodells

Getestete Parameter:

- Laktatdehydrogenase
- AST/ALT
- Laktatbildung
- Harnstoffsynthese
- Albuminsynthese
- Gallensäureproduktion
- VEGF Expression
- Dextrometorphan Metabolismus

Lebermodell

Vaskularisierung

• mit Endothel ausgekleidete Blutgefäße

Physiologische Kultur

• Simulation des natürlichen Blutflusses

Funktionalität

- Harnstoff, Albumin, Gallensäuren und Laktat Synthese über drei Wochen
- Phase I und II Metabolismus von Dextrometorphan über drei Wochen

Potential

- Substanzapplikation über das Gefäßsystem
- Mehrfachapplikationen
- Langzeitstudien

- Testung verschiedener relevanter Arzneimittel (z.B. Cyclosporin, Valproinsäure, Acetaminophen, Troglitazon) und Vergleich mit Tiermodell
- Verlängerung der Kulturzeit
- Testung kryokonservierter Hepatozyten

Danksagung

dem ZS Team

Prof. Dr. Heike Walles Dipl. Ing. (FH) Kirstin Linke Prof. Dr. Thomas Hirth Prof. Dr. Herwig Brunner

Prof. Dr. Andreas Nüssler und AG Technische Universität München

Dr. Martin Schenk Eberhard Karls Universität Tübingen

Prof. Dr. Armin Wolf Prof. Dr. Peter End Novartis Pharma AG

