VULNERABLE POINTS IN SPICE PRODUCTION CHAINS

Nóra Adányi¹, Helga Molnár¹, Ildikó Bata-Vidács², Mária Mörtl², Rita Tömösközi-Farkas¹, Timea Deák³, András Székács²,
¹Food Science Research Institute, NARIC, Hungary
²Agro-Environmental Research Institute, NARIC, Hungary
³Kalocsai Fűszerpaprika Zrt.

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.
Spice Paprika – an important spice commodity worldwide

Spice paprika is a major spice commodity in the European Union (EU), produced locally and imported from non-EU countries, reported not only for chemical and microbiological contamination, but also for fraud.

No. 2. spice commodity in Europe (after black pepper)
No. 1. spice commodity in Hungary
Quality management of spice paprika production

To demonstrate the importance of various contamination factors in the Hungarian production and EU trade of spice paprika, several aspects concerning food safety and quality of this commodity will be presented through a casestudy.

Kalocsai Fűszerpaprika Zrt.
(Kalocsa, Hungary)

• since the 1930s
• approx. 40% of domestic spice paprika production
• 2-3% of world production, 4-5% of world export
• 70-80% of its production is spice paprika
• 1500-2000 tons/year ground spice paprika
• 1200 tons/year canned paprika products
• 350-400 tons/year dried paprika, + seasonings
• spice paprika seed production → provision to growers
• canned products: soured products, canned vegetables
• protection of cultural heritage, Hungaricum
• Kalocsai Szent István Paprika Order of Knights
Quality management of spice paprika production

Quality assurance measures established along the spice paprika production technology are surveyed with main critical control points (CCPs) identified: at the drying step, at the microbial decontamination stage, and at the compositional and contamination checking of imported half-products.

Strict technology control by the manufacturer reported to and regularly supervised by the government authority.
Spice Paprika – cultivation, production

External factors, such as production factors, harvest procedures (*pesticide residues*),

Storage duration and temperature, processing protocols, conditions of water loss or post-ripening (*microbial contamination, mycotoxins, quality features*) affect the quality of the commodity.

Washing, slicing, drying and milling are the most critical steps of red pepper processing. Quality features, nutritive value, microbial contamination, and storage stability depends, to a high extent, on the conditions at which drying and milling are performed.

Because of mixing the batches or the imported half-products, the compositional and contamination checking and decontamination come into the front.
Assessment of paprika production technology monitoring contaminant levels in cultivated paprika

- field experiments (3 organic farmers, 3 intensive)
- environmental contamination monitored:
 - 114 + 45 soil samples, 6 locations for surface water
 - soil contaminants: trifluralin (0.01-0.36 μg/g), tefluthrin (0.01-0.86 μg/g), chlorpyrifos (0.6-16.6 μg/g) and DDT (0.01-8.35 μg/g) decomposition products (DDE (0.06-6.0 μg/g) and DDD (0.03-0.45 μg/g)), traces: diazinon, atrazine, metolachlor

trifluralin

 tefluthrin

 chlorpyrifos

 DDT

NO RESIDUES in paprika fruits

DDT, trifluralin, tefluthrin, chlorpyrifos
Effects of cultivar and harvesting method on the microbial load

External factors, such as production factors, harvest procedures were investigated.

The differences found in the microbial contamination of spice paprika berries had no relation to the plant morphology or to the method of harvest.
Microbiological changes during the washing of spice paprika

Washing step is only for the removal of the physical contamination, as the water used through 8-11 hours is saturated with microbes by the second hour.
Microbiological changes during the washing of spice paprika

Changes in the microbial contamination of washing water through time
(pw- pipe water, 0h – tank filled with water before paprika is processed, 2-11h – time of processing)

Changes in the microbial and physical contamination of washing water plated in ChromobioColiform medium through time
Microbiological status of washing water

„Daphnia sp. acute immobilization test” (OECD 202)¹
- Fleas at L1 larval stage (<24 hours)
- 48-hour exposition, 5 animals per test/quadruplicates
- Endpoint: immobilization

„Fish acute toxicity test” (OECD 203)¹
- Fish at 2±1 cm length stage
- 96 h exposition, 7 animals per test/triplicates
- Endpoint: mortality

Aedes aegypti larvae test according to WHO Guideline²
- Mosquitoes at L4 larval stage
- 48 h exposition, 5 animals per test/quadruplicates
- Endpoint: mortality

„Fish embryo acute toxicity (FET) test” (OECD 236) on Danio rerio ¹
- Fish embryos at 16-cell stage
- 96 h exposition, 20 embryos per test/triplicates
- Endpoint: mortality, sublethal effects

The washing water should be handle as hazard waste!
During slicing, the microbial contamination of paprika increases, as the microbes present inside the berries emerge. No *Salmonella* could be detected in any of the samples examined.
Drying greatly decreases the microbial contamination as most of the vegetative cells are killed. We have found 2-3 orders of magnitude reduction in the numbers of mesophilic aerobic total bacteria and coliform counts, *Escherichia coli*, *Enterobacteriaceae*, and yeasts have almost entirely disappeared.

The half-product can be stored up to months or even years in this phase without any change in its microbiological state.
The mesophilic aerobic bacterial count and also the mould contamination increased with two orders of magnitude with grinding. This is due to the fact that the microbial load of paprika berries is not homogenous; a few heavily spoiled ones mixed with the healthy berries contaminate the whole produce.
The steaming of spice paprika powder as decontamination procedure is effective. The bacterial and mould contamination could be reduced by 2-3 orders of magnitude. It is applied only in case the raw material is heavily contaminated, as it provides additional costs and it slightly reduces the colour of paprika powder.
The packaging, carried out according to regulation, had no effect on the microbial load of the spice paprika powder.
Thanks for your attention