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Far too often, solutions obtained by multivariate procedures—
including factor analysis, multidimensional scaling, and cluster
analysis—are interpreted, and even published, without adequate
evaluation of their reliability or wvalidity. Particularly among
inexperienced users, there is an uncritical and somewhat cavalier
approach to determining what parts (or which version) of an
analysis to accept. Clusters or dimensions are frequently taken
to be "real" whenever an interpretation can be projected onto
them by the imagination of the analyst. On the other hand,
dimensions that don't fit preconceptions and are hard to interpret
tend to be dismissed too easily. While some users may make a
feeble attempt at justifying their choice of dimensionality by
examining improvements in fit wvalues, little effort is otherwise
expended in determining whether clusters or dimensions are stable
or reliable, whether the model is appropriate for the data,
whether the algorithm achieved correct convergence, whether
serious outliers are present in the data, and so forth.
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“How can | know if it's ‘real’?”” A Catalog of
Diagnostics for Use with Three-Mode Factor
Analysis and Multidimensional Scaling

Richard A. Harshman

In H. G. Law, C. W. Snyder, Jr., J. Hattie, & R. P. McDonald (Eds.), Research methods
for multimode data analysis (pp. 566-591). New York: Praeger.
Available from: http://psychology.uwo.ca/faculty/harshman/
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Hypotheses

[

VALIDATION

Exploratory Confirmatory

BUT ALSO:

was an appropriate model chosen?

are outliers and/or highly influential points present?
is the selected subspace stable?

has the algorithm converged?

Marini - Berlin2016



The concept of validation

« Verify if valid conclusions can be formulated from a model:
— Able to generalize parsimoniously (with the smaller nr. of LV)
— Able to predict accurately

« Define a proper diagnostics for characterizing the quality of the
solution:

— Calculation of some error criterion based on residuals

* Residuals can be used for:
— Assessing which model to use;
— Defining the model complexity in component-based methods;
— Evaluating the predictive ability of a regression (or classification) model;

— Checking whether overfitting is present (by comparing the results in
validation and in fitting);

— Residual analysis (model diagnostics).
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The need for “new” data

* The use of fitted residuals would lead to overoptimism:

— Magnitude and structure not similar to the ones that would be obtained
if the model were used on new data.

Test set validation Cross-validation
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Test set validation (regression)
« Carried out by fitting the model to new data (test set):
— Simulates the practical use of the model on future data.

— Test set should be as independent as possible from the calibration set
(collecting new samples and analysing them in different days...)

— A representative portion of the total data set can be left aside as test set.
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Test set validation (classification)
« Carried out by fitting the model to new data (test set):
— Simulates the practical use of the model on future data.

— Test set should be as independent as possible from the calibration set
(collecting new samples and analysing them in different days...)

— A representative portion of the total data set can be left aside as test set.
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How to split the data?

* Intelligent choice of the samples to be put in each set —
reliable considerations based on the obtained results.

 Different criteria have been proposed in the literature to operate
an intelligent splitting

* They all share the same concept:
— try to span the sample space as uniformly as possible.

« Just to cite a few:
— Kennard-Stone
— Duplex
— D-optimal criterion
— Kohonen-based
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- R.W. Kennard, L.A. Stone, Technometrics,11 (1969), 137-148
Kennard-Stone algorithm

 The most diverse samples are placed in the training set

« All the remaining ones are left out as test set

« The “diversity” of a new samples from the ones already selected is defined
by the maximin criterion:

— The sample with the maximum value of the minimum distance to the ones already selected
is added to the training set
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R.D. Snee, Technometrics, 19 (1977), 415-428

Duplex algorithm

« Kennard-Stone approach tries to concentrate as much of the data
diversity in the training samples

* It can lead to overoptimistic results

* A modification of the algorithm aimed at maintaining a comparable
diversity between the two sets was proposed by Kennard himself
(even though it was left unpublished until it was discussed by Snee).

DUPLEX
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° ° ° V.V. Fedorov, Theory of optimal experiments, Academic Press, NY, 1972

D-optimal criterion

« Another possibility of uniformly sampling the sample space to build the
training set is the use of optimal designs.

- Optimality is defined wrt some statistical criterion (usually related to
minimizing the variance of the estimators).

« The definition of optimality requires a statistical model (e.g., multiple linear
regression).

« Given the matrix of predictors X, the information matrix is defined as X™X:
— A optimality: mimimize tr((XTX)")
— D optimality: maximize det(XTX)
— E optimality: maximize the miminum eigenvalue of (XTX)
— T optimality: maximize tr(X"X)
* One could also focus on the variance of the predictions:

— G optimality: minimize the maximum element of diag(X(X™X)-'XT), i.e. the max variance of
the predicted values

— | optimality: minimize the average prediction variance over the design space
— V optimality: minimize the average prediction variance over a set of predefined points

Marini - Berlin2016




Using the D-optimal criterion for subset selection
1. Generate a list of candidate points (in general, it is the whole data set)

2. Define the statistical model (usually a linear model without interactions):
Yy =bg+ bix1+ baxa+ -+ bpxy

3. Select candidate subsets of N, individuals and calculate their information
matrix X X;

4. Repeat the procedure until a subset is found which maximizes the
determinant of X} X,

5. That subset will be the training set; all the other samples will be the test set.

6. If the matrix is ill-conditioned, calculate at most (n-1) PCs and build the
information matrix using the scores TJ-TT]-
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Data splitting - 2
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Training/test set selection

« Duplex algorithm repeated class-wise on each pretreatment separately (Split
ratio: 2/1)

- Data selected more than 10 times (out of 15) in test set
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Cross-validation
* Internal resampling method:

— Simulates test set validation by repeating a data splitting procedure
where different object are in turn placed in the validation set.

— Particularly useful when a limited number of samples are available.
« Schematically, it consists of the following steps:

1. Leave out part of the data values

—
. I ‘ . I XvaH Yvan
X Y

Xcal 1 Ycal 1
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Cross-validation

2. Build the model without these data

A

=X

call — call

Bl

Xcal1 Ycal1

3. Apply the model to the left out values and obtain predictions;

A

Y =X B
vall vall ; -
?

X,al1 " Predicted Y41
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Cross-validation

4. Calculate the corresponding residual error
VS - PRESS 2 vall _j\;;/all)Z
Yval1 Pred. Yva|1

d. Repeat steps 1-4 until each data value has been left out once

- I Xva|2 Yva|2 - I

Xcai2 Yecai2 Xcaic Ycaig Xyaic Yvaic

6. Collect all the residuals into an overall error criterion

r‘ilﬁ PRESS,
Vs f RUSECY — \/ZJ \/le(y, 9.

vaI Pred. YvaI
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Cross-validation (classification)

4. Calculate the corresponding residual error

vs [l CE =Y e

Yval1 Pred. Yva|1

. Repeat steps 1-4 until each data value has been left out once

- I Xva|2 Yvalz - I

Xcai2 Year2 Xcalc Ycaig X\aic Yvaic

6. Collect all the residuals into an overall error criterion

G
| i VS e,
f CECV%ZlOOXZ]J\_]I :
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Cross-validation

e Number of objects is limited

e Understand the inherent structure of the system €=
Estimating model complexity

e QObjectsin a data table can be stratified into groups based on
background information:
— Across instrumental replicates (repeatability)
— Reproducibility (analyst, instrument, reagent...)
— Samplingsite and time
— Across treatment/origin (year, raw material, batch...)
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Cross-validation

Validation scheme No. of No. of RMSEC RMSECV
objects factors

A: Random calibration 210/122
and test

B: Keeping replicates 332
out
C: Keeping sample out 166

D: Model based on 9 118/47
cultivars; test set 3

cultivars

E1: Model validated 113/53
randomly year 2006-

2007; test 2008

E2: Model validated 113/53
across year 2006-2007;

0.35

0.35
0.39

0.83

1.44

0.37

0.44
0.44

1.11

2.09

0.58

4.49

1.38

test 2008 I
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Aspects of
Data fusion




TOWARDS THE USE OF MULTIPLE BLOCKS

* Food quality control is a complex problem often requiring the
interplay of more analytical platforms.

* Benefit of the specific advantages and characteristics of the different
techniques =» more reliable and stable model

DATA FUSION

How to combine the different information coming
from the various analytical platforms?
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Multi-block data and models

e Blocking can occur naturally within the data:
— Signals collected usingdifferent techniques
— Directionalityinduced by the problem (dependent vsindependent variables)
— Sample groupings (categories)

e |gnoring the block structure may blur the final results

e Multiblock models:
— Keep the natural ordering of the data
— Explainrelation between blocks
— Describe variation within blocks
— Assess block contribution to the overall variability
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DATA FUSION STRATEGIES

OrI

Responses Class information

Y

X,

Predictors

e LOW LEVEL =» Data
e MIDLEVEL =¥ Features
e HIGH LEVEL =» Decision rules
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LOW LEVEL DATA FUSION

Data are concatenated and treated as they were a single fingerprint

Preprocessingl lPreprocessing

5172

2060 ey 3112

Preprocessing

—)

40

Modeling
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MID LEVEL DATA FUSION

Features extracted from the data are concatenated
2060 ——3112

Modeling

L

#
01 ] 038
0 . . 4000 00
1000 1500 2000 2500 3000

Preprocessing + Preprocessing + A
Feature extraction Feature extraction

3 5

40 | -

Concatenation 40
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HIGH LEVEL DATA FUSION

Fusion occurs at the decision level
2060 e 3112

40 E me
Preprocessing + Preprocessing +
Feature extraction + Feature extraction +
Modeling Modeling
miz\ : - - L
Decision 1 (e.g. Class A) Decision 2 (e.g. Class B)

Majority vote
Bayes’ theorem

Final decision (e.g. Class A)

Marini - Berlin2016




EXAMPLES:

l. Traceability of PDO oils
with infrared spectroscopictechniques
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OLIVE OIL DATA SET

« Authentication of the origin of olive oil samples

» 37 extra virgin olive oil samples

— 20 from Sabina, Lazio (13 harvested 2009, 7 harvested 2010)
— 37 samples of different origin (22 from 2009, 15 from 2010

 MIR and NIR spectra recorded on each sample
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P LS _DA o n M I R d ata % Correct Classification % Correct Classification
Pretreatment LV Calibration Cross-validation

Sabina Other origins Sabina Other origins
Linear baseline 6 100.0 100.0 92.3 86.4
Quadratic baseline 6 100.0 100.0 92.3 86.4
1* derivative (SG) 7 100.0 100.0 84.6 86.4
2" derivative (SG) 3 84.6 86.4 84.6 72.7
MSC 3 100.0 95.5 84.6 95.5
MSC + quadratic baseline 4 100.0 95.5 92.3 95.5
MSC + 1% derivative 6 100.0 100.0 84.6 86.4
MSC + 2" derivative 3 84.6 86.4 84.6 68.2

» Best results with MSC + quadratic bl.
* %cc on test set: 85.7% (sabina); 86.7% (other origins)

PLS-DA scores plot on MIR data (MSC + quadratic baseline)

VIP on MIR data (MSC + quadratic baseline)
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P LS _DA on N I R d ata % Correct Classification % Correct Classification
Pretreatment LV Calibration Cross-validation
Sabina Other origins Sabina Other origins
MSC 3 100.0 95.5 100.0 95.5
Detrending 4 100.0 95.5 100.0 95.5
1* derivative (SG) 5 100.0 95.5 100.0 95.5
2" derivative (SG) 3 92.3 81.8 76.9 86.4
MSC + detrending 4 100.0 95.5 100.0 95.5
MSC + 1 derivative 4 92.3 95.5 92.3 90.9
MSC + 2" derivative 4 84.6 90.9 84.6 86.4

« Best results in CV with 4 pretreatments.
* %ccon test set (d1): 100% (sabina); 100% (other origins)

*  %cc on test set (other 3): 100% (sabina); 93.3% (other origins)

o VIP on NIR data (1% derivative)
PLS-DA scores plot on NIR data (1 derivative) i : :
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DATA FUSION

e LOW LEVEL
 Without block-scaling: Block with the highest variance
(here MIR) governs the model
* With block-scaling: Improved contribution of NIR but

still poorer results than with NIR alone
 MID LEVEL (PLS-DA scores after autoscaling)
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EXAMPLES:

Il. Traceability of PDO oils
with HPLC-DAD of polyphenols
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Contents lists available at ScienceDirect CSEMONETRICS
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Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemolab

Geographical traceability of extra virgin olive oils from Sabina PDO by
chromatographic fingerprinting of the phenolic fraction coupled
to chemometrics

Riccardo Nescatelli, Rossana Claudia Bonanni, Remo Bucci, Antonio L. Magri, Andrea D. Magri, Federico Marini *
Depamtment of Chemistry, University of Rome “la Sapienz®, Ple Aldo Moro 5,1-00185 Rome, Isnly
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Predictions

%Correct class. %Correct class. %Correct class.

Wavelength Calibration cv Validation

Sabina Others Sabina Others Sabina Others

254nm+280nm 4 92.3% 91.9% 91.2% 88.0% 85.7% 80.0%
254nm+340nm 1 92.3% 86.5% 88.8% 85.4% 85.7% 85.0%
280nm+340nm 3 100% 91.9% 91.2% 91.4% 85.7% 90.0%
254nm+280nm+340nm 2 100% 97.3% 87.7% 85.0% 85.7% 85.0%
Interpretation
vanillic acid negative 167.1 108.0(100);151.8(10) tg & standard
9.1 p-coumaric acid negative 163.1 119.1(100);167.1(27);91.1(13) t; & standard
18.2 luteolin positive 287.2 287.2(100):153.2(77);135.2(24) t, & standard
19.9 pinoresinol positive 359.1 359.1(100);327.1(10) t; & standard
21.0 acetoxypinoresinol positive 417.4 417.4(100);358.4(10) Literature
26.8 apigenin negative 269.0 117.0(100);107.0(17);151.0(12) t; & standard
27.9 methoxyluteolin negative 299.4 299.4(100);199.4(25);191.4(20) Literature
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EXAMPLES:

I1l. Traceability of an Italian craft beer
Reale (from Birra del Borgo)
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AUTHENTICATION OF BEER

Charactenzaton of artsanal beer sRkealesandits autnentication

BIRRA DEL BORGO “ReAle” is an artisanal beer brewed by
“Birrificio del Borgo”, an Italian microbrewery
well recognized also abroad for its high
quality products
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SAMPLES and TECHNIQUES

* Atotal of 60 samples were analyzed:
e 19 Reale
12 beers from Birra del Borgo
* 29 beers from other breweries

 Samples were splitinto training and test sets using
duplexalgorithm:

e 40 training (13 Reale and 27 not Reale)
e 20 test (6 Reale and 14 not Reale)

* The followingfingerprints were recorded:
e TG
e UV
* Vis
* NIR
e MIR
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Low Level — Results

Pretreatment % Correct Class. (Pred)
“Reale” “Not Reale”
Without block scaling 100.0 92.3
With block scaling 100.0 78.6
l'b'--‘ -------------------- B 20 e A S S AN S O Y Y iR
0 lI( 0 €.~ = ll) -ll‘ ':fl
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Mid Level — Results

Pretreatment % Correct Class. (Pred)

“Reale” “Not Reale”
Mean Centering 100.0 100.0

® Realetr
®e
O O  Realets
B Non Reale tr
Non Reale 15

y predetta
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Conclusions

Individual Techniques

%Correct Low Level Data Fusion \

Classification R B E ey e
>85%

% Correct
Classification % Correct
> 929, Classification

100%

Data fusion helps!




Thank you for your attention

federico.marini@uniromal.it
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