VKK

Vitenskapskomiteen for mat og miljø

Norwegian Scientific Committee for Food and Environment

Use of epidemiological studies in a benefit and risk assessment of fish intake by VKM

Christine L. Parr, PhD
Senior advisor, epidemiology, VKM Secretariat ChristineLouise.Parr@vkm.no
www.VKM.no

About VKM

- Part of the national government administration, provides
different agencies with risk- or benefit/risk assessments, and other science-based evidence
- Our main commissioners
- Food Safety Authority
- Environment Agency
- (Medicines Agency- if GMO involved)
- (Directorate of Health)
- Focal point for the European Food Safety Authority (EFSA)

Background for fish report

- Fish - an important source of nutrients and contaminants
- National dietary guideline for fish intake in Norway questioned after EFSA lowered the tolerable weekly intake (TWIs) of dioxins and dioxin-like PCBs (dl-PCBs) in 2018¹
- Critical health effect: reduced semen quality
- Perfluorinated alkylated substances (PFASs) in 2020^{2}
- Critical health effect: reduced vaccine response in children

1. EFSA Panel on Contaminants in the Food Chain (2018): Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J, 2018. 16(11): p. e05333.
2. EFSA Panel on Contaminants in the Food Chain (2020): Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J, 2020. 18(9): p. e06223.

Terms of reference - Norwegian food safety authority

To estimate health consequences for the Norwegian population if fish intake:

1) remains at current level
2) increases to meet recommendations by the Directorate of Health

Current recommendation:

- Eat fish for dinner 2-3 times/week, use fish as spread on bread
- Around 300-450 g/week in adults, min 200 g should be fatty fish

VKM have used 3 scenarios:

- 150, 300, and 450 g/week vs. current intake

Fish - integrates nutrients and contaminants

How did we use epidemiological studies?

- In the benefit/risk identification and characterization
- Systematic literature review (SLR) of epi-evidence on health outcomes for
- Fish intake: primary studies and SLRs; high-low meta-analysis (pooled RR)
- Nutrients in fish (omega-3 fatty acids, vit D, iodine, selenium): SLRs only
- Contaminants in fish (dioxins, dll-PCB, PFAS, MeHg): epi-evidence evaluated by EFSA when setting tolerable weekly intakes (TWI)
- For outcomes graded «probable» (or higher) for causal effect,
- Meta dose-response figures from SLRs used for modelling impacts of changes in fish intake on disease incidence or mortality

Health outcomes summarized for fish intake in VKM report
Mortality
all-cause, cause specific
(adults)

Type 2 diabetes
(adults)

Hip fractures
(adults)

Birth outcomes (preterm birth, SGA, LBW)

Mental disorders, e.g. autism, ADHD (children)

Weight/overweight/
body composition
(children, adults)

Semen quality and male fertility (empty review)

Vaccine response
(empty review)

Amount of literature on health outcomes

- Primary studies on fish intake (inception to Oct 2021):
- Around 26000 screened by title/abstract
- Around 350 quality assessed
- 270 included (1\%)
- Review studies on fish intake (from 2016 to Oct 2021):
- Around 800 screened by title/abstract
- Around 60 quality assessed
- Around 40 included (5\%)
- Review studies on nutrient intakes ($\omega-3 \mathrm{~s}$, vit D , iodine, selenium) from 4 searches:
- Around 2000 screened by title/abstract
- Around 80 quality assessed
- Around 40 included (2\%)

Quality assessment/risk of bias (RoB)

- Systematic reviews
- AMSTAR tool
- Primary studies
- Cross-sectional design used as exclusion criteria, no RoB
- Templates from Nordic Nutrition Recommendations (NNR) 2012 for
- Case-control
- Prospective cohort
- Nested case-control
- RCT
- Overall grade A, B or C. Studies graded C were excluded.

Grading of evidence - WCRF criteria (2018)

WCRF $=$ World Cancer Research Fund

WCRF grading:

- Convincing (strong)
- Probable (strong)
- Limited, suggestive
- Limited, no conclusion
- Substantial effect on risk unlikely (strong)

Modelling example - fish intake and Alzheimer's

Meta-dose response analysis (7 studies) by Kosti 2022:
Weighted mixed-effects model with restricted cubic splines, 3 knots at fixed percentiles of fish intake)

Kosti et al. 2022: Nutrition Reviews, Volume 80, Issue 6, June 2022, p 1452

Loglinear model fitted to the reported relative risks

Example: Potential impact fractions (PIF) or percent change in annual number of new cases estimated for change in fish intakes from the current intake to 150,300 or $450 \mathrm{~g} /$ week

Men (350 g/ wk)

Women (238 g/wk)

Health

outcome	Scenario 1 150 g/ wk	Scenario 2 300 g/wk	Scenario 3 450 g/wk	Scenario 1 150 g/wk	Scenario 2 300 g/wk	Scenario 3 450 g/ wk
Alzheimer's	$\begin{gathered} 16 \% \\ (5.2,28) \end{gathered}$	$\begin{gathered} 0 \% \\ (0,0) \end{gathered}$	$\begin{gathered} 0 \% \\ (0,0) \end{gathered}$	$\begin{gathered} 13.95 \% \\ (4.6,24.2) \end{gathered}$	$\begin{gathered} -1.76 \% \\ (-2.9,-0.6) \end{gathered}$	$\begin{gathered} -1.76 \% \\ (-2.9,-0.6) \end{gathered}$
New cases (70-90+ yrs)	+416	0	0	+481	-61	-61

- The numbers in brackets indicate the estimated PIF using the lower and upper limits of the 95% confidence intervals around the relative risks.
- A negative sign indicates an expected percentwise decrease in number of cases

Some challenges in assessment

- Different body of epi evidence on fish, nutrients and contaminants
- Differences in study designs, health outcomes and population groups
- E.g. mostly observational studies for fish intake, and mostly RCTs for nutrients (dietary supplement intake)
- How to weigh benefits and risk considering these differences
- Large body of evidence for fish/nutrients and health
- How to synthesize evidence from multiple/independent reviews
- RoB assessment becomes very time consuming

Which RoB tools should we use in future assessments?

- Nordic Nutrient Recommendations 2023 implemented other tools*
- RCTs: RoB 2 from Cochrane
- Nutrition Observational Studies: (RoB-NObS) from the USDA
- Nutrition Evidence Systematic Review team
- Non-randomized intervention studies: ROBI NS-I
- (ROBI NS-E for effects of exposure not available at the time)
- Other options
- OHAT (US National Toxicology Program)
- raROB (BfR)
*Arnesen EK et al. The Nordic Nutrition Recommendations 2022 - handbook for qualified
systematic reviews. Food Nutr Res. 2020 Jun 18;64. PMID: 32612492

Acknowledgement - project group:

- Lene Frost Andersen (scientific leader)
- Bente Mangschou (project leader)
- Kirsten Rakkestad (project leader)
- Paula Berstad
- Barbara Bukhvalova
- Monica Carlsen
- Lisbeth Dahl
- Anders Goksøyr
- Lea Sletting J akobsen
- Helle K Knutsen
- Ingrid Kvestad
- Inger Therese Lillegaard
- Haakon E Meyer
- Maarten Nauta
- Christine L Parr
- J osef D Rasinger
- Sayantan Sengupta
- Guri Skeie
- Jostein Starrfelt
- Sofie Thomsen
- Stine M Ulven

VKM

VKM

Vitenskapskomiteen for mat og miljo

Norwegian Scientific Committee for Food and Environment

Thank you for your attention!

