

Uncertainty within and beyond the data: approaches to deal with different types of unknowns

Zora Kovacic & Dafne Lemus

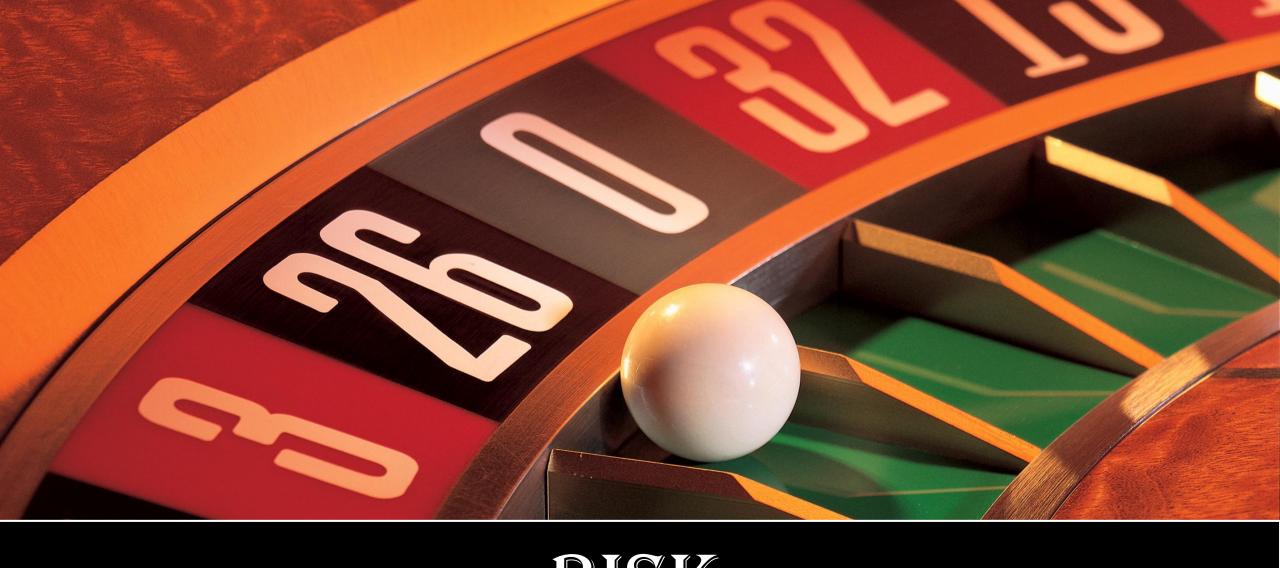
Centre for the Study of the Sciences and the Humanities (SVT),

University of Bergen

EFSA/BfR International Conference on Uncertainty in Risk Analysis Berlin, 21 February 2019

Why do we measure uncertainty?

- Precision does not necessarily reduce uncertainty


TABLE OF WEIGHTS. A Table of Weights, obtained by us from the Secretaries of the different States, showing the No. of lbs., which their Laws recognize as a bushel, of the following articles. COPY RIGHT SECURED. Dried Peaches Dried Apples. 60 56 56 32 47 48 60 56 56 32 48 50 60 45 56 44 14 25 33 - 50 50 60 - 60 46 57 50 70 60 56 56 35 48 52 60 45 56 44 14 24 33 _ - 50 50 60 _ - 60 46 57 _ m 60 54 56 32 44 40 60 56 56 32 48 42 60 m m - . . . 28 28 MICHIGAN, S CONNECTICUT, ... 70 70 60 60 60 -- 50 MASSACHUSETTS,. RHODE ISLAND,... KENTUCKY, 60 56 56 30 48 50 64 _ 55 . NEW JERSEY..... H 60 56 56 32 46 46 VERMONT, 50 50 Missouri, ... CANADA, [Custom.] 60 56 56 34 48 48 60 48 56 ... 22 22 ... 56 56 ... 60 60 All States not included in the Table, as well as the above blanks, are regulated by the DURYEE & FORSYTH. United States standard.

 Standard measures caused a loss of knowledge and created uncertainty

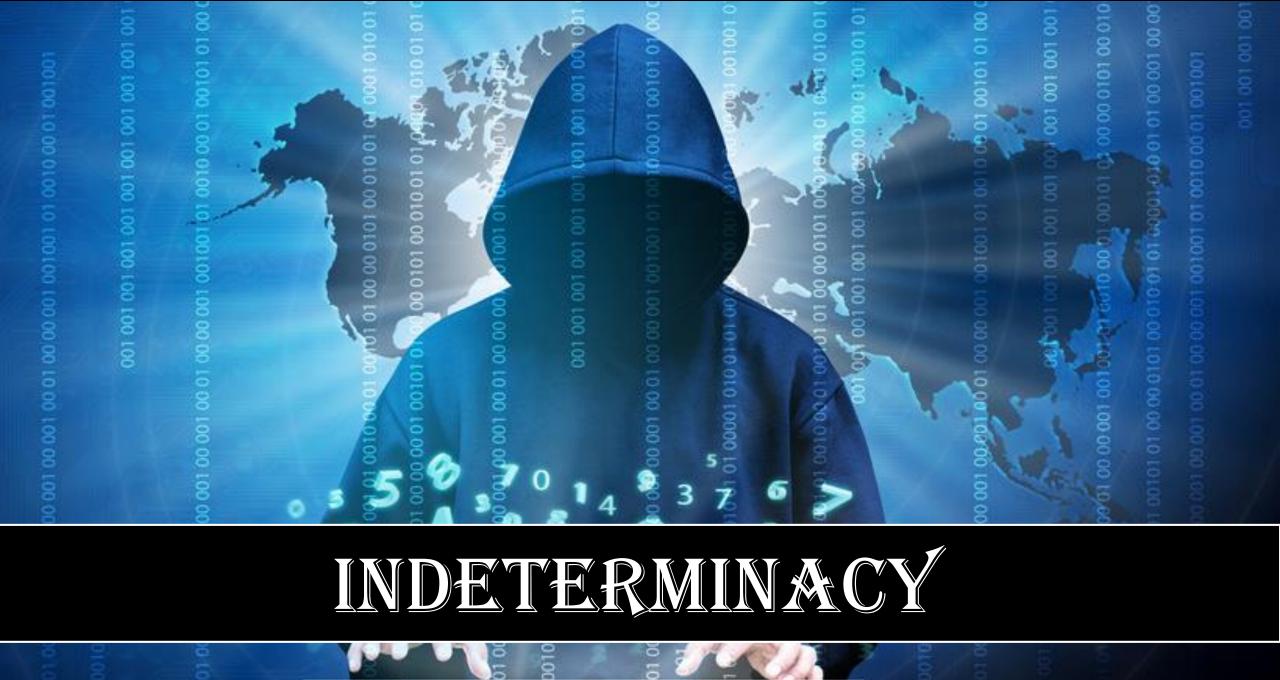
Why do we measure assess uncertainty?

 Assessing uncertainty as acknowledging the knowledge that is lost through measurements

Risk (known outcomes and known probabilities)

RISK

- Risk (known outcomes and known probabilities)
- Strict uncertainty (known outcomes and unknown probabilities)


STRICT UNCERTAINTY

- Risk (known outcomes and known probabilities)
- Strict uncertainty (known outcomes and unknown probabilities)
- Ignorance (unknown outcomes we don't know what we don't know)

IGNORANCE

- Risk (known outcomes and known probabilities)
- Strict uncertainty (known outcomes and unknown probabilities)
- Ignorance (unknown outcomes we don't know what we don't know)
- Indeterminacy (causal chains are open)

- Risk (known outcomes and known probabilities)
- Strict uncertainty (known outcomes and unknown probabilities)
- Ignorance (unknown outcomes we don't know what we don't know)
- Indeterminacy (causal chains are open)
- Ambiguity (unknown outcomes and known probabilities)

MBIGUITY

bisphenol A

- Risk (known outcomes and known probabilities)
- Strict uncertainty (known outcomes and unknown probabilities)
- Ignorance (unknown outcomes we don't know what we don't know)
- Indeterminacy (causal chains are open)
- Ambiguity (unknown outcomes and known probabilities)

- Some types of uncertainty cannot be meaningfully quantified, or cannot be quantified at all
- Identify the knowledge that is lost

Qualitative methods of uncertainty analysis

Dealing with qualitative aspects

• Knowledge Quality Assessment (integrity, responsibility, rigour, transparency, reproducibility); problem framing; involvement of stakeholders; selection of indicators; mapping uncertainty; **NUSAP**; sensitivity auditing; social multicriteria evaluation (weighting of evidence and aggregation of social preferences) - (van der Sluijs 2007, Strand & Oughton 2009; Saltelli et al.; Munda 2005)

Typologies of uncertainty

Nature of uncertainty (knowledge related & variability); risk, strict uncertainty, ignorance and indeterminacy (Wynne 1992); risk, uncertainty, ignorance and ambiguity (Stirling 2003); technical, methodological and epistemological uncertainty (Funtowicz & Ravetz 1990); location of uncertainty, level of uncertainty, quality of knowledge base, value-ladenness of choices (van der Sluijs 2006)

Uncertainty analysis Approach (i) Dealing with qualitative aspects

- NUSAP (Funtowicz & Ravetz; van der Sluijs)
 - Numeral (the quantity)
 - Unit (the type of measure)
 - Spread (the statistical error)
 - Assessment (the quality of the information)
 - Pedigree (the quality of the process of producing the information)

	Numeral Unit	Spread Asse	essment Pedigree
Value of compensations	1 E2 \$/litre	±5 0.5	(3, 4, 3)
Score	Quality of model	Quality of data	Degree of acceptance
4	Established model	Empirical data	High
3	Theoretical model	Historical data	Medium
2	Experimental model	Educated guess	Low
1	Statistical processing	Uneducated guess	None

Figure 3. Example of Numeral, Unit, Spread, Assessment, Pedigree. Source: Adapted from Funtowicz and Ravetz (1990).

Example Pedigree matrix parameter strength

Code	Proxy	Empirical	Theoretical basis	Method	Validation
4	Exact measure	Large sample direct mmts	Well established theory	Best available practice	Compared with indep. mmts of same variable
3	Good fit or measure	Small sample direct mmts	Accepted theory partial in nature	Reliable method commonly accepted	Compared with indep. mmts of closely related variable
2	Well correlated	Modeled/derived data	Partial theory limited consensus on reliability	Acceptable method limited consensus on reliability	Compared with mmts not independent
1	Weak correlation	Educated guesses / rule of thumb est	Preliminary theory	Preliminary methods unknown reliability	Weak / indirect validation
0	Not clearly related	Crude speculation	Crude speculation	No discernible rigour	No validation

Uncertainty analysis
Approach (ii)
Typologies of
uncertainty

- Analysis of the sources of uncertainty (Funtowicz & Ravetz 1990)
 - Technical uncertainty
 - Methodological uncertainty
 - Epistemological uncertainty

Enkanini

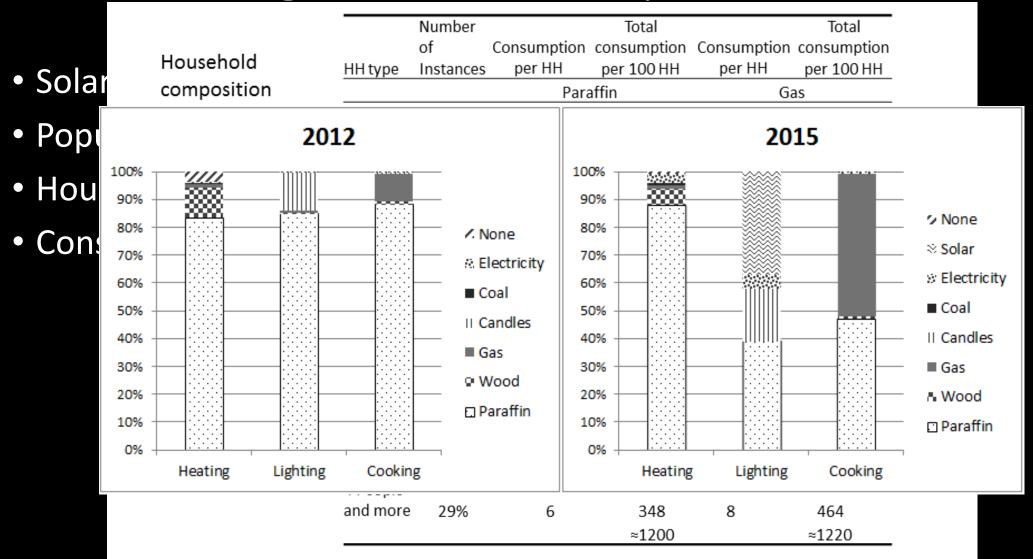
Energy needs

The community asked for connection to "Eskom", the national electric utility

iShack project

- Solar panels installed on roof tops
- 64% of households in Enkanini had solar panels in 2015

Solar panels conflict



Technical uncertainty

How to provide electricity

Methodological uncertainty

Epistemological uncertainty

- Enkanini residents want the formal recognition of the settlement
- Municipality: Politically difficult to recognize the informal settlement

Typologies of uncertainty: BPA

- Analysis of the sources of uncertainty (Funtowicz & Ravetz 1990)
 - Technical uncertainty
 - Methodological uncertainty
 - Epistemological uncertainty

Take-home thoughts

- Uncertainty analysis requires a critical reflection about the limits of knowledge
- Analyzing uncertainty does not tame the uncertainty

Thank you for your attention!

Zora.kovacic@uib.no