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Predictive Toxicogenomics Space Modelling:
Aims and Purpose

Modelling together large collections of gene expression and
high-throughput cellular screening profiles (i.e., “Big Data “)
should generate variants of toxome descriptions

Such a description should be able to serve as a “Predictive
Toxicogenomics Space (PTGS)“ as it should capture toxicity
mechanisms and pathological effects

Bioinformatics-based validation against existing and generated
“big data” sets should prove the extent of usefulness of a
potential “high-throughput PTGS-based scoring concept”
for:

predicting Key Events for cellular and organ toxicity effects,
analyzing dose-dependent relationships for diverse agents,
all to be useful to Adverse Outcome Pathway (AOP) studies



"Toxicogenomics Space” is defined by "omics”
components predictive of cytotoxicity

Connectivity Map (3062 instances)

Instance 1 Instance 2 Instance 3

———— Latent Dirichlet
Component 1 - CETIEEE 2 Allocation component
/’» =< N models (100)

Molecular Signatures Database (1321 gene sets)

Connectivity Map Cross-over data set NCI-60 DTP
(1217 compounds) ===p 222 compounds <= (100000 compounds)
(100 components) 492 instances (59 cell lines)
(MCF7, HL60, PC3) * (GIS0/TGI/LC50 data)

Predictive Toxicogenomic Space (PTGS)
14 of the 100 component models, 1331 genes

Component-based scoring Gene set-based scoring
(tests if the 14 components are more  (tests if the PTGS-associated genes are
active than the other 86 components) more active in the treated vs. non-treated)




The PTGS safety scoring concept —
the output
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DILI assessments with the Predictive
Toxicogenomics Space (PTGS) concept (>500
million data points applied)

Data sets Compounds Tests Samples Data points
TG-GATES rat repeated dose 28-day study, prediction concept/validation (MA) 143 1689 6765 128 651 751
TG-GATEs human hepatocytes, prediction concept/validation (MA) 157 941 2605 90 669 391
TG-GATESs rat hepatocytes, prediction concept/validation (MA) 145 1260 3370 76 692 128
DrugMatrix rat liver, in vivo, repeated dose, validation (MA) 201 654 2218 56 752 735
DrugMatrix rat hepatocytes, validation (MA) 126 268 939 25671 374
Benchmark dose (BMD) rat liver, in vivo, validation (RNA-seq/MA comparison) 1 12 60 986 788
HepG2 cell model, TempO-Seq S1500+, validation (HTTr) 81 160 489 5730 967
DILI prediction, rat liver, in vivo, blinded study, validation (MA) 1 4 24 891 746
Human and rat liver, in vitro systems comparison, blinded study, validation (MA) 3 87 439 14 427 646
DILI prediction, rat liver, in vivo, blinded study, validation (MA) 1 6 45 1236 342
DILI prediction/BMD, human liver spheroids, validation (HTTr) 28 560 2774 67 779 442
DILI prediction, human liver spheroids, LINCS L1000+Inferred, validation (HTTr) 28 560 2774 44 018 024
DILI prediction, human liver spheroids, blinded study, validation (RNA-seq) 27 87 269 6 084 001
Total 942 6288 22771 519 592 335

Unique compounds 453; 231 with DILI information (FDA DILIRank DB): 85 Most-DILI-concern, 87 Less, 27

Ambiquous and 32 No-DILI-concern; 119 compounds in total (74 Most, 36 Less, 14 No, 13 Ambiguous, 18
Unclassified).

In vitro model predictions included 119 compounds of which 92 were correctly predicted (77%).

Study calculations include raw data and derived analyses data of gene expression at transcriptome level.
“Blinded study” indicates unrevealed compound identity and/or DILI classification at start of analysis.
MA = microarray technology, HTTr = High-throughput platforms, RNA-seq = RNA sequencing technology



Scoring concepts for DILI and cytotoxicity
prediction: defining LOELs

* Gene set enrichment analysis, adjusted p-value (stat
significance; FDR <0.05)

 R/Bioconductor limma rotation-based testing (10000 rotations)
+ Tests whether PTGS changes relative control
» Uses all gene expression information, not just DEGs

* Activity score relative TG-GATEs or the Connectivity Map
(biological effect, > 50% effect probability)

»  Use the proportion of genes in set(s) 100%

altered by the exposure as a score

« Compared directly to the TG-GATEs
rat 28-day liver data (1667 treatments)
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Nature Communications (2017) DOI:10.1038/NCOMMS15932



The PTGS safety scoring concept examplified with TG-GATESs data
(Benzbromarone, 4-100 uM; 8 h, human hepatocytes, therapeutic C, ., (5. 6.6 HM)

PTGS component MoA
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PTGS concept enables component-based MoA analysis;
G,H, I, N components are applied to liver toxicity prediction;
(Component activations also serves for compound grouping)

Component Toxicity-associated biological and cellular mechanisms

PPARa/RXRa Activation, Peroxisome Proliferators via PPARa,
LXR/RXR Activation, VDR/RXR Activation, RAR Activation, Aryl
A B, C, G, Hydrocarbon Receptor Signaling, NF-kB Signaling, Oxidative
H,I,N Stress, NRF2-mediated Oxidative Stress Response, TGF-b
Signaling, Transmembrane Potential of Mitochondria, Anti-
Apoptosis, Cell Cycle: G1/S Checkpoint Regulation, p53 Signaling

D TGF-b Signaling, PPARa/RXRa Activation
Cell Cycle: G1/S Checkpoint Regulation and G2/M DNA Damage
E,K Checkpoint Regulation, Aryl Hydrocarbon Receptor Signaling, p53
Signaling, Notch signaling, E2F/MYC targets, peroxisome
L Cellular aldehyde metabolic process (HMGCL, ABAT, ADH5, PGD)
F Regulation of transcription, DNA-dependent, positive regulation of

transcription from RNA polymerase Il promoter, UV response
J RNA polymerase |l promoter regulation, IL2-STATS5 signaling
M tRNA charging, unfolded protein response, MTORC1 signaling




PTGS tool captures chemical insults that lead to
diverse clinical manifestations of DILI

Drug uptake
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Diverse clinical
presentations of DILI

* Acute fatty liver with
lactic acidosis

* Acute hepatic necrosis

* Acute liver failure

* Acute viral hepatitis-like
liver injury

* Autoimmune-like hepatitis

* Bland cholestasis

 Cholestatic hepatitis

* Cirrhosis

* Immuno-allergic hepatitis

* Nodular regeneration

* Nonalcoholic fatty liver

* Sinusoidal obstruction
syndrome

* Vanishing bile duct
syndrome

Drug-induced liver injury (DILI) can be caused by various chemical insults (steps 1-5) and can present as
an array of different pathologies, dependent on the specific function of the liver that is impaired.
Furthermore, recruitment of the immune system (step 6) can result in a prolonged or altered pathological
phenotype, adding further complexity to the clinical presentation of the condition.

(Fig from Weaver et al, Nature Reviews-Drug Discovery, 2020)



PTGS components capture toxic mechanisms
associated to DILI

Gene Ontology| toxLists (IPA)
(1) Mitochondrial impairment B,C,G,I,M N

Drug uptake

(2) Inhibition of biliary efflux
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Figure adapted from Weaver et al, Nature Reviews-Drug Discovery, 2020 10



PTGS scoring in vitro captures DILI concerns related to
hepatobilary transport (33 of 34 DILI-inducing drug molecular
actions indicated as captured)
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Figure adapted from Weaver et al, Nature Reviews-Drug Discovery, 2020
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Types of PTGS Component MoA analyses

« Analysis applying Latent Dirichlet Allocation (LDA) component
models: used for selecting component sets for tissues and cells, e.g., DILI

» Self-contained Gene Set Enrichment Analysis (GSEA): limma ROAST
assesses activity of component genes in exposed vs. control; used for dose
response analysis and deriving PTGS-LOEL data

« Competitive GSEA: version 1) limma ROMER analysis of component
genes relative other PTGS genes, or version 2) relative other genes that
are part of the 100 CMap LDA-modelled components; serves for MoA and
AOP / KE analyses

« BMD analysis with BMDExpress2: analyses each measured gene
expressing a dose response with 10+1 US EPA models; gives a
summarized result with the optimal model(s) for each activated component

« BMD analysis with BMDExpress2 using a novel single-sample GSEA
method: more sensitive than above method, less computation; gives a
BMD with a single optimal model at the component level

« Connectivity mapping (PharmaCoGX method, global weighted
correlation): gives directional connectivity; used to connect components to

an in-house generated LINCS perturbation class meta-signatures data set
12



Example: PTGS and BMD analysis for a client
Excerpt from PTGS Toxicity/DILI Prediction Model (28 compounds)
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PTGS test concept is highly sensitive. PTGS LOELs correctly predict DILI concern

for 27 of 28 compounds (slide shown with permission from Predictomics AB) .



Programmatic PTGS-driven AOP analysis assesses
26 Liver AOPs coupled to 67/90 events (MIEs and KEs)

PTGS measures predicts

Molecular Cellular
Interactions Responses

Organ Organism

Exposure
p Responses Responses

| ]
- 2 > > »
> C Alterations in
S 9| Chemical struct - . _
s E ai?c?o Se:ijig;re Binding to gene and protein Altered tissus Impaired |
= v et ID 3 macromolecules expression, frin v e | Disease rates,
e s internal dose, (i.e. proteins, protein modification, faia disease, lethality death rates
Q@ metabolic nucleic acids) metabolic levels ]
5 o transformation and lipid classes
= |
MIE | | | I Adverse butcome I

Mode of Action

Adverse Outcome Pathway

Ankley et al., 2010; Technical information on alternative methods (CADASTER workshop on the use of QSAR models in REACH,
Slovenia, 1-2 September 2011) by Andrew Worth, European Commission, Joint Research Centre, Systems Toxicology Unit, Italy

Sturla SJ, et al. Systems toxicology: from basic research to risk assessment. Chem Res Toxicol. 2014 Mar 17;27(3):314-29. 14



Cytotoxicity probability [%]
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Compound 18, Most-DILI-Concern (24h)
causes steatosis and liver fibrosis

Cytotoxicity (positive)

1500

- 1000

&
DILI probability [%]

[u] seuag) passaidx3 Ajjenualagiq

100

751

501

Drug-induced liver injury '(pésitive)

F 1500

1000

[4,]
[u] seuag) passaidx3 Ajjenualapgiq

T
o

Significance

ns

PTGS component scores

PTGS_A -
PTGS_B -
PTGS_C A
PTGS_D A
PTGS_E
PTGS_F -
PTGS_G -
PTGS_H -
PTGS_| 1
PTGS_J |
PTGS_K A
PTGS_M
PTGS_N -
PTGS_GHNI

Mode-of-action

Significance
ns

Q-value(log10)

1
2
3
4

PTGS_GHNIM

aaaaaaaaaa
OO0 00000 0000

Dose level

DILI LOEL

DILI LOEL: 0.98 uM, C01 (S.M. -1.49)
Cytotoxicity LOEL: 0.98 uM, C01 (S.M. -1.49)
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AOPs

Compound 18, liver AOPs: KE per AOP
(PTGS DILI LOEL 24h: C01)

1 2 ) 4 5 6 7 8
Aop:60: NR1I2 (Pregnane X Receptor, PXR) activation leading to hepatic steatosis; | COVOeTy ‘ERRBEE; ‘RRREEE BRRRRE BRRRRR SRRRRR BRRRAR
Aop:61: NFE2ZL2/FXR activation leading to hepatic steatosis; KE=124 # # £ 1 1 I | AN ENNN! EEEENN! NN NN NN U NN NN N NN
Aop:58: NR113 (CAR) suppression leading to hepatic steatosis; KE=14
Aop:57: AhR activation leading to hepatic steatosis; KE=10 4 ¥ 00y (AR EN (AR EE EEENEN (RN RN (R NR N (NN RN
Aop:34: LXR activation leading to hepatic steatosis; KE=10
Aop:144: Endocytic lysosomal uptake leading to liver fibrosis; KE=8 -
Aop:107: Constitutive androstane receptor activation leading to hepatocellular
adenomas and carcinomas in the mouse and the rat; KE=3 ]........ 00000000 00000000
Aop:41: Sustained AhR Activation leading to Rodent Liver Tumours; KE=3 100000000 90000000 00000000
Aop:27: Cholestatic Liver Injury induced by Inhibition of the Bile Salt Export Pump |
(ABCB11); KE=5 ® ® ® ® o No. KEs
Aop:62: AKT2 activation leading to hepatic steatosis; KE=3 100000000 90000000 90000000 ® 3
Aop:118: Chronic cytotoxicity leading to hepatocellular adenomas and carcinomas (in |o s s e0e0e esssssees . 6
mouse and rat); KE=2
Aop:273: Mitochondrial complex inhibition leading to liver injury; KE=4 4 . 9
Aop:278: IKK complex inhibition leading to liver injury; KE=2{- ® - s®e®®® ® 0000 . 12 3
Aop:38: Protein Alkylation leading to Liver Fibrosis; KE=6 - . 8
Aop:46: AFB1: Mutagenic Mode=of=Action leading to Hepatocellular Carcinoma (HCC); | KE Proportlon
KE=4
Aop:285: Inhibition of N-linked glycosylation leads to liver injury; KE=1 = = & s = & s » 0.2
Aop:59: HNF4alpha suppression leading to hepatic steatosis; KE=1+ ¢ » ¢ ¢ » « « gg
L]
Aop:6: Antagonist binding to PPARa leading to body=-weight loss; KE=5 - e 08
Aop:220: Cyp2E1 Activation Leading to Liver Cancer; KE=1 ¢ ¢ ¢« ¢« e 1.0
Aop:209: Perturbation of cholesterol and glutathione homeostasis leading to |
hepatotoxicity: Integrated multi-OMICS approach for building AOP; KE=5
Aop:108: Inhibition of pyruvate dehydrogenase kinase leading to hepatocellular | I
adenomas and carcinomas (in mouse and rat); KE=4 PTGS ACtIVIty
Aop:32: Inhibition of iINOS, hepatotoxicity, and regenerative proliferation leading |
to liver tumors; KE=3  LOEL
Aop:37: PPARalpha-dependent liver cancer; KE=2 - * Active
Aop:117: Androgen receptor activation leading to hepatocellular adenomas and |
carcinomas (in mouse and rat); KE=2
Aop:36: Peroxisomal Fatty Acid Beta=Oxidation Inhibition Leading to Steatosis; KE=6 4
Aop:130: Phospholipase A inhibitors lead to hepatotoxicity; KE=7 -
LELELELELELES S$ESEEEEEE SEEEEEEL SESSEEEES SESEEEEEE SEEESEEE SEESEEES SSEEEESS
M :35:\‘3‘ N :3&’:3‘:%‘5:\‘3‘ ARG xaﬁm@ N 535:3:3:%: MM R}‘&S MRAIRA :WS NN :cxmg NN :3:3:3:3‘?‘1‘ N
shsebbbl’ shsbhbbl' shsbhbol’ shSbhobs' shsbbobl’ shaehbbbl' shzbhsbs’ shsbhobb
VO0O0O00LLU LOLLLOOL LOOLUOLOOLLU LVOOLOLOLOOL LOOLOLOOLOLOL VOOLOLOLOOL LVLOLOLOOOLL LOOOLOLOLOLO

26 AOPs
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PTGS-derived AOPs for steatosis
(Compound 18)

Biological
Organisation
Level

Intermediate effect

Key Event

PPAR-y
activation

AHR agonist

Peroxisomal
AOX inhibition

Differentiation

CD36
upregulation

Inhibition of
respiration
= NAD+
depletion

Inhibition of
the
mitochondrial
b-oxidation

Inhibition
of the
microsomal
b-oxidation

Liver
triglyceride
accumulation

| De novo I
I fatty acids I

Increase of
the FA influx

from
peripheral
tissues

y  Organelle

Cytoplasm
displacement

Nucleus
distortion

Mitochondrial
disruption

Endoplasmic
reticulum
stress

Steatosis > 5
10% by liver
weight

Fatty liver

Tissue

Detected in client

data study

Adapted from Mellor et al. CRITICAL
REVIEWS IN TOXICOLOGY, 2016 VOL.

46, NO. 2, 138-152
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AOP 144: Endocytic lysosomal uptake leading
to liver fibrosis (Compound 18)

Endocytotic : , Increased ,
y Lysosomal Mitochondrial{f |Cell death/ | Leukocyte HSC ECM Liver
lysosomal —| 7. . . . »inflammatory| . L . : .
disruption dysfunction injury . recruitment activation alteration fibrosis
uptake mediators
Type Event ID Title A Holecuer I .
annotated ' -
~
‘Aop: Key Es KE:2 |
MIE 1539 Endocytotic lysosomal uptake x A — (/
‘Aﬂp: Adverse Outcome la0:3
» ”OW::eKréAOF'mc\uﬂmg ‘é\
KE 898 Disruption, Lysosome KE:S898
KE 177 N/A, Mitochondrial dysfunction 1 x i @
KE 55 Cell injury/death x
KE 1493 Increased Pro-inflammatory mediators x
KE 1494 Leukocyte recruitment/activation x
KE 265 Activation, Stellate cells
KE 68 Accumulation, Collagen
AO 344 N/A, Liver fibrosis X
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Example compound 18. Aop:144 (Events=9),
Endocytic lysosomal uptake leading to liver fibrosis
(PTGS DILI LOEL 24h: C01, 7d: C08)

(Quantitative estimates via multiple testing corrected p-values)
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PTGS Component MoA analysis using competitive GSEA (the 14 toxicity-
associated vs the non-toxicity 86 components of the LDA-compressed cMap).
Five of six PTGS-annotated events positive within the concentration series 4



The PTGS tool- inherent capabilities ensure broad
industrial and regulatory applicability

= Serves as a giant AOP-applicable toxicity biomarker that
captures/describes dose response and MoA

= Can be applied in high throughput manner to diverse types of
model systems and types of transcriptomics data: microarray,
RNA seq, feature sets (EPA/NTP S1500+; LINCS L1000)

= Initial selection of toxicity-related genes serves to cover multiple
toxicity pathways and to avoid unspecific gene expression noise

= Analysis is standardized, driven by data completeness and
quality considerations, arbitrary differential gene expression cut-
offs are eliminated, and all gene expression levels are taken into
account (FAIR principle considered in data handling)

= The algorithm and bioinformatics processing concept applying
GSEA outperforms common tests for analyzing cytotoxicity;
PTGS test is commonly 1-2 order of magnitude more sensitive

= Scoring concept enables IVIVE both with or without PBPK
data/modeling results and clinical data (e.g., Cmax values)



Human Cellular and Tissue Experimental Models

Level of human In Vitro Biomimetic/Structure Function

Recommended key concept: be as simple as you can but as complex as needed!
PTGS-driven DILI prediction is so far most accurate with 24h spheroid exposures!

Static Static Ofgt::gi d C_)rgan?ifis Biomimetic, In_te.grated,
2D culture 3D spheroids MPS in Fluidic  Fluidic MPS Fluidic Organ
MPS MPS
Successfully applied to the HT analyses!

Aight d

| PC-CA Systern Sense and Control

MPS = MicroPhysiological Systems
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Applying PTGS scoring in drug discovery

Target validation Hit identification Hit fex e Lead optimization Candidate salection DE:&',E:::“[ d:\:‘;ﬂ;ﬁ:ﬂ
Target safety assessmeant
= Hepatotoxicity
PTGS omics assay as an | - witocnonariai toxicity PTGS to
d d .t. I d - t - gy_totu;iclty
- Owidative stress H
a I Iona en pOIn - Glutathione depletion Improve MOA
- Transportar assays .
analysis of

in silico screaning

Genotoxicity reg 5 Iatory
- MiniAmes safety data

= In vitro micronucleus
- GreenScreen

Broad off-target profiling

hERG (automated)

lon channels (automated)

- Cavl.2 Regulatory

- Kw7 1

-Navls s.a\!‘netgf.r pharmacology
& toxicology

Guinea pig Langendorff
= Cardiac electrophysiology
- Cardiac hemadynamics

CV anesthetized rat

- Blood pressure
- Heart rale

CV anasthetized dog
= Hemodynamics
- Cardiac electrophysiology

PTGS omics assay as an Exploratory i o

toxicity study

additiOnaI endPOint - Multiple endpoints

Special accessory or follow-up studies

Adapted from: Hornberg JJ, et al. Drug Discov Today. 2014; 19(8):1137-44. Drug Discovery Today
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PTGS concept/applications-state Nov 2021
(Predictomics & Karolinska Innovations)

Defined toxic MoA/Adverse Outcomes/AOPs (genes, gene
sets, pathways, networks, components, pertubation classes)

for 2533 agents (877 693 304 data points; 49% results data)

Al, "Big Data”, sequential machine learning-driven drug side
effects prediction (unique algorithms for cells/organs)

Broad dose-response coverage, including below overt
toxicity and pathway pertubations

Drug development and repurposing based on defined gene
targets, MoA and connectivity mapping (use of
implicated/established “opposing” drugs, gene constructs,
etc. reflecting agonist or antagonist influences)

Broad potential pharmacovigilance applicability where DILI
prediction is the primary proof-of-concept (accuracy is
currently higher for sensitivity than for specificity) =



