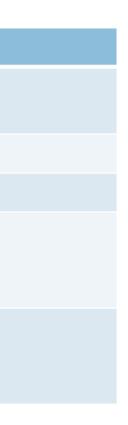


Textile Functionalization and its Effects on the Release of Silver Nanoparticles into Artificial Sweat

Heike Romanowski

- 1. Background Functionalization of Textiles
- 2. Experimental Setup
- 3. Results
- 4. Conclusion


1. Background Functionalization of Textiles

- 2. Experimental Setup
- 3. Results
- 4. Conclusion

Nano Textiles – Application Examples

Properties of nano textiles	Nanomaterial
UV protection	TiO ₂ ZnO
Thermally conductive/insulating	CNT
Moisture-absorbing	TiO ₂
Antibacterial	Ag TiO ₂ ZnO
Self-cleaning/dirt and water repellent	CNT SiO ₂ TiO ₂

Risks (Nano)-silver

<u>Risks</u>:

- Silver ions can damage living cells
- Resistance to silver and antibiotics in microorganisms

Recommendation:

Avoid (Nano)-silver in food and everyday products



Motivation

Better understanding of:

- Consumer Ag exposure
- Ag release from textile
- Influence of the functionalization

Different functionalization techniques

composites	coating
Particles embedded within textile fiber	Particles on fiber surface

1. Background Functionalization of Textiles

2. Experimental Setup

- 3. Results
- 4. Conclusion

Experimental Setup: 10 different Textiles

4 commercially available

- Towel
- Socks
- Sports shirt
- Pillow

- 6 laboratory-prepared
 - •2 Ag composites
 - 3 Ag coatings
 - 1 untreated

Experimental Setup

Characterization of Textiles

Visualization of NPs on textile surface

- environmental scanning electron microscopy (**ESEM**) with energy dispersive X-ray spectroscopy (EDX)
- time-of-flight secondary ion mass spectrometry (ToF-SIMS)

Quantification of total Ag Content

Digested in microwave oven / ICP-MS •

page 9

Experimental Setup

Characterization of Textiles

Visualization of NPs on textile surface

- environmental scanning electron microscopy (**ESEM**) with energy dispersive X-ray spectroscopy (EDX)
- time-of-flight secondary ion mass spectrometry (ToF-SIMS)

Quantification of total Ag Content

Release of total Ag into sweat

Release of particulate Ag into sweat

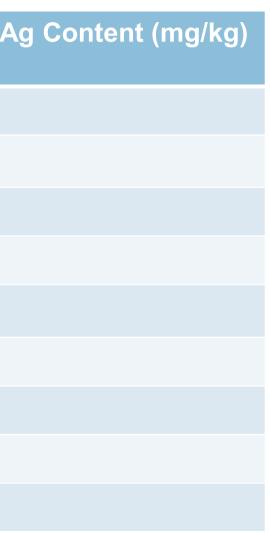
Digested in microwave oven / ICP-MS •

Migration

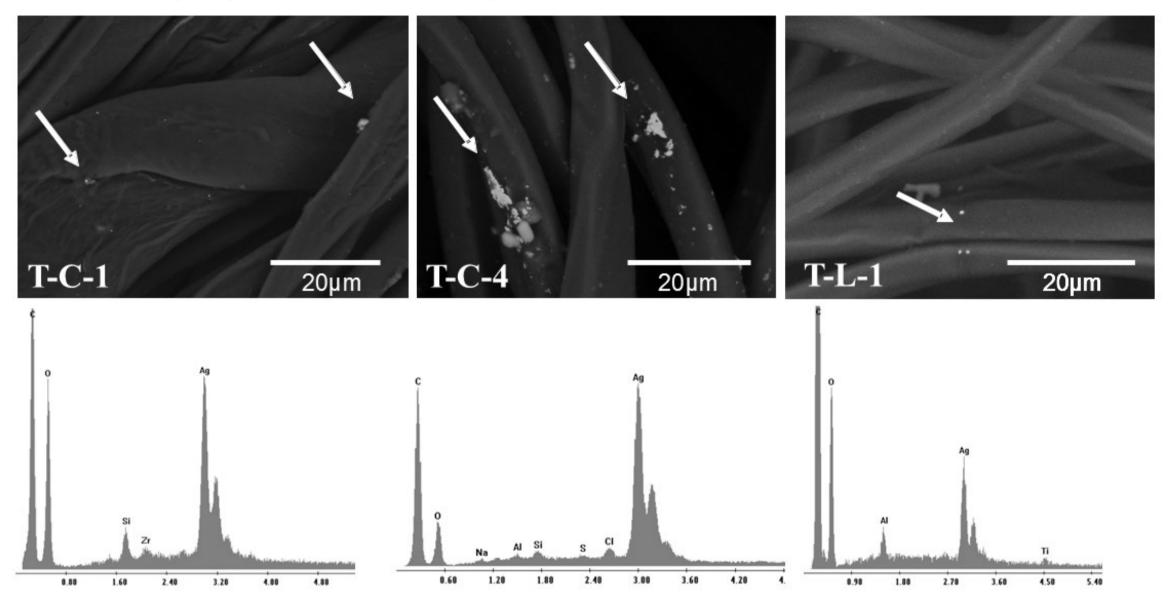
Textile covered with artificial sweat (pH 5.5 and pH 8) for 24h/48h

→ Artificial sweat analyzed with **ICP-MS**

 \rightarrow Artificial sweat analyzed with **spICP-MS** (single particle mode)

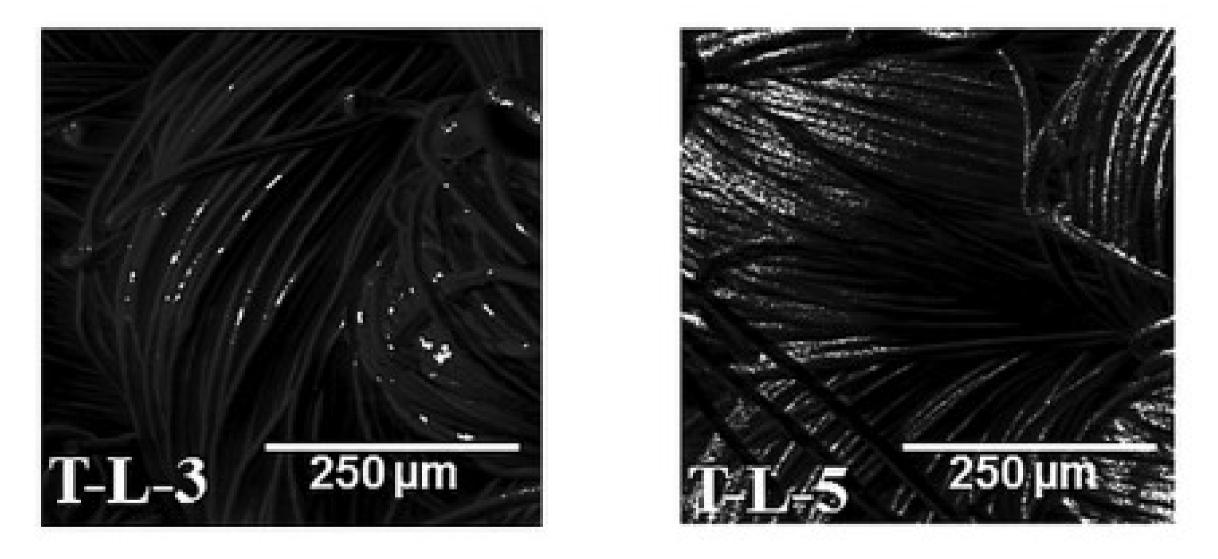


- 1. Background Functionalization of Textiles
- 2. Experimental Setup
- 3. Results
- 4. Conclusion


Characterization of Textiles: Visualization of NPs on textile surface

	Visualization of NPs on textile surface	Quantification of total A
Towel	X	
Socks	✓ (a few particles)	
Sport shirts	\checkmark	
Pillow	\checkmark	
T-L-1 (composite)	\checkmark	
T-L-2 (composite)	Not analyzed	
T-L-3 (coating)	\checkmark	
T-L-4 (coating)	Not analyzed	
T-L-5 (coating)	\checkmark	

Characterization: Larger numbers of Ag particles on commercial textiles compare to lab-prepared nano-composite



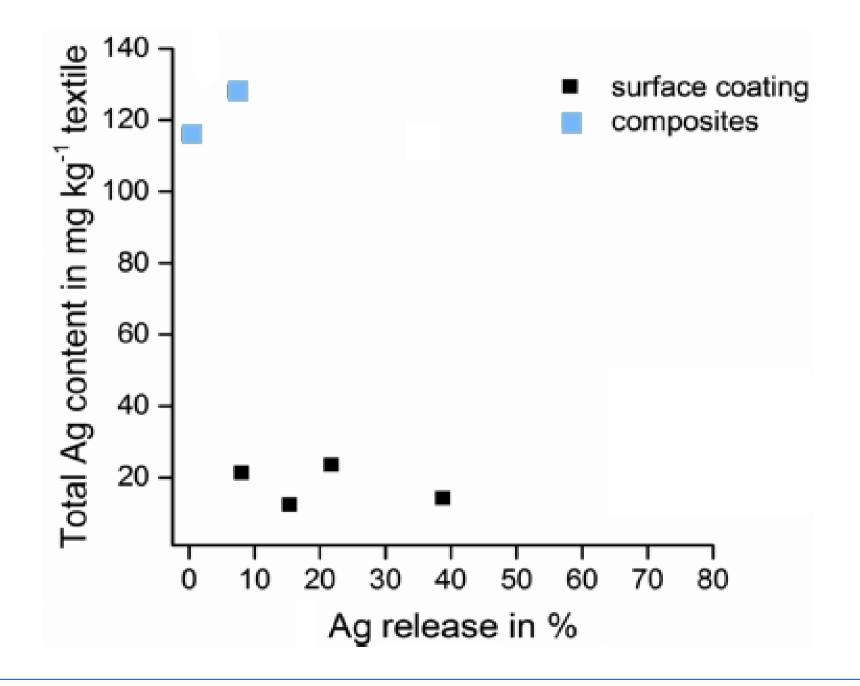
ESEM images with EDX-spectra of a pillow (T-C-1), a sports shirt (T-C-4) and a lab-prepared nano-composite textile (T-L-1).

Wagener et al. 2016, Environ. Sci. Technol., 2016, 50, 5927-5934

Characterization: Difference between Ag-NP and AgCI coated textiles

ToF-SIMS images of lab coated textiles with large aggregates for nano-Ag (T-L-3) and a very thin film for AgCI (T-L-5)

Wagener et al. 2016, Environ. Sci. Technol., 2016, 50, 5927–5934



Characterization of Textiles: Quantification of total Ag Content

	Visualization of NPs on textile surface	Quantification of total Ag content (mg/kg)
Towel	X	X
Socks	✓ (a few particles)	Below LOD
Sport shirts	\checkmark	14.2
Pillow	\checkmark	23.5
T-L-1 (composite)	\checkmark	128.0
T-L-2 (composite)	Not analyzed	132.8
T-L-3 (coating)	\checkmark	12.4
T-L-4 (coating)	Not analyzed	14.9
T-L-5 (coating)	\checkmark	26.6

Migration into sweat: Comparison Ag release from coating vs composites

Wagener et al. 2016, Environ. Sci. Technol., 2016, 50, 5927–5934

Migration into sweat: No significant pH-related influence

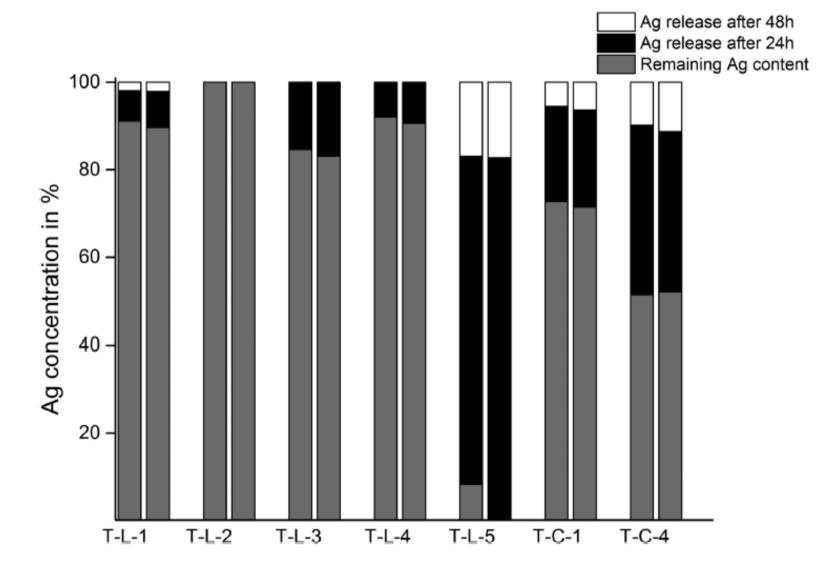


Figure 2. Relative Ag release of textiles. Left bars refer to acidic and right bars to alkaline sweat solution.

Wagener et al. 2016, Environ. Sci. Technol., 2016, 50, 5927-5934

17

- 1. Background Functionalization of Textiles
- 2. Experimental Setup
- 3. Results
- 4. Conclusion

Conclusion

- Ag functionalized textiles release Ag
- Predominantly release of ions
- But also particulate Ag was identified
- Functionalization type influences released amount
 - → Higher release for coated textiles vs nanocomposites

Thank you for your attention!

Heike Romanowski

Bundesinstitut für Risikobewertung

Abteilung 7: Chemikalien- und Produktsicherheit

Fachgruppe 75: Produktbeschaffenheit und Nanotechnologie

Max-Dohrn-Straße 8-10, 10589 Berlin

Telefon 030 - 184 12 - 27524

heike.romanowski@bfr.bund.de