SPICED – Symposium

Survival, detection and toxinogenic potential of *B. cereus* group species in spices and herbs

Hendrik Frentzel

1 June 2016

Federal Institute for Risk Assessment, Berlin

B. cereus group (= B. cereus sensu lato)

https://commons.wikimedia.org/wiki/File:Bucatin i_%28amatriciana_rossa%29.jpg

ic and Evolutionary Microbiology (2013), 63, 31-40

Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning

DOI 10.1099/ijs.0.030627-0

Marie-Hélène Guinebretière, 1,2 Sandrine Auger, 3,4 Nathalie Galleron, 3,4

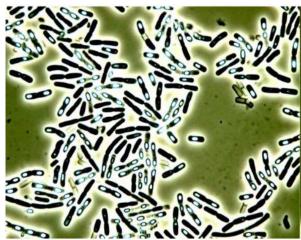
micbio.wzw.tum.de/cms/docs/Stammsam mlung/Foto Bibliothek Bacillus.pdf

B. mycoides and pseudomycoides

micbio.wzw.tum.de/cms/docs/Stammsam

http://phil.cdc.gov/phil/details.asp

Wagner, A. (2015)


This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

B. thuringiensis

Bacillus (B.) cereus

- Gram-positive, motile, endospore forming rod
- facultative anaerobic
- optimal growth at 30 37 °C
- growth limitations: 4 °C, minimum pH 4.1, lowest aw 0.92
- heat resistant spores (survive pasteurization and cooking for several minutes)
- prevention of growth after cooking at T < 8 °C (optimal < 4 °C) or > 63 °C
- forms biofilms
- toxin producer
- ubiquitous in soil
- detectable in many kinds of food

micbio.wzw.tum.de/cms/docs/Stammsammlung/ Foto Bibliothek Bacillus.pdf

EFSA, 2005

Outbreaks

Spice	Year	Country	Cases	Reference
Spicemix	2007	France	146	EFSA (2009, 2013)
Paprika	2009	Denmark	48	FAO und WHO (2014)
Curry	2009	Belgium	7	EFSA (2011)
White pepper	2010	Denmark	112	EFSA (2011, 2013)
Cinnamon	2011	Denmark	30	FAO und WHO (2014)
Turmeric	2011	Finland	19	EFSA (2013a)
Turmeric	2011	Finland	4	EFSA (2013a)
Cumin	2011	Finland	3	EFSA (2013a)
Black pepper	2011	Denmark	52	EFSA (2013a)

Food borne disease outbreaks from 1973 to 2012 in Europe associated to spices contaminated with *B. cereus*; modified according to Mader & Schaarschmidt, 2016

Toxins

Enterotoxins

- nonhemolytic enterotoxin (Nhe)
- hemolysin BL (HBI)
- cytotoxin K (CytK)

Emetic toxin (heat stable)

cereulide

Blackburn, C. de W., 2009 Ceuppens et al., 2011

- infective dose: >10⁵-10⁷ cells/spores consumed
- production in the gut
- symptoms: abdominal pain and diarrhoea
- incubation time: 8 16 h
- duration: 12 24 h
- associated to meat, vegetables, milk products
- ,effective' dose: ~8 μg/kg body weight (also 0.02 - 2 μg/kg)
- production in food (10⁵ 10⁸ cells)
- symptoms: nausea and vomiting
- incubation time: 1 5 h
- duration 6 24 h
- associated to rice and pasta

Detection – Cultural

- ❖ 7932:2005-03 Horizontal method for the enumeration of presumptive Bacillus cereus
- ❖ 21871:2006-04 Horizontal method for the determination of low numbers of presumptive Bacillus cereus (MPN)

Detection – Cultural

Brilliance B. cereus Agar

Bacara

http://www.rapidnajcrobiology.com/news/new-b-cereus-selective-agar-bacara-in-fda-bam/

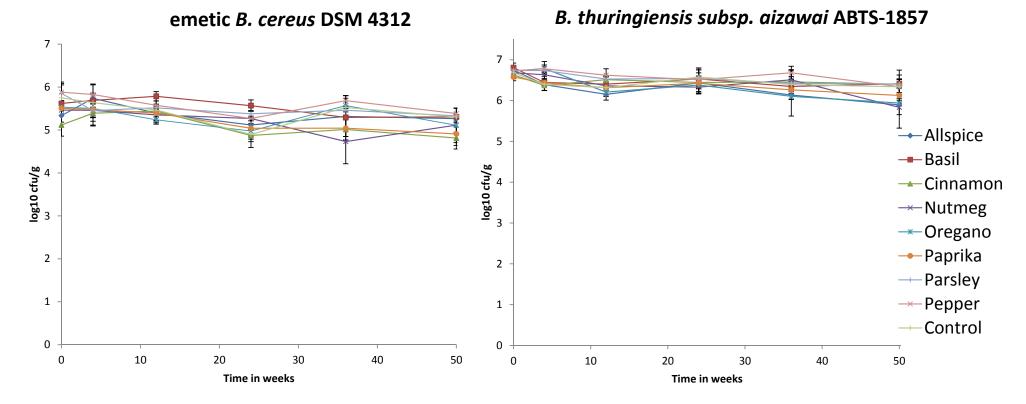
PEMBA

MYP

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Detection – Cultural

- ❖ 7932:2005-03 Horizontal method for the enumeration of presumptive Bacillus cereus
- 21871:2006-04 Horizontal method for the determination of low numbers of <u>presumptive</u> Bacillus cereus (MPN)



spices δ herbs

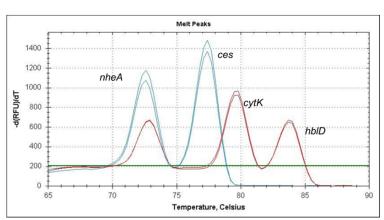
Survival

- spore suspension air dried on 0.5 g sand + 4.5 g spice (3 parallels)
- final concentration 10^5 to 10^6 cfu/g, stored in the dark at 23 ± 1 °C.
- mean reduction rates (\log_{10}) of 0.39 \pm 0.15 (B.c.) and 0.51 \pm 0.23 (B.t.) after 50 weeks

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Characterization of *B. cereus* group isolates

- presumptive B. cereus in allspice (10³ cfu/g), oregano, parsley (10² cfu/g), basil (~ 20 cfu/g), paprika and pepper (< 20 cfu/g)
- 59 isolates confirmed as *B. cereus* s.l., thereof 4 *B. weihenstephanensis*, 2 *B. mycoides* and 1 *B. thuringiensis* strain(s)
- several species in one sample
- all isolates carried toxin genes, except B. mycoides
- toxin gene combinations: nheA, hbID (27x); nheA, hbID, cytK (29x); nheA, cytK, ces (1x) → one emetic strain
- toxin production reflects genetic configuration (confirmed for Nhe, Hbl, cereulide)


Multiplex real-time-PCR for *B. cereus* group species - Testing of isolates

Species (Oliwa-Stasiak, K., et al., 2011; Wielinga, P.R., et al., 2011)

- —— B. cereus / B. anthracis / B. thuringiensis: motB gene (MotB_1)*
 - B. weihenstaphanensis: motB gene (MotB_2)*
 - B. pseudomycoides: bpm gene (Bpm_1)
- ____ *cry1* positive *B. thuringiensis* strains: *cry1* plasmid gene (Tqpro_Bt)
- B. anthracis: lambda pro-phage type 3 sequence (Tqpro_PL3)

Toxin genes (Wehrle, E., et al., 2010)

HRM multiplex-PCR; for cytK, nheA, hblD und ces

^{*} B. mycoides with rhizoid growth

Multiplex real-time-PCR for *B. cereus* group species - Testing of spices and herbs

Species (Oliwa-Stasiak, K., et al., 2011; Wielinga, P.R., et al., 2011)

- —— B. cereus / B. anthracis / B. thuringiensis: motB gene (MotB_1)*
 - B. weihenstaphanensis: motB gene (MotB_2)*
- B. pseudomycoides: bpm gene (Bpm_1)
- ____ *cry1* positive *B. thuringiensis* strains: *cry1* plasmid gene (Tqpro_Bt)
- —— Internal amplification control: pUC18 fragment (Tm_pUC18)
 - * B. mycoides with rhizoid growth

DNA extraction from spores in PBS buffer

	LODª (cfu/ml)	Average C _q at LOD (<i>motB)</i>
DNeasy Blood & Tissue Kit	1.4 x 10 ²	34.57 ± 0.74
MasterPure Gram Positive DNA Kit	1.4×10^3	35.00 ± 1.36
Invisorb Spin Plant Mini Kit	1.4×10^3	35.09 ± 1.20
Ultraclean DNA Isolation Kit	1.4×10^4	36.51 ± 1.11
PowerSoil DNA Isolation Kit	1.4 x 10 ⁴	35.44 ± 1.25

^a Limit of detection: the lowest concentration of spores/ml (*B. cereus* DSM 4312) for which six out of six reactions (three DNA extractions and duplicate PCR reactions) gave a positive result for the *motB* target

DNA extraction from spores in spices and herbs

		Inoculum (cfu/g) at LOD ^a	Average C _q at LOD (<i>motB)</i>
Blood and tissue	Allspice	3.3 x 10 ⁶	-
	Oregano	3.3×10^6	34.14 ± 1.95
	Paprika	3.3×10^5	34.43 ± 0.88
	Pepper	3.3×10^5	35.97 ± 1.24
CTAB method	Allspice	6.2×10^6	35.87 ± 0.89
	Oregano	6.2×10^2	36.25 ± 1.29
	Paprika	6.2×10^3	34.02 ± 1.38
	Pepper	6.2×10^2	38.22 ± 1.18

^a Limit of detection: the lowest concentration of spores/g (*B. cereus* DSM 4312) for which twelve out of twelve reactions (three repetitions of duplicate DNA extraction and duplicate PCR) gave a positive result for the *motB* target.

CTAB (cetyltrimethylammonium bromide) method is based on ISO 21571:2013-08 and modifications according to Minarovicova et al., in press.

Summary

- Low numbers of B. cereus in spices and herbs are normal → temperature regimes of dishes are crucial
- Different B. cereus group species with varying toxinogenic potential occur in spices and herbs
- Spores persist in spices and herbs
- Detection of *B. cereus* group species is possible at LODs of 10² to 10³ spores/g with CTAB method and real-time PCR

Thanks for your attention. Questions and comments?

Name of presenter: Hendrik Frentzel

Email of presenter: hendrik.frentzel@bfr.bund.de

Website: http://www.spiced.eu

