Silver as a putative health concern

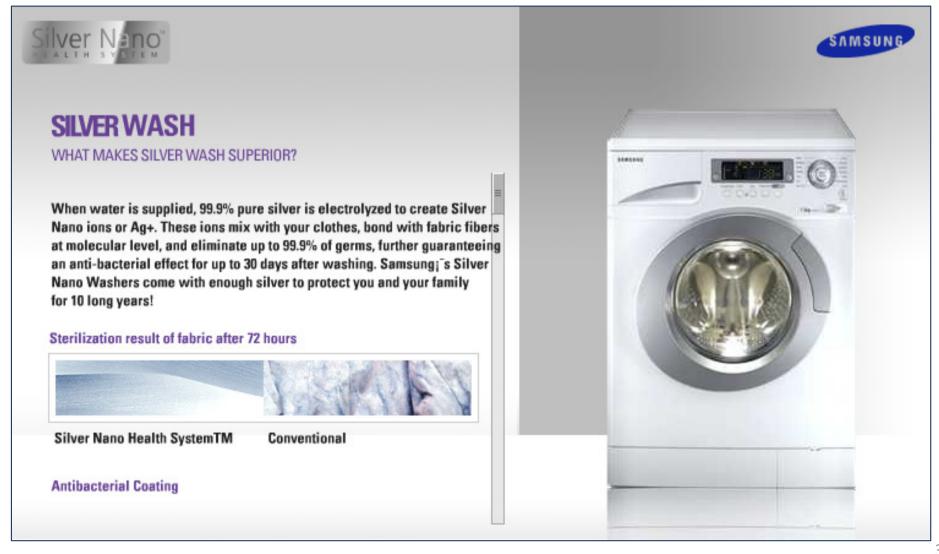
Lotte Jakobsen^{1,2}, Karen A. Krogfelt¹ & Niels Frimodt-Møller^{1,2} Statens Serum Institut¹ & Hvidovre Hospital²

Use of silver: in and out of medicine

Medical:

- Topical antimicrobial agent in burns
- Topical use for tonsillitis
- Bandages for trauma and diabetic wounds
- Silver coated catheters and medical devices
- Dental silver amalgams
- Arsphenamine iv treatment for syphilis

Non-medical:


- Desinfect water, e.g. Legionella, anthrax
- Sterilize drinking water, e.g. space shuttles
- Growth promoter i agriculture
- Additive in foods, traditional medicine
- Coating of clothing etc ,e.g. sports fabrics, sleeping bags, socks
- Coating supermarket surfaces for meat storage

Silver as

antibacterial in household products

Use of silver: in and out of medicine

Medical:

- Topical antimicrobial agent in burns
- Topical use for tonsillitis
- Bandages for trauma and diabetic wounds
- Silver coated catheters and medical devices
- Dental silver amalgams
- Arsphenamine iv treatment for syphilis

Non-medical:

- Desinfect water, e.g. Legionella, anthrax
- Sterilize drinking water eg space shuttles
- Growth promoter i agriculture
- Additive in foods, traditional medicine
- Coating of clothing etc ,e.g. sports fabrics, sleeping bags, socks
- Coating supermarket surfaces for meat storage

Traditionally used in clinical settings -> today also outside the clinics!!

Reports of silver resistance

REGION

Salmonella typhimurium resistant to silver nitrate, chloramphenicol and ampicillin

Lancet 1975

Silver-resistant Enterobacteriaceae from hospital patients

Can J Microbiol 1979

Instability and linkage of silver-resistance in E. cloacae

J Clin Pathol 1976

Gentamicin- and silver-resistant Pseudomonas

BMJ 1979

Plasmid-determined silver resistance in Ps. stutzeri

J Bacteriol 1984

Plasmid mediated silver resistance in A. baumannii

Biometals 1994

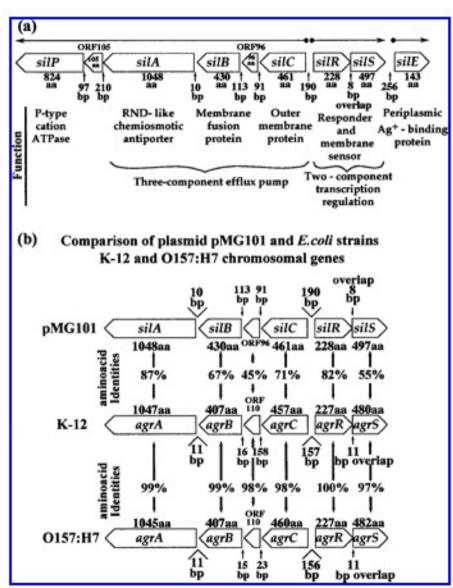
Plasmid mediated resistance to silver ions in E. coli

Indian J Med Res 1985

Modes of resistance

- Efflux mechanisms (encoded by sil genes)
- Silver binding peptides (silE)

Gupta et al, Microbiol 2001


- Peptide-mediated tolerance

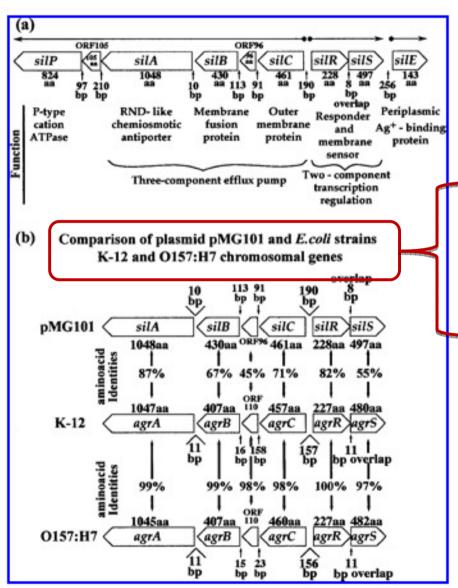
Sedlak et al, Appl Environ Microbiol, Epub ahead of print

REGION

Diversity of silver resistance genes

Comparison of the:

- -pMG101 *sil* determinant
- -E. coli K-12 and O157:H7 agr homologues.


- -> up to 4% variation
- -> wide distribution of homologues

Gupta et al. Microbiology (2001)

Diversity of silver resistance genes

Located on plasmid->

horizontal gene transfer of silver resistance!

Development of resistance in vitro

Table I. Antimicrobial susceptibility of *S. epidermidis*: MICs and MBCs before and after 20 passages through subinhibitory concentration of the drugs

	MIC	(mg/L)	SC (mg/L)	
Antimicrobial	pre-passage	post-passage	pre-passage	post-passage
MIN^a	0.078	0.156	100	100
$\mathrm{RIF}^{a,b}$	0.02	>500	0.50	>500
$\mathrm{RIF}^{b,c}$	0.012	>500	0.05	>500
$MIN + RIF^a (1:1^d)$	0.02	0.25	0.05	>100
$MIN + RIF^c (1:1^d)$	0.015	0.25	0.05	>100
TCa	2.5	20	10	20
CHA^a	0.5	1	2	4
$PCMX^a$	125	125	250	250
$PHMB^a$	0.31	0.31	1	1
$CHA + TC^{a} (3:1^{d})$	0.125	0.25	2	2
$CHA + AgSD^{a,c} (3:1^d)$	0.5		1.25	2.5

MIN, minocycline; RIF, rifampicin; TC, triclosan; CHA, chlorhexidine acetate; PCMX, p-chloro-m-xylenol; PHMB, polyhexamethylene bis-biguanide; AgSD, silver sulphadiazine.

10 passages

[&]quot;Tested against ATCC strain.

^bAfter 10 passages.

Tested against clinical isolate H.

^dRatios based on drug levels in catheters and concentrations are the total of the two drugs combined.

Nyhedsbrev

Tilmeld dia oa vind en Nintendo Wii.

E-mail-adresse:

Tilmeld

■ HVAD MENER DU?

Skal rejsekortet lægges i graven? () Ja O Nei Ved ikke Deltag i debatten

Glansen er ved at gå af nanosølvet

Med nanoteknologien fremmarch anvendes sølv i stigende grad i hverdags som bakteriedræbende middel. Men nu slår svenske

LAVPRISKALENDEREN:

Vælg destination -

København (CPH)

Fra

Søg

Annonce

og amerikanske myr resistente og skade

Af Thomas Lemke, freda

I februar 2006 udsend Samsung en presseme vaskemaskine, Silver 1

I pressemeddelelsen a helt nyt og revolutio p

POLITIKEN

Opposition kræver indgreb mod sølvpa

Det offentlige skal købe så få produkter med sølvioner so

Af Mette Holt, onsdag 28. mar 2007 kl. 00:00

norwegian.com

Ingen kender konsekvenserne af nanoteknologi

Der er postet 239 millioner forskningskroner i nanoteknologi i år. Men ingen ved, om den nye tids teknologi giver kræft, hjerte-kar-sygdomme eller ødelægger miljøet.

En række partier vil sætte en stopper for at benytte sølvpartikler til at dræbe bakterier i plastre, vaskemaskiner og sportstøj til at dræbe bakterier..

De reagerer på, at Ingeniøren i sidste uge skrev om svenske forskningsresultater, der viser, at brugen af sølvpartikler gør bakterierne resistente over lungebetændelse, halsbetændelse og gonoré, ikke kan nedkæmpes.

Susceptibility to silver nitrate in common human pathogens in Denmark

S. aureus (bacteremia):

MSSA, 1972-2007 N = 130

MRSA, 2001-06 N = 70

(Various mec-types)

Total N = 200

E. coli

Human bacteraemia N = 34

Human UTI N = 34

Human volunteers N = 34

Chicken N = 34

Chicken meat N = 34

Pigs N = 34

Pork N = 34

Total N = 238

For each group, strains were chosen to vary in antibiotic susceptibility, from no - to multiple-resistant

Susceptibility to silver nitrate in common human pathogens in Denmark

<u>S. aureus (bacteremia)</u> :

MSSA,	1972-2007	N = 130
-------	-----------	---------

MRSA, 2001-06
$$N = 70$$

(Various mec-types)

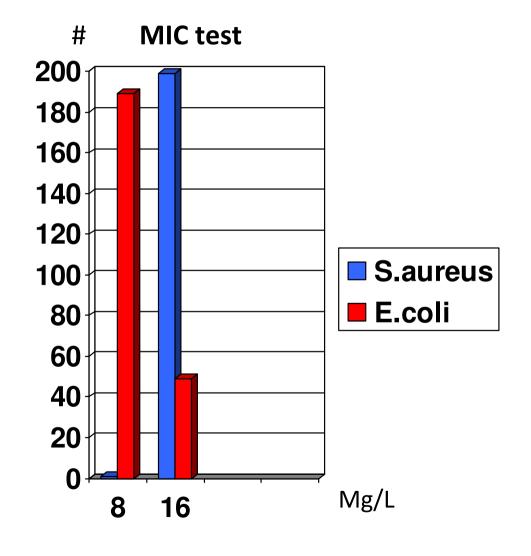
N = 200

E. coli

Human bacteraemia	N = 34
-------------------	--------

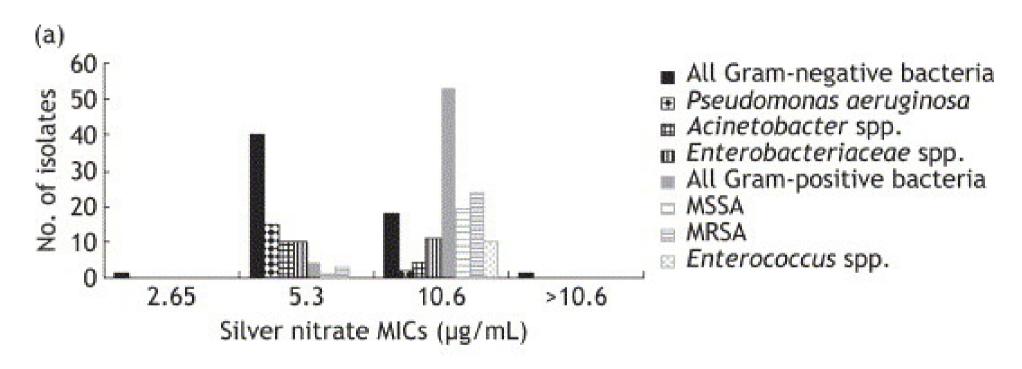
Human UTI N = 34

Human volunteers N = 34


Chicken N = 34

Chicken meat N = 34

Pigs N = 34


Pork N = 34

Total N = 238

Prevalence of resistance to silver in a Burns unit

117 bacterial non-duplicate clinical isolates from 71 patients :

Only one isolate, an *Enterobacter cloacae*, was resistant with an MIC of silver of >5440 µg/mL.


Silver-palladium surfaces inhibit biofilm formation

Or do they?

In the case of a high load of a silver resistant E. coli J53 pMG101 biofilm occured upon a layer of surface-associated dead bacteria

Chiang et al, Appl Environ Microbiol 2009

Live bacterial cells

Dead bacterial cells

Cross-resistance

Silver resistant mutant of E. coli selected after stepwise exposure to silver nitrate or silver sulfadiazine -> low-level cross-resistance to cephalosporins and HgCl2

TABLE 1. MICs of heavy metal compounds and antibiotics for Ag-susceptible and Ag-resistant strains^a

Studio					MIC (μg/ml	l)			
Strain	AgNO ₃ ^b	AgSD ^c	$HgCl_2$	Cephaloridine	Cephalothin	Cefepime	Cefpirom	Tetracycline	Chloramphenicol
116 116AgNO ₃ R	8 (16) >1,024 (64)	16 >1,024	1.4 6.4	4 16	8 32	0.03 0.13	0.06 0.25	0.8 0.8	5 6
496 496AgNO ₃ R 496AgSDR	8 (16) >1,024 (64) 1,024 (64)	16 1,024 >1,024	1.4 6.4 12.8	8 16	8 32 32	0.06 0.13 0.13	0.06 0.13 0.13	1.0 1.3 1.0	4 5 5
B1 B1AgNO₃R B1AgSD	>1,024 (64) >1,024 (64)	16 >1,024 >1,024	1.4 2.8 1.4	16 128 256	32 64 64	0.13 1.00 0.50	0.13 1.00 1.00	0.6 1.0 1.0	3 5 2

^a MICs of CoSO₄ (440 μg/ml), CrCl₃ (1,335 μg/ml), and CuSO₄ (1,250 μg/ml) were identical for all strains, except for B1AgNO₃R, which showed a twofold higher value. MICs of MnSO₄ (1,690 μg/ml) and ZnCl₂ (170 μg/ml) were also identical for all strains, except that of MnSO₄ for B1AgSDR (211 μg/ml) and that of ZnCl₂ for 496 (340 μg/ml). The MIC of Na₂HAsO₄ was identical (500 μg/ml) for the two strains tested, 116 and 116AgNO₃R.

b The values in parentheses are the MICs determined in LB broth without NaCl.

^e MICs of this compound were unchanged, in every case, in LB broth without NaCl.

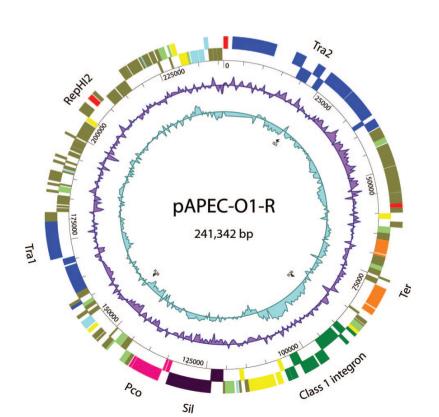
IncHI2 plasmid from extraintestinal pathogenic *E. coli*

Genes Phenotype

terY3Y2XY1W, terZABCDEF Potassium tellurite

silESRCBAP Silver nitrate

pcoEABCDRSE Copper sulfate


aadA Streptomycin

aac3-VI Gentamicin

tetAR Tetracycline

qacE 1 Benzylkonium chloride

Sull Sulfisoxazole

Co-resistance

Characteristics of silver resistance isolates

Table III. Characteristic of strains with phenotypic and/or genetic resistance to silver in the study

	Silve genes	r-resist	tance	No. of	
Strain	SilE	$Sil\mathbf{P}$	SilS	passagesa	Other properties
E. cloacae SM0700965 II	+	+	+	NA Stable	Cefotaxime I
E. cloacae S4279/06	+	+	+	2 Stable	D mutant Carbapenems R ^b
E. cloacae S0707396	+	-	+	3 Stable	D mutant Colistin R
E. coli B0709322	-	-	-	5 Unstable	
E. coli S0506373	-	-	-	8 Stable	ESBL positive
K. pneumoniae B0716185	+	+	+	NI	
K. pneumoniae CCUG 54718	+	+	+	2 Stable	ESBL positive, outbreak strain
P. aeruginosa AI2884	+	-	+	NI	

^aFor induction of silver-resistance and its stability.

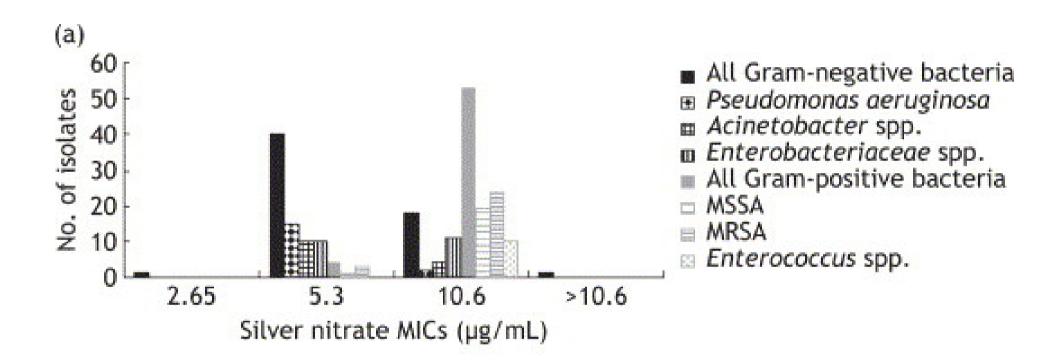
NA: not applicable; NI: no induction; D: derepressed, ESBL: extended spectrum beta-lactamase; I: indeterminate; R: resistant.

^bAfter silver exposure.

Characteristics of silver resistance isolates

Table III. Characteristic of strains with phenotypic and/or genetic resistance to silver in the study

	Silve genes	r-resist	ance	No. of		
Strain	SilE	SilP	SilS	passagesa	Other properties	
E. cloacae SM0700965 II	+	+	+	NA Stable	Cefotaxime I	
E. cloacae S4279/06	+	+	+	2 Stable	D mutant Carbapenems R ^b	← Cross-resistance
E. cloacae S0707396	+	_	+	3 Stable	D mutant Colistin R	
E. coli B0709322	-	-	-	5 Unstable		- 01 - 0
E. coli S0506373	-	-	-	8 Stable	ESBL positive	Silver R after 2 x exposure
K. pneumoniae B0716185	+	+	+	NI		2 A CAPOSOTIC
K. pneumoniae CCUG 54718	+	+	+	2 Stable	ESBL positive, outbreak strain	
P. aeruginosa AI2884	+	-	+	NI		


^aFor induction of silver-resistance and its stability.

NA: not applicable; NI: no induction; D: derepressed, ESBL: extended spectrum beta-lactamase; I: indeterminate; R: resistant.

^bAfter silver exposure.

The prevalence of resistance to silver in a Burns unit

117 bacterial non-duplicate clinical isolates from 71 patients

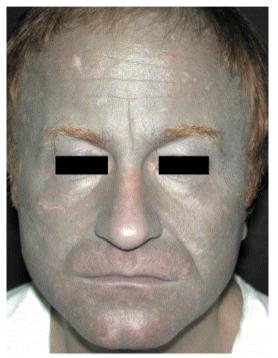
Only one isolate, an Enterobacter cloacae, was resistant (MIC >5440 µg/mL)

-> extended-spectrum beta-lactamase (ESBL) producer, and was multi-drug resistant (only susceptible to imipenem)

Silver resistance linked to E. coli ST131

ST131: associated with the CTX-M-15 extended-spectrum betalactamase, has emerged internationally as a multidrug-resistant pathogen causing serious infections

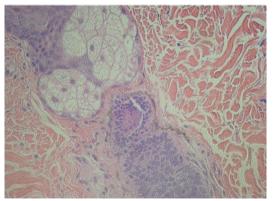
Plasmid: a hybrid between a ST131 plasmid and a Klebsiella pneumonia plasmid


Plasmid was associated with a major nosocomial outbreak

Resistance to b-lactams, aminoglycosides, tetracyclines, trimethoprim, sulphonamides, macrolides, silver, copper and arsenic.

Argyria induced by silver

Argyria – deposit of silver in tissues e.g. skin


53-year old man in good general health

8-month progressive gray hyperpigmentation

Denied using any prescription medications

Induced by silver-containing dietary supplement

Bowden et al, J Cutan Pathol 2011

Tonsillitis - silver nitrate is used topically: Cumulative dosage needed to produce argyria ~ 6 g

Syphilis – silver arsphenamine is used IV: Argyria becomes clinically apparent after the exposure to 8 doses ~ a total dose of silver of 1.84 g

Silver: conclusions

REGION


- Resistance occur in human pathogenic bacteria
- Cross- and co-resistance have been shown:
 - > selection by other antimicrobials likely
- At the moment, prevalence of silver resistance is low
- Silver a health concern??
 - Increase awareness -> i.e. monitoring of resistance (and consumption) needed to avoid future spread

Acknowledgements

- Karen A. Krogfelt, Statens Serum Institut
- Niels Frimodt-Møller, SSI/Hvidovre Hospital
- Anders S. Andersen, Novozymes
- Alice Friis-Møller, Hvidovre Hospital
- Bo Jørgensen, Bispebjerg Hospital
- The Danish Centre for Antibiotic Research and Development (www.DanCARDproject.dk)

