

Katarzyna Karpienko, PhD EE

F. Sadura, K. Januszewicz, A. Dettlaff, M. Ekman, J. Skokowski, M. S. Wróbel

Motivation I

- The number of people who have tattoos or plan to get them is increasing
- Laser tattoo removal is a more and more common treatment

What happens with ink?

How does optical radiation interact with ink?

How can we know what ink is deposited in the skin?

Answers?

JRC TECHNICAL REPORTS

Tattoo Ink: A C

04.10.2017 | Author / Editor: GUIDO DE

European Commission

JRC SCIENCE FOR POLICY REPORT

Safety of tattoos and permanent make-up Final report

Administrative Arrangement N. 2014-33617 Analysis conducted on behalf of DG JUST

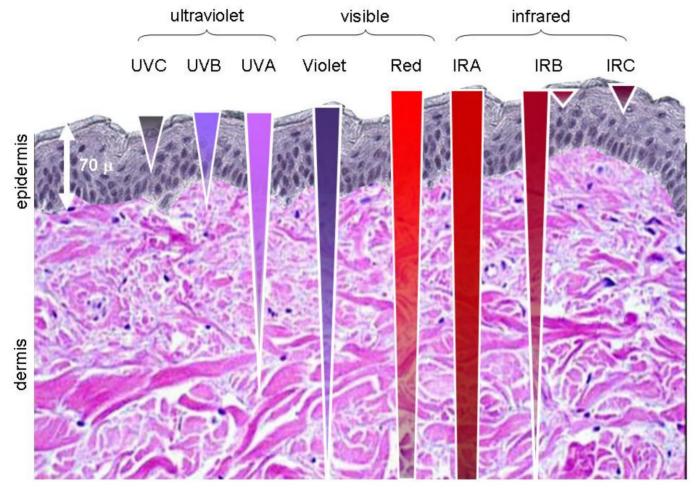
> Paola Piccinini, Sazan Pakalin, Laura Contor, Ivana Bianchi, Chiara Senaldi

2016

Compilation of information on legislatiframework and analytical methods

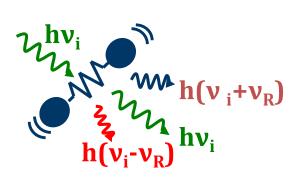
Report on Work Packet

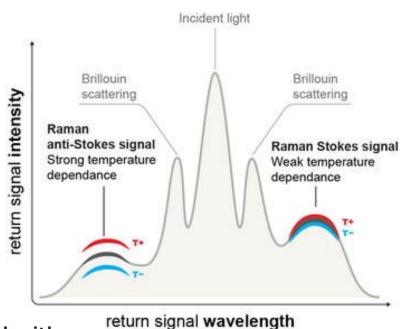
Safety of tattoos and permanent make


Report on Work Packl Administrative Arrangement N. 2014-3. Analysis conducted on behalf of DG

> Paola Piccinini, Ivana Bianchi, Sazan Pakalin, Chiara S 2015

Joint Research Centre Tattoo removal using laser ranation can carry neatur risks depending on the breakdown products formed. Scientists have now shown that pyrolysis GC/MS can be used to simulate the breakdown process and determine the compounds formed from a given ink during laser treatment. Phthalocyanine blue (B15:3), for example, was shown to form a cell poison in the process.


Optcal radiation penetration in the skin

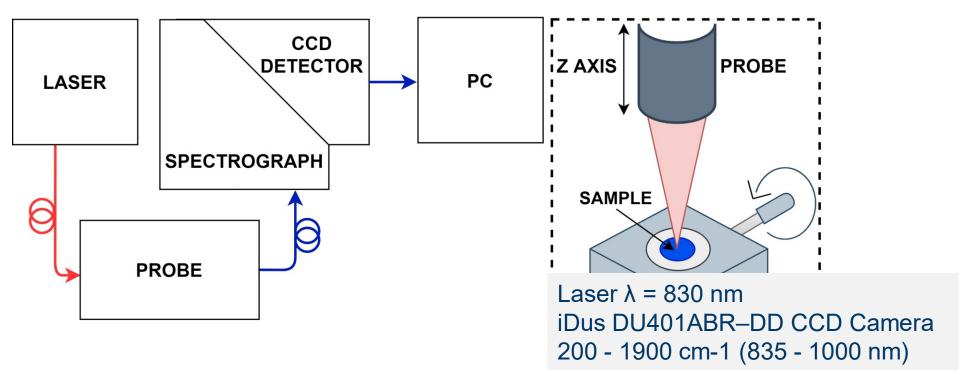


Source: SCENIHR, Health effects of artificial light, 19 March 2012

Raman spectroscopy

Confocal Raman microscopy combined with optical clearing for identification of inks in multicolored tattooed skin *in vivo*

© Copyright 2012 AP Sensing

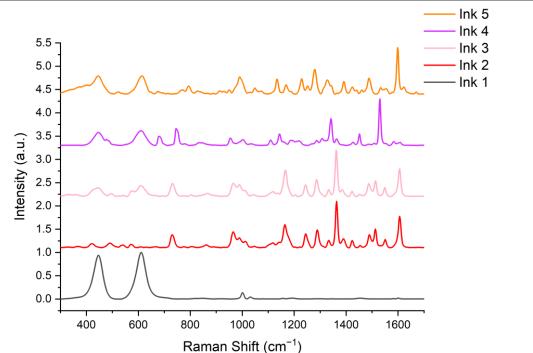


Raman spectroscopy

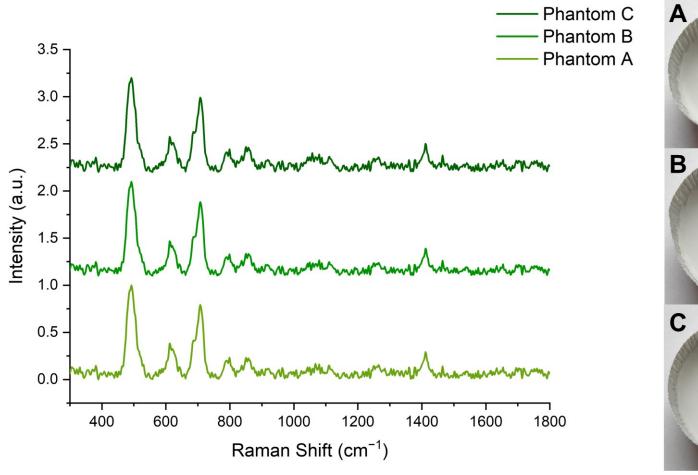
Article

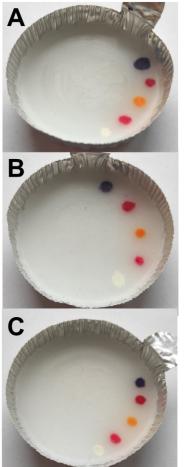
Colored Tattoo Ink Screening Method with Optical Tissue Phantoms and Raman Spectroscopy

Filip Sadura *D, Maciej S. Wróbel D and Katarzyna Karpienko

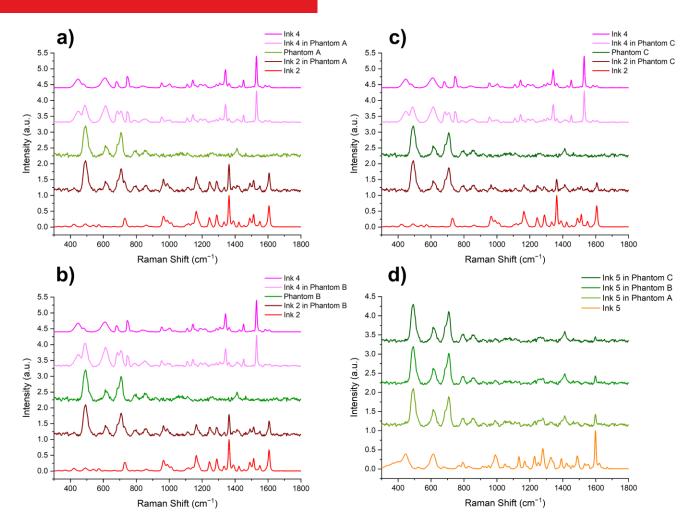


Materials

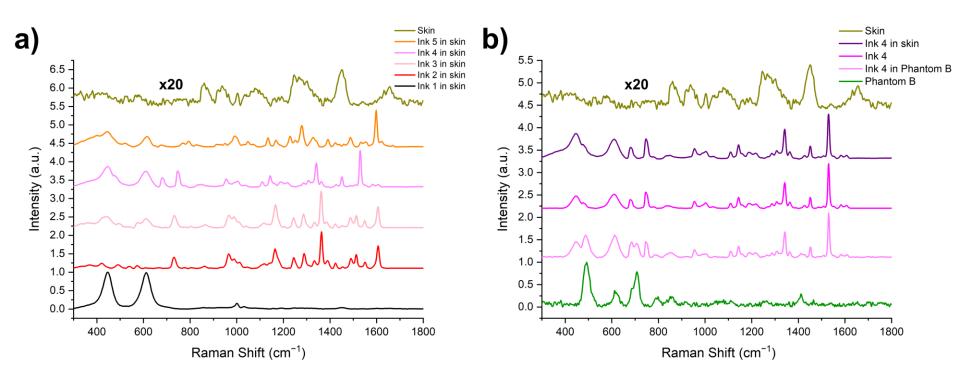

Label (Color)	Ink 1 (White)	Ink 2 (Red)	Ink 3 (Pink)	Ink 4 (Violet)	Ink 5 (Orange)
Name (producer)	White House (World Famous Tattoo INK)	Paul Rogers Red (World Famous Tattoo INK)	Hot Pink (Eternal)	Forbidden City (World Famous Tattoo INK)	Bright Orange (Eternal)
Ingredients	Pigment: C.I.77891, Glycerin, Isopropyl alcohol, Rosin, Hamamelis Virginiana, benzyl alcohol	Water, pigment: C.I.12475, Glycerin, Isopropyl alcohol Rosin, Hamamelis Virginiana, benzyl alcohol	Water, pigment: C.I.77891, C.I.12477, Glycerin, Isopropyl alcohol	Water, pigment: C.I.77891, C.I.12466, C.I.74160, C.I.12475, Glycerin, Isopropyl alcohol, Rosin, Hamamelis Virginiana, DMDM Hydantoin	Water, pigment: C.I.77891, C.I.21160, C.I.21108, Glycerin, Isopropyl alcohol


Raman spectra of inks: smoothed with the Savitzky–Golay method, baseline–corrected, and normalized.

Materials



The tattooed Phantoms A-C and the normalized and baseline-corrected Raman spectra


Results – phantom study

(a–c) Smoothed and baseline-corrected spectra of Phantoms A, B, and C in comparison to the spectra of tattoos made in them with Inks 2 and 4;
(d) Ink 5 in comparison to Ink 5 injected into Phantoms A, B, and C.

Results - porcine skin

(a) Pre-processed Raman spectra of Inks 1–5 tattooed in porcine skin and the spectrum of pure porcine skin. (b) Comparison between the pure porcine skin and pure Phantom B spectra, as well as comparison between Ink 4 in Phantom B, reference spectrum of Ink 4, and Ink 4 in the porcine skin.

Opportunities and challenges

Pigments deliver a very intense Raman signal, which is a great advantage when measuring in the skin - the signal coming from the skin is negligible.

Mesurement does not require biopsy.

Measurement procedure is fast.

HOWEVER

Due to the high absorption of a large number of pigments, measurements of tattoo inks are difficult - the samples overheat, the signal blinds the detector - reconfiguration of the measuring system is required.

In skin, tattoo can be accidentally removed during the measurement.

If there is more than one pigment in the ink, the measurement signals may cover each other partly

Motivation II

BMJ Case Rep. 2010; 2010: bcr0120102607.

Published online 2010 Oct 8. doi: <u>10.1136/bcr.01.2010.2607</u>

Reminder of important clinical lesson

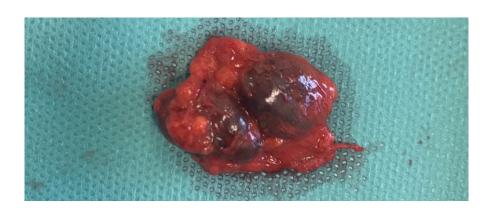
Tattoo pigment mimicking metastatic malignant melanoma in an axillary sentinel lymph node

A McDermott, 1 G T O'Donoghue, 1 and M Kerin2

Tattoo Pigment-Induced Granulomatous Lymphadenopathy Mimicking Lymphoma

Jad Othman, MBBS, Elizabeth Robbins, BM, Edmund M. Lau, BSc, MBBS, PhD, Cindy Mak, MBBS, ...

PMCID: PMC3030111



Case study

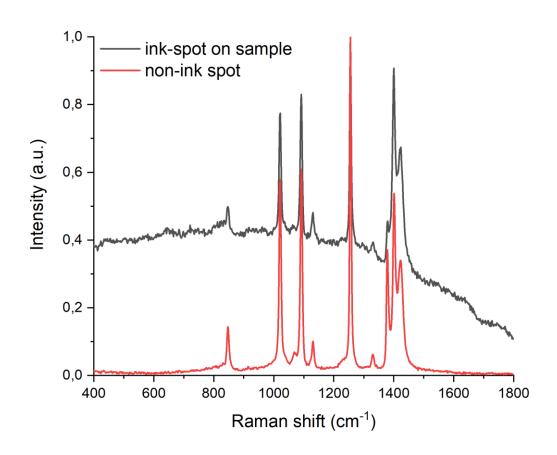
Lymph node removal

Makroskopowo:

A1-3 – większy węzeł chłonny (3), A4 – mniejszy węzeł chłonny (1).

A – 3 fragmenty tkanki tłuszczowej wielk. do 3,0cm, na przekrojach których znaleziono 2 węzły chłonne: beżowy wielk. 0,5cm, kremowo-szarawy wielk. 3,0cm.

Mikroskopowo:


Węzeł chłonny o zachowanej strukturze: dominuje rozrost grudkowy (bcl6+,bcl2-), głównie z grudkami pierwotnymi, otoczonymi strefą brzeżną i płaszcza (cyklina D1-, bcl2+), z towarzyszącą proliferacją obszaru okołogrudkowego, w którym poza rozplemem małych limfocytów T stwierdza się obecność pojedynczo rozproszonych histiocytów o jasnej cytoplazmie. Zwraca uwagę liczna populacja makrofagów obładowanych pigmentem (tatuaż? anthracosis? melanina?). Brak cech

There is a large population of pigment-laden macrophages (tattoo? anthracosis? melanir

Raman experiment

HISTORY IS WISDOM FUTURE IS CHALLENGE