

Overview Lecture on our Current Developments in the Field of Surface Functionalisation

ititv

Dr. Yvonne Zimmermann 4th Joint Symposium on Nanotechnology 30th May 2022

Agenda

- TITV Greiz The think tank for high-tech textiles
- Surface Functionalisation of Textile Substrates
 - Printing (Screen Printing, Chromojet Technology)
 - Cold Plasma Spraying
 - Powder Technology
- Surface Functionalisation on Thread Materials
 - Textile Prototyping Lab for Thread Materials
 - Combustion Chemical Vapor Deposition (C-CVD)
 - Metallization
 - Applications and Current Projects
- Conclusions

TITV Greiz – The Think Tank for High-tech Textiles

Headquarter Team

Technical center

Greiz/Thuringia (founded in 1992) 60 Experts (interdisciplinary composition)

for Thread functionalisation, Weaving, Knitting, Textile finishing, Coating, Printing, Embroidery, Electroplating, Electrical Engineering

Accredited testing laboratory / Smart Textiles testing laboratory

Research priorities:Smart Textiles / e-textilesSurface functionalisationSurface functionalisationTechnical Textiles / Functional Fabrics

Funded research projects Individual contract research and development

Conference / Workshops/ Seminars

TITV Background – Experience

From yarns to fabric

- Creating new yarns by using twisting and coating technology including innovative processes like CVD, PVD and electroplating
- Creating unique textile structures by using nearly all possible textile technology like weaving, warp- and flat-knitting, embroidery, braiding

From fabric to functional surface by using and adapting

- Finishing and dyeing processes
- Coating processes
- Printing processes (screen printing, ink-jet and 3D)
- Lamination processes
- Laser processes

From functional fabrics to ready made products for different markets and applications like

- Automotive and new mobility
- Medical devices and sport clothing
- Cleanroom environment and filtration processes

Accredited Testing Laboratory (Accredited acc. to DIN EN ISO/IEC 17025:2005)

- Chemical- analytical tests of textiles and commodities
- Textile-physical tests of fibres, threads and fabrics
- Material testing
- Pollutant analysis
- Testing of reliability of smart textiles

Surface Functionalisation of Textile Substrates:

Printing (Screen Printing, Chromojet Technology) Cold Plasma Spraying

Powder Technology

Screen Printing – Halloysite in UV Protective Textiles

absorbed ions

interlayor wate

bearbad ione

Project: ZIM UV Schutz mit Halloysiten, ZF4250115CJ9

https://en.wikipedia.org/wiki/Halloysite

DURTEC GmbH: Information Halloysite

Results Determination of the UV protection factor

sample designation	UVA in %	UVB in %	UPF of the sample	UPF value
without halloysite	10,4	1,9	33,5	34
MF 4 _2 coated, before calendering	7,0	0,7	72,2	> 50
GLG_2 coated, before calendering	5,8	0,7	73,3	> 50
MF 4_2 coated, after calendering	6,1	0,5	97,6	> 50
GLG_2 coated, after calendering	4,4	0,6	96,1	> 50

Overview of the Halloysite used

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Possible application examples

https://www.erfal.de/produkte/sonnenschutz/beschattungsanlagen https://www.sueddeutsche.de/ UV-Schutz: Gefahr im Schatten, Stand 28. Juni 2019

Chromojet Technology & Silver Nano Wires

Additional module for printer

REM image of printed Ag nano wires

2018.07.12 15:58 N D9,4 x3,0k 100%PES Vlies 21 x bedruckt

Applications

Project: ELTRO-Druck II, INNO-KOM-Ost MF 150063

Simulation of the distribution of the particles and surface resistance

chromojet

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Cold Plasma Spraying

Project: Textiles Kaltplasmaspritzen (Inno-Kom 49VF190011)

Powder Technology

http://eco-coat.com/wp-content/uploads/2017/05/pulver-sorten-1.png 16.3.2021

Projects: Pulver DL Fix (Inno-Kom-Ost MF160194), PerMagTex (Inno-Kom 49VF190010)

Powder Technology – Different Applications

Electricalyl conductive

Magnetic

Afterglow

Electroluminescent

titv

Surface Functionalisation on Thread Materials:

- Textile Prototyping Lab for Thread Materials
- **Combustion Chemical Vapor Deposition**
- Metallization
- Applications and Current Projects

Textile Prototyping Lab for Thread Materials

Combustion Chemical Vapour Deposition (C-CVD)

- Deposition of thin films from the gas phase on a solid substrate
- Layer generation through chemical reaction between gaseous starting materials (precursors) and substrate through thermal energy

Silica deposition on a polyester monofilament (SEM and EDX analyses)

Without silica

With 1.9 % silica

With 3.5 % silica

Metallization – silver coated polyamide yarns

Textile electroplating technologies make it possible to produce highly conductive thread materials ELITEX[®] is a conductive, textile-processable polyamide thread with a silver coating

Selection of the technology depending on the textile substrate:

- Thread electroplating continuous electrochemical modification of single threads and twisted yarns
- Knitted fabric electroplating electrochemical metallization in the knitted fabric

Equipment for knitted fabric electroplating

Project: Galvanotex, BMWA 1131_03

ELITEX[®] with Improved Surface?

Galvanic deposition on knitted fabrics

leads to defects in the metal layer

Galvanic deposition on threads improves the surface of the metal layer

electrodes for laboratory tests

Thread Electroplating – Technical Equipment

Laboratory setups

- Electroplating of silver, gold, platinum, copper, zinc, etc.
- Electrochemical modification of metallized filament materials

Pilot plant

Electroplating of silver

Metallization, C-CVD and Yarn Finishing for Medical Applications

Textile electrodes in telemedicine

Outpatient rehabilitation with online assistance of a therapist for quick diagnosis and treatment in one's own environment

- Textile EMG electrodes to measure the muscle activity
- Allow positioning accuracy
- Resistant to mechanical stress
- Washable

Silver-plated yarn finished with hyaluronic acid after pretreatment with C-CVD

Project:

iTex-4-MoRe – Intelligent textiles for physiotherapy in the mobile rehabilitation (IGF-AIF 21117 BR/2)

Messurement Therapy **iTEX** Biomechanic Evaluation Visualisation titv Gefördert durch: 4 Bundesministerium für Wirtschaft und Klimaschutz

> aufgrund eines Beschlusses des Deutschen Bundestages

Single Thread Coating for Heating Application – hiTEX

Application of a carbon-based polymer coating on yarn material by godet application on the pilot plant **Projects:** Hochohmiger Faden I + II, Inno-Kom VF150041 and 49MF190140

aufgrund eines Beschlusses des Deutschen Bundestages

Bundesministerium für Wirtschaft

und Klimaschutz

Gefördert durch

4

3

Even heat distribution in the heating tape based on the carbon coated filaments

SMART MATERIALS AND PROCESSES

SPECIAL TEXTILES AND FLEXIBLE MATERIALS

SMART TEXTILES

TEXTILE SYSTEM-INTEGRATION

TEXTILE CONSTRUCTION AND CONNECTION TECHNOLOGY

SURFACE TECHNOLOGY

Acknowledgement

To all colleagues involved in TITV Greiz.

All partners from the industry who were involved in the different projects.

We would like to thank the Federal Ministry for Economic Affairs and Climate Action as well as the Federal Ministry of Education and Research for the financial support of the research projects, from which the results could be presented in the lecture.

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz GEFÖRDERT VOM

aufgrund eines Beschlusses des Deutschen Bundestages

Thank you very much!

Dr. Yvonne Zimmermann Mail: y.zimmermann@titv-greiz.de

