Occurrence of cfr-encoded linezolid resistance in coagulase-negative staphylococci from livestock and exposed humans

Christiane Cunya, Phillippe Arnoldb, Julia Hermesc, Tim Eckmannsc, Andrea T. Feßlerd
Stefan Schwarzd, Jaishri Mehraije, Gerard Krausee, Wolfgang Wittea

a Robert Koch Institute, Wernigerode Branch,
b Veterinary Practice Dr. Arnold, Echternach, Luxembourg
c Robert Koch Institute, Department of Infectious Disease Epidemiology
d Institute of Veterinary Microbiology, Free University Berlin.
Resistance against fenicols, Lincosamids, Oxazolidinons, Pleuromutilins, Streptogramin A, „PhLOPSa“

- Point Mutation(s) in 23S r DNA
- Point Mutation(s), in ribosomal proteins L3, L4
- Resistance against Forfenicol, Lincosamids,
- Methylation of A2503 of the 23S rRNA mediated by cfr, plasmid located, transferable
- Efflux, ABC-porter, optrA, plasmid located, transferable

Florfenicol, Clindamycin, Linezolid, Tiamulin, Retapamulin, Streptogramin A

Resistance against Forfenicol, Clindamycin, Linezolid, Tedizolid, Tiamulin, Retapamulin, Streptogramin A
Different integration sites of the \textit{cfr} gene in \textit{fexA}-carrying transposons

\textit{S. Schwarz} and coworkers

\textit{S. kloosii} \texttt{p13-00130}
\textit{S. colnii} \texttt{p13-00131}
\textit{S. epidermidis} \texttt{p13-00882}
\textit{S. epidermidis} \texttt{p12-02300} (KM521837.1)

\textit{S. lentus} transposon \texttt{Tn558} (AJ715531.1)

\textit{S. saprophyticus} \texttt{p13-00883}
\textit{S. saprophyticus} \texttt{p13-01036}
\textit{S. epidermidis} \texttt{p13-02070}
\textit{S. aureus} pSCFS3 (AM086211)
\textit{S. saprophyticus} pSS-02 (JF834910)

1 \text{ kb}
cfr mediated resistance in staphylococci

• First description of plamids containing *cfr* in coagulase-negative staphylococci (CoNS) of livestock origin (Kehrenberg and Schwarz, 2006)

• Obviously frequent in livestock in China (Wang et al., 2012)

• Singular observations in LA-MRSA in Europe (Kehrenberg et al., 2009)

• Emergence in nosocomial *S.epidermidis* (ST2) from infections in humans in many countries; intrahospital and interhospital spread

• Clusters of nosocomial infections with HA-MRSA ST125 containing *cfr* in Spain.

• Role of an animal reservoir of *cfr* for ist emergence in *Staphylococcus spp.* from humans?
Possibilities of dissemination of *cfr* coded PhLOPSA resistance

Nose: veal calves, pigs

- Coagulase-negative Staph. from Animals, mainly *S. cohnii, S.kloosii, S.sciurii*
- *S.aureus* / LA-MRSA

Nose, skin, humans:

- *S.epidermidis*
- *S.aureus* / MRSA

Selective pressure
- Tiamulin, Florfenicol
- Linezolid
- Retapamulin
Farms enrolled into the study and demonstration of Linezolid resistant, \textit{cfr} containing staphylococci (2014-2015)

- 3 veal calf farms in LUX which used florfenicol (no other antibiotics)
 52 animals, 10 humans, 1 dog

- 14 veal calf farms in LUX and 2 in DE with no use of florfenicol
 142 animals 8 pig farms in the south of Lower Saxony, DE

- 8 pig farms in the south of Lower Saxony, DE
 67 animals, 39 humans
Procedure for the investigation of nasal swabs from animals and humans on staphylococci containing \(cfr \)

1. **Nasal Swab**
2. **Blood Agar with Florfenicol 20mg/l**
3. **Colonies Suspicious for Staphylococci**
 - **Species Diagnostics**
 - **Antibiotic Susceptibility Testing**
 - **PCR for cfr, fexA**
 - **Conjugation to S. aureus**
 - **Demonstration of Plasmids**

In parallel

- **Chromagar MRSA**

In case of S. epidermidis

- **Molecular Typing MLST**
Farms enrolled into the study and demonstration of Linezolid resistant, \textit{cfr} containing staphylococci (2014-2015)

- 3 veal calf farms in LUX which used florfenicol (no other antibiotics)
 - 52 animals, 10 humans, 1 dog
 - 12 animals positive for \textit{cfr} containing CoNS; no demonstration in swabs from humans and from the dog

- 14 veal calf farms in LUX and 2 in DE with no use of florfenicol
 - 142 animals, no demonstration of \textit{cfr} containing staphylococci

- 8 pig farms in the south of Lower Saxony, DE
 - 67 animals, 39 humans
 - 3 farms, 11 animals and 1 human were positive for \textit{cfr} containing CoNS
Florfenicol resistant CoNS,
Veal calfe farms using florfenicol in Luxembourg

<table>
<thead>
<tr>
<th>Farm</th>
<th>Animal positive for FLO + R CoNS</th>
<th>Species</th>
<th>Resistance genes</th>
<th>Resistance traits of transconjugants¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6/17</td>
<td>S. lentus (4)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. sciuri (2)</td>
<td>+</td>
<td>optrA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ClI, FLO, LNZ</td>
</tr>
<tr>
<td>2</td>
<td>3/17</td>
<td>S. auricularis (3)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>3/18</td>
<td>S. simulans (1)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. cohnii (1)</td>
<td>+</td>
<td>optrA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. sciuri (1)</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

10 humans working on these farms were negative.

¹ Transconjugants harboured plasmids of 38 – 40 kb
² All isolates were also resistant to retapamulin (MIC > 16 mg/l).
Nasal colonization of farmers and veterinarians with linezolid resistant, \textit{cfr} containing staphylococci, cross sectional sample from a meeting of the agricultural association, Luxembourg, November 2016

Farmers, (n= 29)

<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veal calves</td>
<td>19</td>
<td>two of them positive: \textit{S.cohnii} (GEN, ERY, CLI, FUS, LNZ) \textit{S.haemolyticus} (PEN, OXA, TET, PHO, LNZ)</td>
</tr>
<tr>
<td>Veal calves, pig poultry</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dairy cattle</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Veterinarians (n= 16)

<table>
<thead>
<tr>
<th>Group</th>
<th>Count</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veal calves, other livestock</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Dairy cattle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Veal calf farms in Luxembourg (14) and in Germany (2) not using Florfenicol

Nasal swabs from calves (20 animals at each farm) and from humans (n=48) at these farms were negative for linezolid resistant staphylococci.
Florfenicol resistant CoNS
Pig farms in Germany

<table>
<thead>
<tr>
<th>Farm</th>
<th>Individuals positive</th>
<th>Species</th>
<th>Resistance genes</th>
<th>Resistance traits of transconjugants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>cfr</td>
<td>$fexA$</td>
</tr>
<tr>
<td>1, pigs</td>
<td>7/11</td>
<td>S. cohnii (4)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. simulans (1)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. kloosii (2)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>dust</td>
<td>2/7</td>
<td>S. kloosii (2)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>humans</td>
<td>2/3</td>
<td>S. xylosus (1)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. cohnii (1)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2, pigs</td>
<td>2/12</td>
<td>S. saprophyticus (2)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>humans</td>
<td>0/3</td>
<td>S. cohnii (1)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3, pigs</td>
<td>2/6</td>
<td>S. kloosii (2)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>humans</td>
<td>0/3</td>
<td>S. cohnii (1)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

All isolates were also resistant to retapamulin (MIC > 16 mg/l).
Study on nasal colonization with Linezolid-resistant, *cfr* containing staphylococci of 169 veterinarians and 263 of their family members from a cohort study performed in Germany in 2012

4/169 (2.3%) of the veterinarians positive

3/263 (1.1%) of the family members positive
Florfenicol-resistant CoNS from nasal swabs of veterinarians (n = 171) and from their family members (n = 263) in Germany

<table>
<thead>
<tr>
<th>Species</th>
<th>Resistance genes</th>
<th>MLST</th>
<th>Resistance traits of transconjugants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cfr</td>
<td>fexA</td>
<td>optrA</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>fm</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>vt</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>vt</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>vt</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>fm</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>vt</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

(n = 171) and from their family members (n = 263) in Germany.
Nasal swabs from persons without occupational animal contact (2013)

Swab from 363 inhabitants of the city of Braunschweig (250,000 inhabitants) taken in 2013 (Mehrai et al., 2014) were checked for florfenicol resistant CoNS, they all were negative.
cfr in CoNS species as usual colonizers/infectious agents in humans

S.epidermidis: 4 isolates from veterinarians and their family members
MLST: ST2, ST5, ST10 are known from hospitals (Kozitskaya et al., 2005)

S.saprophyticus: 3 isolates from humans, 2 isolates from cattle
host-specificity?

An old study from Scandinavia reported congruent seasonality of *S.Saprophyticus* UTI in humans and demonstration in cattle, pigs, and fodder (Hedman et al., 1993)
In vitro transferability of *cfr*-carrying plasmids to *S. aureus* by filter mating (conjugation)

Transfer to *S. aureus*: Strain 8325-4, rif-*r*, mup-*r* was used as recipient.

Conjugation frequencies ranged from 3×10^{-6} to 5×10^{-5}.

Transconjugants contained *cfr* and *fexA* and exhibited resistance to clindamycin, linezolid, and florfenicol.

Transconjugants contained plasmids with sizes ranging between 38 to 40 kb.
Transferable wide dissemination of *cfr*

- Transconjugants from this study harboured plasmids of 38-40 kb

- The *cfr* containing segments from *S.epidermidis* (ST10), *S.cohnii*, and *S.kloosii* showed 99% identity with the segment of a plasmid of *S.epidermidis* from a German hospital (Bender et al., 2015)

- The segment contained by plasmids in *S.saprophyticus* from a veterinarian showed 100% identity with that of a plasmid contained by an *S.saprophyticus* isolate from China (Cui et al., 2013).
Cfr mediated linezolid resistance in MRSA

- Surprisingly rare in LA-MRSA CC398
 - Singular clinical case of VAP in Germany (Cuny et al., 2017)
 - Singular clinical case in Belgium (Paridens et al., 2017)

- Well known from a cluster of nosocomial infections in Madrid hospitals
 - HA-MRSA ST125,IV; (Morales et al., 2010, Sanchez et al., 2010)

- Recent reports from Ireland (HA-MRSA ST22,IV; Shore et al., 2016)
 - Italy (HA-MRSA ST5,II, Antonelli et al., 2016)
Conclusions

- Linezolid resistant CoNS containing cfr were detected in nasal swabs from veal calves at farms that used florfenicol in Luxembourg and from pigs at conventional farms in Germany. The isolates didn`t contain optrA.

- More rarely cfr containing CoNS were also detected in humans with occupational exposure to livestock.

- cfr containing plasmids were transferred to S. aureus 8325-4 by filter mating.

- In a population based sample from humans in the Braunschweig area in DE florfenicol/linezolid resistant staphylococci were not isolated from nasal swabs.

- Further surveillance is needed for timely detection of spread to humans.
One health approach and antibiotic consumption

- At least in cattle the emergence of *cfr* mediated resistance seems to be associated with florfenicol usage.

- There is most likely also selective pressure by linezolid usage in hospitals.

- Is topical use of retapamulin (dermatology: acne, surgery: wound infections) really wise?

It is well known that topical use of antibiotics particularly favours emergence of resistance in staphylococci (fusidic acid, mupirocin, gentamicin).