

Bundesinstitut für Risikobewertung

Models used to detect skeletal anomalies: applications, limitations and future perspectives

Frank Schulze

Testing for teratogenicity: historic background

- late 1950/early 1960s: Thalidomide was sold in Germany
- broad public discussion about regulation and use of teratogenic substances
- exemplified **limitations of animal testing** strategies at that time
- direct consequence: preclinical testing for teratogenicity of drugs became part of German Law (Arzneimittelgesetz der BRD von 1978)

source: http://www.contergan.grunenthal.info

Testing for teratogenicity: present

International Council for Harmonisation (ICH): **safety** guideline S5 (R2)

medicinal products

Organisation for Economic Co-operation and Development (OECD): guideline 414

- general testing of chemicals
- testing in **two distinct species**
- animal recieves test substance during pregnancy (beginning to estimated end)
- pregnant animal is sacrificed and fetuses are removed for further testing
- removal of soft and connective tissues followed by staining for chondrogenic and mineralised parts of the skeleton

Retting et al., Development, 2009

Testing for teratogenicity: current limitations

Research into Thalidomide exposes limitations of animal testing:

- mice or rats fail to predict thalidomide teratogenicity in humans
- species-specific differences in physiology and metabolism [1]
- distinct effective doses in between different species [2]
- using animals that are phylogenetic closer to humans (e.g. nonhuman primates) does not facilitate the identification of all human teratogens [3]

EU regulation: Registration, Evaluation, Authorization and Restriction of Chemicals (**REACH**)

- testing of \geq 68.000 substances within the next decade
- approximately 9 [4] 54 [5] million animals would be needed
- 70% 90% animals for reproductive/developmental toxicity testing [5]
- cost and time demanding

Lu, J. et al. J Pharmacol Exp Ther, 2004
Newman, L. M. et al. Reprod Toxicol, 1993
Schardein, JL. Chemically Induced Birth Defects, 1985

[4] ECHA press release, ECHA/PR/09/11, 2009

[5] Rovida, C. et al. Altex, 2009

Muschler et al., Tissue Engineering Part B, 2009

Source: Rajesh mpt,CC BY-SA 4.0 commons.wikimedia.org

Testing for skeletal teratogenicity: alternatives

Spoiler: The complexity of embryogenesis and maternal-fetal interaction will not be recreated as an *in vitro* model in the foreseable future!

The **specific** inhibition of tissue or organ growth due to exposure to a given substance.

e.g. : **Tetracycline**-based anitbiotics are incorporated into bone matrix instead of calcium

-> deformations, **disruption of endochondral ossification** and therefore **longitudial bone** growth

Alternatives: *In vitro* assays that display key events in human bone formation

Teratogenicity is based on **secondary effects** of the substance in question.

e.g. Non-physiologic exposure to **retinoic acid** causes spatial disruption of symmetry axes by **altering Hox-gene expression**.

-> deformations of **skull and limbs** but also eyes and central nervous system

Alternatives: **Change of organisms** towards smaller animals (conserved development process across vertebrae species, higher throughput, less ethical dilemma)

Alternatives for testing skeletal teratogenicity

Whole embryo culture (WEC)

Zhang et al., Chemical Research in Toxicology, 2016

Pharyngeal

Otic placode heart

Primitive

spinal cord

arches

Limb bud micromass culture

Zebrafish embryo culture

Osteo EST

Sittner et al. Applied In Vitro Toxicology, 2016

page 6

bone development – intramembranous ossification

Haugen et al. Frontiers in Endocrinology (2018)

Frank Schulze, September 2018, 9th Berlin Workshop on Developmental Toxicology

page 7

3D models of endochondral ossification

proliferation, condensation and subsequent remodelling mineralisation and vascularisation hypertrophy of chondrocytes In vivo Situation Resorption Adapted from: Salazar, V. S., Nature Reviews Endocrinololgy (2016) Masson's trichrome 3D µCT Safranin-o Α A Mineralization In vitro Chondrogenic differentiation ratified Il laver Cell ball в In vivo 5w 100 µ 100 um In vivo 12w Foster et al. Birth Defects Research (2015) Scotti et al. PNAS (2013) Sasaki et al. Integrative Biology (2012)

bone development – endochondral ossification

Recreating key parameters in bone biology: combining organoids and bioreactors

Schulze et al. unpublished work

page 9 **Fr BfR**

Conclusion

While **direct effects** on skeletal development **can be detected** *in vitro*, **indirect effects** cannot due to a **lack of complexity** and systemic interaction.

Investing in reliable *in vitro* test systems will be beneficial since:

- they allow **supplementation** of *in vivo* testing
- low-throughput sophisticated 3D models can help elucidate biology and key events bone development
- **key events** -> simplified model (multi-titer) for **high throughput** applications
- low-cost and high throughput in vitro methods can help to prioritize chemicals for testing in vivo
- potential for the **reduction** of test animals
- combination with other organ/tissue models (placental barrier, liver) can elevate physiologic relevance

page 10

Bundesinstitut für Risikobewertung

Thank you for your attention

German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 • 10589 Berlin, GERMANY Phone +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 - 47 41 bfr@bfr.bund.de • www.bfr.bund.de/en