Lessons learnt from capacity building in LMO detection in the Southern African Network of GM detection Laboratories (SANGL)

Viljoen CD¹, Mnyulwa D² and Maredza AT² ¹Human Molecular Biology Unit, School of Biomedical Sciences, University of the Free State

²Regional Agricultural & Environmental Innovations Network (RAEIN)-Africa

T: +27(0)51 401 9111 | info@ufs.ac.za | www.ufs.ac.za

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

Cartagena Protocol on Biosafety: Need for capacity building

- Protocol entered into force in 2000
- Current status of implementation in Africa
 - 47 countries have acceded to the Protocol
 - 27 countries have ratified the protocol (https://bch.cbd.int/protocol/parties)
- Capacity building initiatives in Africa have not always paid dividends
 - Challenges in the political and socio-economic environment (Araya-Quesada et al. 2010)

- Established in 2009
 - Two laboratories per country
 - Nominated by Focal Points for the Protocol to ensure regulatory recognition
- SANGL members
 - Laboratories in 13 countries
 - Angola, Botswana, the Democratic Republic of Congo, Eswatini, Lesotho, Madagascar, Malawi, Mozambique, Namibia, South Africa, Tanzania, Zambia, Zimbabwe

SOUTHERN AFRICAN NETWORK FOR GM DETECTION LABORATORIES ____ N N N N TAN

Overview of SANGL activities

- 2009: Regional meeting to establish SANGL and set strategic goals and objectives
- 2010: Train-the-Trainers workshop in GM detection in South Africa
- 2011: Workshop to identify national and regional issues in LMO detection for SANGL to meet regional objectives in South Africa
- 2013-2014: MCLP ICLT preparatory grant (RAEIN-Africa)
- 2017-2023: MCLP ICLT project (RAEIN-Africa)

Training workshop in South Africa 2011

Lessons learnt: Challenging environment for LMO monitoring

- Lack of regulatory environment
- Insufficiently trained human capacity
- Lack of physical resources/laboratories
- Lack of access to affordable equipment and consumables

Lack of regulatory environment for LMO monitoring

- Countries may not have a functional regulatory system to manage LMOs
 - Countries use interim measures to manage LMOs
 - No mandate for LMO detection results in an inability to budget for LMO detection
 - Difficult to convince donors that LMO detection is a priority

Insufficiently trained human capacity

- Lack of trained human capacity in LMO detection
 - Capacity building develops expertise
 - Trained staff are upwardly mobile
 - Leave the institution without the benefit of the capacity building

Lack of physical infrastructure

- LMO detection has specific considerations regarding spatial orientation
 - Most laboratories are required to repurpose space to save on cost
 - It can be challenging to get funding to repurpose existing facilities

Lack of access to affordable equipment and consumables

- Equipment and consumables are imported
 - Cost two to three times more than in developed countries
- In-country customs processes
 - Processes are tedious, time-consuming and expensive
 - May lack cold chain facilities can result in reagents being spoilt
- Technical support for equipment
 - Little technical support for equipment maintenance or adequate training
- Institutional procurement processes

Can be bureaucratic and result in delays or wrong procurement

MCP-ICLT project

- 2017-2023: Multi-country Project to strengthen Institutional Capacities on LMO testing in support of national decision making
 - Funding: UNEP-GEF
 - Project coordination: RAEIN-Africa
 - Countries: Angola, DRC, Lesotho, Madagascar, Malawi, Mozambique

MCP-ICLT project: Cooperative development

Capacity building objectives 1

- LMO detection and quantification
 - Sampling for LMO detection
 - Qualitative LMO detection
 - Quantification of LMOs
 - Laboratory quality management

Capacity building objectives 2

• Supporting capacity building

- Laboratory spatial orientation and process flow
- Procurement processes
- Communication and report writing
- Costing of diagnostic services
- Financial sustainability

Multiplier effect: Reinforce training and develop additional capacity

Conclusions

- Capacity building is more effective within the context of a supportive network
- Capacity building should take practical incountry considerations into account
- A reiterative approach to training ensures continual buy-in and implementation
- Multiplier effect: Reinforce training through incountry training and practical components

Ke a leboha Dankie **Thank You**

T: +27(0)51 401 9111 | info@ufs.ac.za | www.ufs.ac.za

> UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

JFS

