JRC GMO web applications

Dr Laura Bonfini

Joint Research Centre (JRC), EURL GMFF

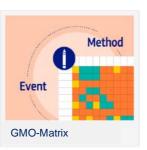
GMO Analysis and New Genomic Techniques 14-16 March 2023 Berlin

European Commission - JRC

The Joint Research Centre provides independent, evidencebased knowledge and science, supporting EU policies to positively impact society.

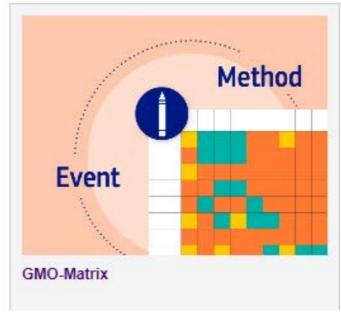
EURL GMFF Activities

What we do

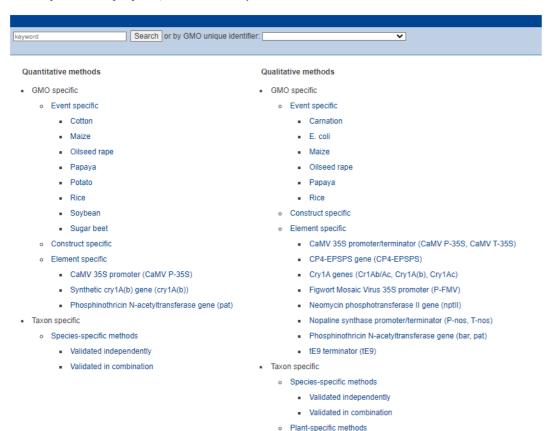


Tools

Other information



EURL GMFF WEB Applications



GMOMETHODS database

Perform your search by keyword, select a GMO unique identifier or click a link in the section below.

https://gmo-crl.jrc.ec.europa.eu/gmomethods/

Criteria for inclusion into GMOMETHODS

Methods are:

- Validated in collaborative studies according to int'l standards
- Validated in single laboratory for legal purposes
- In line with ENGL Method Performance Requirements (MPR)

GMOMETHODS database

Last updated 20/12/2022

GMOMETHODS: EU DATABASE OF REFERENCE METHODS

Quantitative PCR method for detection of maize event MON 95379 (EURL GMFF, 2022)

1. GENERAL INFORMATION

Event specific

Target genetic element 3' integration border region (IBR) between the insert of maize event MON 95379 and

the maize host genome

 Assay
 Simplex

 Detection Chemistry
 TaqMan®

 Compendium Reference
 QT-EVE-ZM-033

2. VALIDATION DATA

Collaborative trial coordinator

Test material applied in collaborative trial DNA

Materials used for calibration/controls

Genomic DNA extracted from non-GM and GM maize event

MON95379 ground seeds and grainsv

Tested GM Events

Event Name	Unique Identifier	Species
MON95379	MON-95379-3	Zea mays

Collaborative Trial Description

The participants received twenty blinded test samples representing five GM levels, namely 10 %, 5 %, 1 %, 0.45 % and 0.06 % of maize event MON95379 DNA in non-GM maize DNA. In addition the laboratories received five calibration samples, reaction reagents, primers and probes for the maize high mobility group (*Img*) reference gene and for the event MON95379 specific system. Four replicates for each GM level were analysed in two runs with both the reference and the transgenic specific system.

Method Performance

LOD Relative	not assessed	LOD Absolute	≤ 5 HGE
LOQ Relative	≤0.085 %	LOQ Absolute	not reported

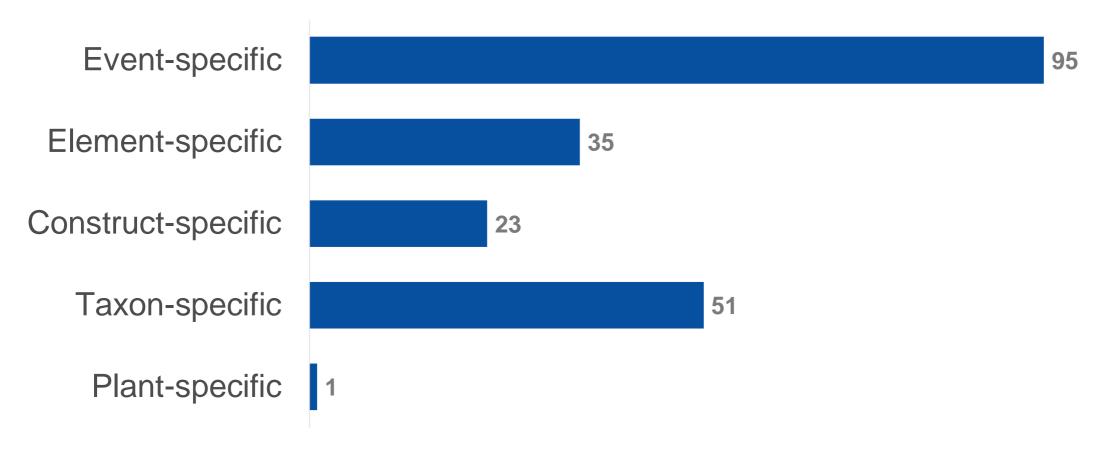
	GMO Target	Taxon Target
Mean Slope	-3.4	-3.5
Mean PCR Efficiency %	97	95
Mean R2	1.00	1.00

Commer

The LOD absolute and LOQ relative values (expressed as copy number ratio of GM material to non-GM haploid genomes) were provided by the method developer and determined in 250 ng and 160 ng respectively of total maize DNA per reaction.

3. REFERENCES

European Union Reference Laboratory for GM Food and Feed (EURL GMFF), Joint Research Centre (JRC), European Commission. Event-specific Method for the Quantification of Maize MON 95379 Using Real-time PCR - Validation Report. 2022. JRC130976. Online Publication https://gmo-crl.jrc.ec.europa.eu/summaries/EURL-VL-06-20-VR.pdf


4. PRIMERS AND PROBES SEQUENCES

GM-target(s)	3' integration border region (IBR) between the insert of maize event MON 95379 and the maize host genome
Primer Forward	5'-CCAAGAAGAACGATTGGCAAAC-3'
Target element	insert
Primer Reverse	5'-GGCACAGGCACGCCTCTG-3'
Target element	3'-host genome
Amplicon length	87 bp
Probe	5'-FAM-ATGGGTATTATGGGTAGGCACATGGGAATATAG-TAMRA-3'

		****	European Commission	
Taxon-target(s)	high-mobility-group (hmg) ger	ne		
Primer Forward	5'-TTGGACTAGAAATCTCGT	GCTGA-3'		
Target element	hmg			
Primer Reverse	5'-GCTACATAGGGAGCCTT	ЭТССТ-3'		
Target element	hmg			
Amplicon length	79 bp			
Probe	5'-FAM-CAATCCACACAAAC	GCACGCGTA-TAMPA	Δ_3'	
11000	3-1 AIVI-OAATOOAOAAAO	OCACCOTA-TAINIT	4-5	
5. PCR RE	ACTIONS SETUP			
GM-target(s)		Taxon-target(s))	
Reagent	Final Concentra	ation Reagent	Fin	al Concentration
Reagent TaqMan Universal PCR		_	Fin sal PCR Master Mix (2x)	
_	R Master Mix (2x) 1x	_	•	
TaqMan Universal PCR	R Master Mix (2x) 1x 0.40 µm	TaqMan Univers	•	1x
TaqMan Universal PCR Primer Fw	R Master Mix (2x) 1x 0.40 μm 0.40 μm	TaqMan Univers	•	1x 0.30 µmol/l
TaqMan Universal PCR Primer Fw Primer Rev	R Master Mix (2x) 1x 0.40 μm 0.40 μm	TaqMan Univers	sal PCR Master Mix (2x)	1x 0.30 µmol/l 0.30 µmol/l
TaqMan Universal PCR Primer Fw Primer Rev Probe	R Master Mix (2x) 1x 0.40 μπ 0.40 μπ 0.20 μπ	TaqMan Universion/L Primer Fw nol/L Primer Rev nol/L Probe Nuclease-free w	sal PCR Master Mix (2x)	1x 0.30 µmol/l 0.30 µmol/l 0.16 µmol/l
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.20 μm #	TaqMan Universion/L Primer Fw nol/L Primer Rev nol/L Probe Nuclease-free w Template DNA	sal PCR Master Mix (2x)	1x 0.30 µmol/l 0.30 µmol/l 0.16 µmol/l
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.20 μm # 4 μl	TaqMan Universion/L Primer Fw nol/L Primer Rev nol/L Probe Nuclease-free w Template DNA	sal PCR Master Mix (2x)	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.40 μm 0.20 μm # 4 μl 25 μ	TaqMan Universion/L Primer Fw nol/L Primer Rev nol/L Probe Nuclease-free w Template DNA	sal PCR Master Mix (2x)	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume 6. AMPLIFIG	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.40 μm 0.20 μm # 4 μl 25 μ	TaqMan Universion/L Primer Fw nol/L Primer Rev nol/L Probe Nuclease-free w Template DNA	sal PCR Master Mix (2x)	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume 6. AMPLIFI GM-target(s) and taxe	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.40 μm 0.20 μm # 4 μl 25 μ CATION CONDITIONS on-target(s)	TagMan Univers hol/L Primer Fw hol/L Primer Rev hol/L Probe huclease-free w Template DNA L Final volume	sal PCR Master Mix (2x)	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL 25 μL
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume 6. AMPLIFI GM-target(s) and taxe Stage	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.20 μm 4 μl 25 μ CATION CONDITIONS on-target(s)	TagMan Univers hol/L Primer Fw hol/L Primer Rev hol/L Probe huclease-free w Template DNA L Final volume	sal PCR Master Mix (2x) rater Time	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL 25 μL
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume 6. AMPLIFI GM-target(s) and taxe Stage Decontamination (UNC	1 Master Mix (2x) 1x 0.40 μm 0.40 μm 0.20 μm 4 μl 25 μ CATION CONDITIONS on-target(s)	TagMan Univers hol/L Primer Fw hol/L Primer Rev hol/L Probe huclease-free w Template DNA L Final volume Temperature 50°C	sal PCR Master Mix (2x) vater Time 120"	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL 25 μL NoCycles
TaqMan Universal PCR Primer Fw Primer Rev Probe Nuclease-free water Template DNA Final volume 6. AMPLIFI GM-target(s) and taxe Stage Decontamination (UNC Activation/Initial Denati	1 x Master Mix (2x) 1 x 0.40 μm 0.40 μm 0.20 μm 4 μl 25 μ CATION CONDITIONS con-target(s)	TagMan Univers hol/L Primer Fw hol/L Primer Rev hol/L Probe huclease-free w Template DNA L Final volume Temperature 50°C 95°C	sal PCR Master Mix (2x) vater Time 120" 600"	1x 0.30 μmol/l 0.30 μmol/l 0.16 μmol/l # 4 μL 25 μL NoCycles

GMOMETHODS content

In silico PCR predictions for GMOs detection

GMO-Matrix

Assembles two-dimensional matrices (chosen GMO events vs chosen GMO methods) to visualise the analytical coverage of the methods and identify potential gaps in the users screening approach.

GMO-Event finder

Allows identification of potential GMO(s) present in a sample based on a set of detection methods defined by the user and the obtained positive and negative experimental results.

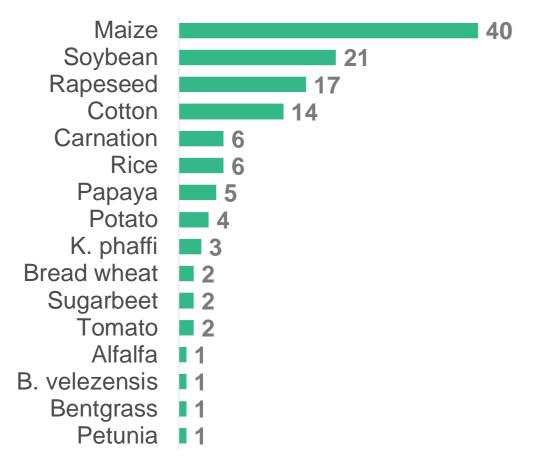
GMO-Screen

Provides a general screening proposal and a screening specific for EU authorised GMOs with a web-based tool to interpret the results. The tool may also be applied to a ready-to-use, multi-target screening device developed by the JRC known as the Pre-Spotted Plate (PSP).

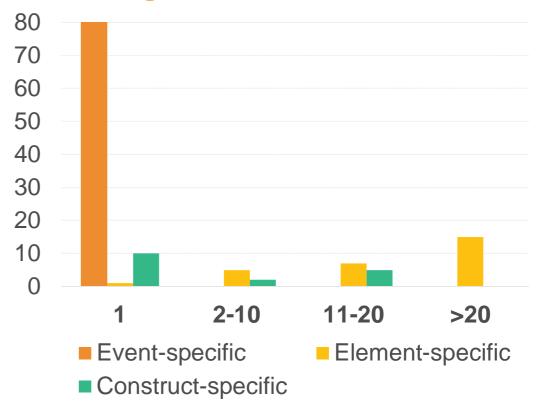
JRC-GMO-Matrix

GMO-Matrix

1) Select GMO(s) By taxon(s) Cotton (Gossypium hirsutum) Specific GMO(s) 2) Select legal status Directive 2001/18/EC Regulation (EC) No 1829/2003 📢 Authorised events Authorised events Events in authorised stacks Pending events Pending events Expired events Withdrawn events Unauthorised events 3) Select method(s) Event-specific Construct-specific ×bar (QL-ELE-00-014) Element-specific *CaMV P-35S (QT-ELE-00-001) *pat (QT-ELE-00-002) *T-nos (QL-ELE-00-007) Export as CSV


	CaMV P-35S (QT-ELE-00-001)	pat (QT-ELE-00-002)	bar (QL-ELE-00-014)
Authorised events			
GHB119 Cotton (BCS-GH005-8)	2	0	2
GHB614 Cotton (BCS-GH002-5)	0	0	0
GHB811 Cotton (BCS-GH811-4)	0	0	0
LLCotton25 Cotton (ACS-GH001-3)	2	0	2
MON 1445 Cotton (MON-01445-2)	1	0	0
MON 15947 Cotton (MON-15985-7) * A	2	0	0
MON 531 Cotton (MON-00531-6)	2	0	0
MON 88913 Cotton (MON-88913-8)	0	0	0
T304-40 Cotton (BCS-GH004-7)	2	0	2
Events in authorised stacks			
281-24-236 Cotton (DAS-24236-5) S	0	2	0
3006-210-23 Cotton (DAS-21023-5)	0	2	0
Pending events			
COT102 Cotton (SYN-IR102-7)	0	0	0
DAS-81910-7 Cotton (DAS-81910-7)	0	2	0

https://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/



JRC-GMO-Matrix

Number of GM events

Targeted GMOs/method

JRC GMO-Event finder

GMO-Event finder

41	90	lact	taxon	(a)
	30	ICCL	Laxuiii	101

By taxon(s) ×Cotton (Gossypium hirsutum)

2) Select positive method(s)

3) Select negative method(s)

Event-specific	
Construct-specific	
Element-specific	×pat (QT-ELE-00-002)

4) Select maximum number of events

JRC GMO-Event finder

Single events

	pat (QT-ELE-00-002)	bar (QL-ELE-00-022)	CaMV P-35S (QL-ELE-00-001)	T-nos (QL-ELE-00-011)
GHB119 Cotton (BCS-GH005-8)	0	2	1	2
LLCotton25 Cotton (ACS-GH001-3)	0	2	2	2
MON 88701 Cotton (MON-88701-3)	0	2	2	2
T304-40 Cotton (BCS-GH004-7)	0	2	2	2

Legend:

- 0 No amplification predicted
- 1 Amplification predicted, imperfect annealing*
- 2 Amplification predicted, perfect annealing
 - Up to a maximum of 2 gaps and 2 mismatches for each primer

JRC GMO-Event finder

Other possible events

The results above show the event(s) which are <u>sufficient</u> to explain the selected pattern of results. Other GM event(s), as long that they would test negative for the methods for which a negative result was obtained, could potentially also be present in the tested sample. These include:

	pat (QT-ELE-00-002)	bar (QL-ELE-00-022)	CaMV P-35S (QL-ELE-00-001)	T-nos (QL-ELE-00-011)
COT102 Cotton (SYN-IR102-7)	0	0	0	2
GHB614 Cotton (BCS-GH002-5)	0	0	0	0
GHB811 Cotton (BCS-GH811-4)	0	0	0	0
MON 1445 Cotton (MON-01445-2)	0	0	1	2
MON 15947 Cotton (MON-15985-7)	0	0	2	2
MON 531 Catton (MON-00531-8)	0	0	2	2
MON 88913 Cotton (MON-88913-8)	0	0	0	0

GMO-Screen

1) Select screening strategy

- Screening for authorised GMOs
- General screening
- O Prespotted plates

2) Select taxon(s)

By taxon(s)

*Cotton (Gossypium hirsutum)

3) Select legal status

Regulation (EC) No 1829/2003

Directive 2001/18/EC ☐ Authorised events

Pending events

- Authorised events
- Events in authorised stacks
- Pending events
- Expired events
- Withdrawn events
- Unauthorised events

Show

Cancel

Export as CSV

Interpret your results

	CaMV P-35S (QT-ELE-00-004)	T-nos (QL-ELE-00-013)	pat (QT-ELE-00-002)	OTP-mEPSPS (QT-CON-00-008)
Authorised events				
GHB119 Cotton (BCS-GH005-8)	1	2	0	0
GHB614 Cotton (BCS-GH002-5)	0	0	0	2
GHB811 Cotton (BCS-GH811-4)	0	0	0	2
LLCotton25 Cotton (ACS-GH001-3)	2	2	0	0
MON 1445 Cotton (MON-01445-2)	2	2	0	0
MON 15947 Cotton (MON-15985-7) * A	2	2	0	0
MON 531 Cotton (MON-00531-6)	2	2	0	0
MON 88913 Cotton (MON-88913-8)	2	0	0	0
T304-40 Cotton (BCS-GH004-7)	2	2	0	0
Events in authorised stacks				
281-24-236 Cotton (DAS-24236-5) S	0	0	2	0
3006-210-23 Cotton (DAS-21023-5)	0	0	2	0
Pending events				
COT102 Cotton (SYN-IR102-7)	0	2	0	0
DAS-81910-7 Cotton (DAS-81910-7)	0	0	2	0

Screening for authorised GMOs

The JRC provides screening proposals with element-, construct- and event-specific methods for identifying authorised GM events. This decision-support system is designed for interpreting the positive (+), negative (-) and inconclusive/unavailable (?) results of the tests. Leave the result as unavailable (?) for the methods that you didn't use in your screening.

Select the results of element and construct-specific methods

Target	GMOMETHODS Reference	F	Resu	lt
CaMV P-35S	QT-ELE-00-004	+	-	?
OTP-mEPSPS	QT-CON-00-008	+	-	?
pat	QT-ELE-00-002	+	-	?
T-Nos	QL-ELE-00-013	+	-	?

The following single events match the selected pattern and the selected species (cotton). One or more may thus be present in the sample:

Single events

	CaMV P-35S (QT-ELE-00-004)	T-nos (QL-ELE-00-013)	pat (QT-ELE-00-002)	OTP-mEPSPS (QT-CON-00-008)
GHB119 Cotton (BCS-GH005-8)	1	2	0	0
LLCotton25 Cotton (ACS-GH001-3)	2	2	0	0
MON 1445 Cotton (MON-01445-2)	2	2	0	0
MON 15947 Cotton (MON-15985-7)	2	2	0	0
MON 531 Cotton (MON-00531-6)	2	2	0	0
MON 88701 Cotton (MON-88701-3)	2	2	0	0
T304-40 Cotton (BCS-GH004-7)	2	2	0	0

Legend:

No amplification predicted

1 Amplification predicted, imperfect annealing*

2 Amplification predicted, perfect annealing

^{*}Up to a maximum of 2 gaps and 2 mismatches for each primer

Other possible events

The results above show the event(s) which are <u>sufficient</u> to explain the selected pattern of results. Other GM event(s), as long that they would test negative for the methods for which a negative result was obtained, could potentially also be present in the tested sample. These include:

	CaMV P-35S (QT-ELE-00-004)	T-nos (QL-ELE-00-013)	pat (QT-ELE-00-002)	OTP-mEPSPS (QT-CON-00-008)
COT102 Cotton (SYN-IR102-7)	0	2	0	0
MON 88913 Cotton (MON-88913-8)	2	0	0	0

Legend:

- No amplification predicted
- 1 Amplification predicted, imperfect annealing*
- 2 Amplification predicted, perfect annealing

^{*}Up to a maximum of 2 gaps and 2 mismatches for each primer

GMO-Screen

1) Select screening strategy

- O Screening for authorised GMOs
- General screening
- O Prespotted plates

2) Select taxon(s)

By taxon(s)

× All taxons

3) Select legal status

Regulation (EC) No 1829/2003

- Authorised events
- Events in authorised stacks
- Pending events
- Expired events
- Withdrawn events
- Unauthorised events

Directive	2001/18/

- ☐ Authorised events
- Pending events

Show Cancel **Export as CSV**

Interpret your results

Autil	orised events (v)				
1507 M	aize (DAS-01507-1)	1	0	2	0
305423	Soybean (DP-305423-1)	0	0	0	0
40-3-2	Soybean (MON-04032-6)	2	2	0	0
4114 Ma	aize (DP-004114-3)	2	0	2	0
5307 M	aize (SYN-05307-1)	0	2	0	0
59122 N	Maize (DAS-59122-7)	2	0	2	0
73496 F	Rapeseed (DP-073496-4)	0	0	0	0
A2704-	12 Soybean (ACS-GM005-3)	2	0	2	0
A5547-	127 Soybean (ACS-GM006-4)	2	0	2	0
Bt11 Ma	aize (SYN-BT011-1)	2	2	2	0
CV127	Soybean (BPS-CV127-9)	0	0	0	0
DAS-40	278-9 Maize (DAS-40278-9)	0	0	0	0
DAS-44	406-6 Soybean (DAS-44406-6)	0	0	2	0
DAS-68	416-4 Soybean (DAS-68416-4)	0	0	2	0

Authorised events

1) Select the results of taxon-specific methods

Target	GMOMETHODS Reference	R	esu	lt	
AdhC (cotton)	QT-TAX-GH-019	+	-	?	
hmg (maize)	QT-TAX-ZM-002	+	-	?	
FatA(A) (rapeseed)	QT-TAX-BN-001	+	-	?	
Le1 (soybean)	QT-TAX-GM-002	+	-	?	
anthocyanidin synthase (carnation)	QL-TAX-DC-001	+	-	?	
chymopapain (papaya)	QT-TAX-CP-001	+	-	?	
gs (sugarbeet)	QT-TAX-BV-013	+	-	?	
LAT52 (tomato)	QT-TAX-SL-002	+	-	?	
lectin (pea)	QL-TAX-PS-001	+	-	?	
pld (rice)	QT-TAX-OS-017	+	-	?	
stearoyl-acyl carrier protein desaturase (flax)	QL-TAX-LU-001	+	-	?	
ugp (potato)	QT-TAX-ST-010	+	-	?	

2) Select the results of element and construct-specific methods

Target	GMOMETHODS Reference	F	Resu	lt
bar	QL-ELE-00-014	+	-	?
CaMV P-35S	QT-ELE-00-001	+	-	?
CaMV P-35S	QT-ELE-00-004	+	-	?
cry1Ab/Ac	QL-ELE-00-016	+	-	?
CTP2-CP4epsps	QL-CON-00-008	+	-	?
nptll	QL-ELE-00-002	+	-	?
OTP-mEPSPS	QT-CON-00-008	+	-	?
pat	QT-ELE-00-002	+	-	?
P-FMV	QL-ELE-00-015	+	-	?
P-Nos	QL-ELE-00-008	+	-	?
t-E9	QL-ELE-00-024	+	-	?
T-Nos	QL-ELE-00-013	+	-	?

3) Select the results of event-specific methods

Target	GMOMETHODS Reference	Resu		It
305423 (soybean)	QT-EVE-GM-008	+	-	?
73496 (rapeseed)	QT-EVE-BN-009	+	-	?
CV127 (soybean)	QT-EVE-GM-011	+	-	?
DAS40278 (maize)	QT-EVE-ZM-004	+	-	?
MON 94100 (rapeseed)	QT-EVE-BN-014	+	-	?

The following single events match the selected pattern. One or more may thus be present in the sample:

Single events

	CaMV P-35S (QT- ELE-00-004)	CaMV P-35S (QT- ELE-00-001)	T-nos (QL-ELE- 00-013)	pat (QT-ELE-00- 002)	bar (QL-ELE-00- 014)	tE9 (QL-ELE-00- 024)	CTP2-CP4 EPSPS (QL-CON- 00-008)	P-nos (QL-ELE- 00-008)	nptil (QL 0(
1345-4 Tomato U	2	2	2	0	0	0	0	2	
16-0-1 Papaya U	2	2	2	0	0	0	0	2	
18-2-4 Papaya U	2	2	2	0	0	0	0	2	
55-1 Rainbow Papaya (CUH-CP551-8)	2	2	2	0	0	0	0	2	
Huanong No.1 Papaya	2	2	2	0	0	0	0	2	
X17-2 Papaya (UFL-X17CP-9)	2	2	2	0	0	0	0	2	

Other possible events

The results above show the event(s) which are <u>sufficient</u> to explain the selected pattern of results. Other GM event(s), as long that they would test negative for the methods for which a negative result was obtained, could potentially also be present in the tested sample. These include:

	CaMV P-35S (QT- ELE-00-004)	CaMV P-35S (QT- ELE-00-001)	T-nos (QL-ELE- 00-013)	pat (QT-ELE-00- 002)	bar (QL-ELE-00- 014)	tE9 (QL-ELE-00- 024)	CTP2-CP4 EPSPS (QL-CON- 00-008)	P-nos (QL-ELE- 00-008)	nptll (QL-ELE-00- 002)
GM Bacillus velezensis	0	0	0	0	0	0	0	0	0
KK179 Alfalfa (MON-00179-5)	0	0	2	0	0	0	0	0	0
MxY0541 - Insert 1	0	0	0	0	0	0	0	0	0
MxY0541 - Insert 2	0	0	0	0	0	0	0	0	0
MxY0541 - Insert 3 U	0	0	0	0	0	0	0	0	0
Purple Tomato U	0	0	0	0	0	0	0	2	2
RL01-17 Petunia	2	1	0	0	0	0	0	2	2

Pre-Spotted-Plates (PSPs)

JRC screening PSPs with methods:

- taxon-specific
- element-specific
- construct-specific
- event-specific for authorised soybean and maize events

Pre-spotted plates

The JRC provides pre-spotted plates with element- and construct- specific methods for performing screening analysis and pre-spotted plates with eventspecific methods for identifying soybean and maize authorised events. This decision-support system is designed for interpreting the positive (+), negative (-) and inconclusive (?) results of the tests.

1) Select the results of taxon-specific methods

Target	GMOMETHODS Reference	F	lesu	lt	
hmg (maize)	QT-TAX-ZM-002	+	-	?	
Le1 (soy)	QT-TAX-GM-002	+	-	?	
cruA (rapeseed)	QT-TAX-BN-012	+	٠	?	
sah7 (cotton)	QT-TAX-GH-016	+	-	?	
ugp (potato)	QT-TAX-ST-010	+	٠	?	
pld (rice)	QT-TAX-OS-017	+	-	?	
gs (sugarbeet)	QT-TAX-BV-013	+	-	?	

2) Select the results of element-specific methods

Target	GMOMETHODS Reference	F	Resu	It
p35S	QT-ELE-00-004	+	-	?
tNos	QL-ELE-00-013	+	-	?
CTP2-CP4EPSPS	QL-CON-00-008	+	-	?
pat	QT-ELE-00-002	+	-	?
bar	QL-ELE-00-014	+	-	?
cry1Ab/Ac	QL-ELE-00-016	+	-	?

3) Select the results of event-specific methods

Target	GMOMETHODS Reference	F	lesu	lt
DAS40278 (maize)	QT-EVE-ZM-004	+	-	?
CV127 (soybean)	QT-EVE-GM-011	+	-	?
DP-305423 (soybean)	QT-EVE-GM-008	+	-	?

Amplicon finder

Query public sequence databases for specific amplicons using selected EU reference methods.

Target finder

Examine potential amplicons on specific target sequences from public databanks.

Amplicon finder

1) Select detection method(s)

Note: if more than one method is selected, only records that produce amplicons with <u>all</u> those methods will be shown

Event-specific	QT-EVE-BN-002 (Ms8)
Construct-specific	
Element-specific	
Taxon-specific	

2) Optionally select also negative method(s)

Note: If you	select method	s here,	records	that	produce	amplicons	with	<u>any</u> oi	those
methods wil	ll be removed								

3) Select database(s)

	✓.	nt	GenBank nt section (NCBI)
--	----	----	---------------------------

emblreltgn ENA transgenic data class division (EMBL-EBI)emblrelpat ENA patent data class division (EMBL-EBI)

✓ nrnl1 Non-redundant patent nucleotide database level-1 (EMBL-EBI)

4) Select the maximum number of gaps/mismatches

Gaps:	0 🕶
Mismatches:	0 🕶

Results: 14 amplicons

	9	
Restrict to taxon(s):		Restri

View 14 unique records

Record ID	Database	Record description	Record length	Taxon	Method	Amplicon size	Match details
AR275289.1	emblrelpat	Sequence 18 from patent US 6506963.	537 bp	unidentified	QT-EVE-BN-002	130 bp	View
AR275309.1	emblrelpat	Sequence 38 from patent US 6506963.	522 bp	unidentified	QT-EVE-BN-002	130 bp	View
AR321700.1	emblrelpat	Sequence 18 from patent US 6563026.	537 bp	unidentified	QT-EVE-BN-002	130 bp	View
AR321720.1	emblrelpat	Sequence 38 from patent US 6563026.	522 bp	unidentified	QT-EVE-BN-002	130 bp	View
AX172457.1	emblrelpat	Sequence 18 from Patent WO0141558.	537 bp	synthetic construct	QT-EVE-BN-002	130 bp	View
AX172477.1	emblrelpat	Sequence 38 from Patent WO0141558.	522 bp	synthetic construct	QT-EVE-BN-002	130 bp	View
GV638084.1	emblrelpat	Sequence 18 from patent US 7659095.	537 bp	unidentified	QT-EVE-BN-002	130 bp	View

In silico PCR predictions in public databases

https://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/

Match details

Record ID: AR275289.1

Database: emblrelpat Go to original record

Description: Sequence 18 from patent US 6506963.

Taxon: *unidentified*Original size: 537 bp

Patents: US6506963 (lens, espacenet)

Method: QT-EVE-BN-002 Go to GMOMETHODS record

View in JRC GMO-Matrix

Description: Quantitative PCR method for detection of oilseed rape event Ms8

(Mazzara et al., 2007).

Target: Ms8

View other 13 matches for this method

Predicted amplification details:

Mismatches	Gaps	From	То	Strand	Amplicon size
0	0	79	208	+	130 bp

Amplicon: 130 bp

- 1 gttagaaaaa gtaaacaatt aatatagccg gctatttgtg taaaaatccc
- 51 taatataatc gacggatccc cgggaattcc gggggaagct tagatccatg
- 101 gatttgttat gataaccaaa aacaccctcc

View other 13 matches with an identical amplicon

Primers and probe alignment:

Primer/Probe	% Identity	Length	Mismatches	Gaps	From	То	Score
primerA	100.0	31 bp	0	0	1	31	8.34e-15
primerB	100.0	20 bp	0	0	130	111	6.57e-09
probe	100.0	28 bp	0	0	52	79	3.42e-13

Target finder

Insert sequence accession number

Record ID: AR275289.1 Show Cancel

Record ID: AR275289.1

Description: Sequence 18 from patent US 6506963.

Length: 537 bp

Found in databases: emblrelpat

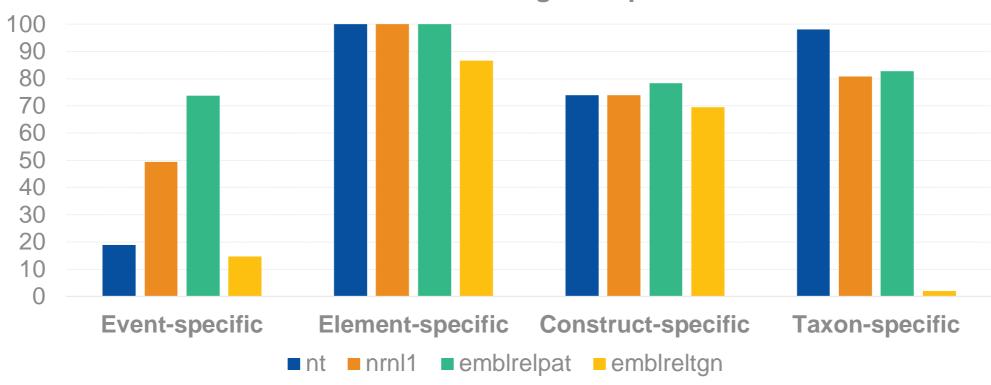
Found in the following 1 patent: US6506963 (lens, espacenet)

1 amplicon

View all records targeted by these methods

View these methods in JRC GMO-Matrix

Legend


Event-specific method
Element-specific method
Construct-specific method
Taxon-specific method

Record ID	Database	Record description	Record length	Taxon	Method	Amplicon size	Match details
AR275289.1	emblrelpat	Sequence 18 from patent US 6506963.	537 bp	unidentified	QT-EVE-BN-002	130 bp	View

JRC GMO-AMPLICONS

% methods in JRC db with targets in public databases

Conclusions

GMOMETHODS and the other EURL GMFF web applications

Ensure:

- Analyses on accurate sequences
- Consistent/reproducible results
- Updated information
- Comprehensive bioinformatics suite

Facilitate:

- Confidence in results
- Harmonisation of GMO analysis
- Trade and consumer trust
- Official controls

Food, Farming, Fisheries

European Union Reference Laboratory for Genetically Modified Food and Feed (EURL GMFF)

Home > GMOMETHODS

Feedback is welcomed!

Did this page meet your expectations?

Acknowledgements

Benny Kusters (DG SANTE)

for collaborating on the data exchange between the GMO Register and the JRC GMO-Matrix application.

DG JRC

IT consultant Moreno Colaiacovo for the latest development on the JRC web applications. Mauro Petrillo and Alexandre Angers for the first development of the tools. Enrico Ben for the IT support.

Veronique Vanherck for graphical assistance.

EURL GMFF colleagues for feedback and support.

Keep in touch

EU Science Hub

joint-research-centre.ec.europa.eu

- @EU_ScienceHub
- **f** EU Science Hub Joint Research Centre
- (in) EU Science, Research and Innovation
- EU Science Hub
- @eu_science

Thank you

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

