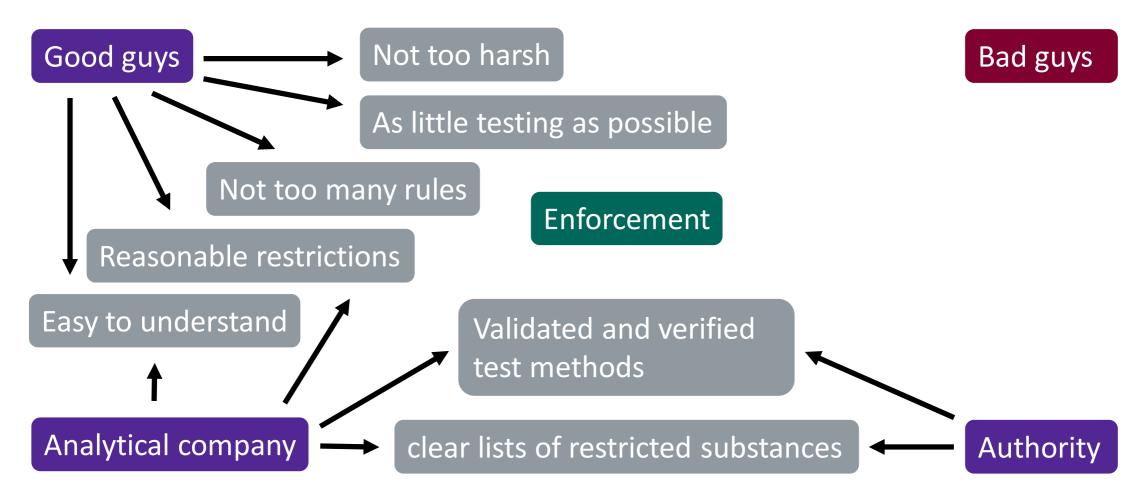


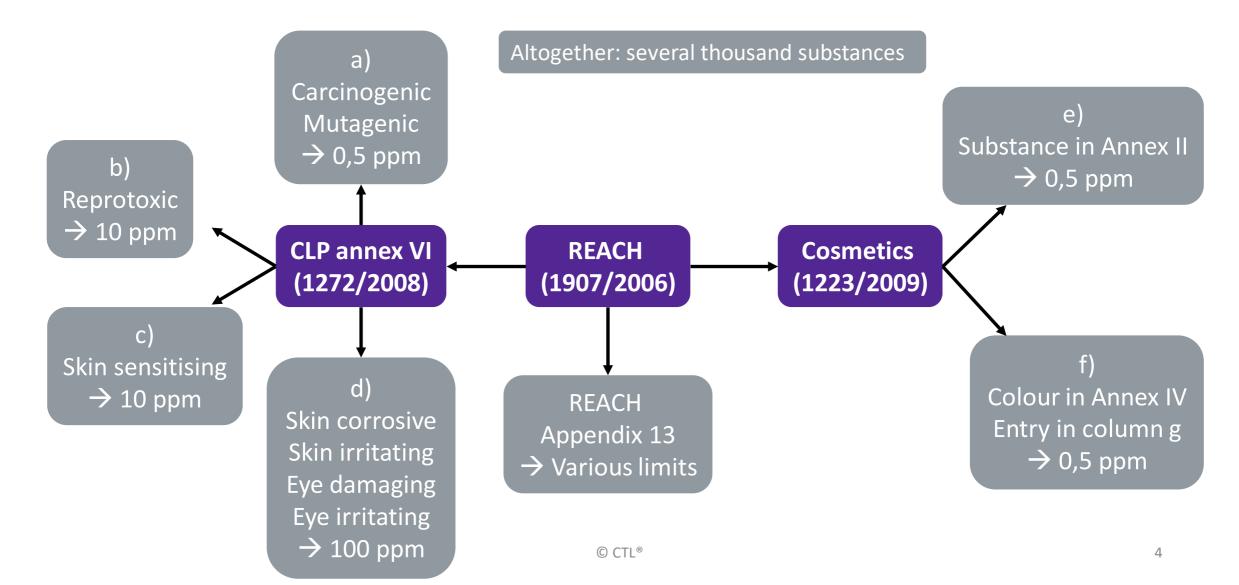
Industry meets authority

Different perspective, common goal

Speaker: Veit Houben


ctl-bielefeld.de

November 2021
2nd International Conference on Tattoo Safety


CTL – analysis for the good guys

Good guys Bad guys Want to know what the Don't know, don't care counsel regulation demands Want a complete test of Why spend good money on safety their colours testing, let's sell it anyway! Every test costs money Test nothing, pay nothing affordability and reduces profit pure profit

Perspectives on Enforcement

Tattoo-PMU-colours and REACH

Performing one analysis (just one method)

Prerequisites:

- Defined test method
- Defined substance (list)

Preparation:

- Buying every reference substance
- Evaluating method parameters
- Validation / Verification

Preparing the sample:

- Washing, diluting, reaction, transformation

Performing measurement

Evaluation of test result

Start

1 -12 months

Receiving a sample

Reduction of tests / costs

Don't test things twice

Structure of tests

- Test pure ingredients
- Test blocks
- Test only few final products

Don't test samples, you know will fail

Information from the customer

- formulations
- Reach information
- Talking to customers

Don't test for something you know is irrelevant

Internal database

- Complete list of impurities
- Cross connection impurity to ingredient

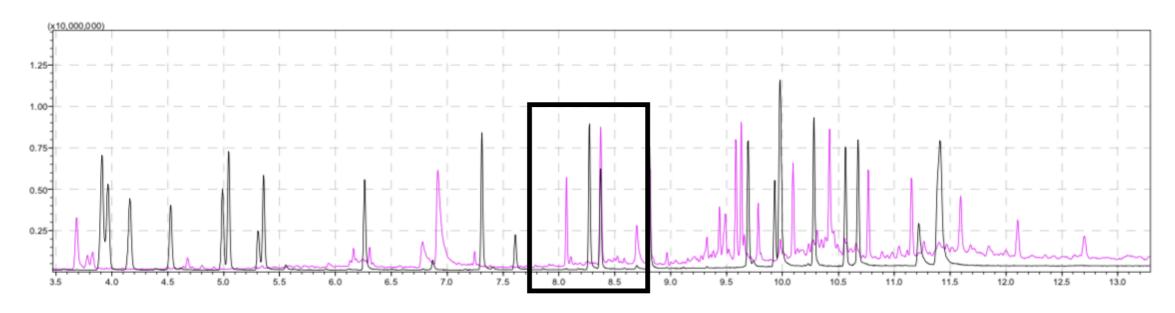
Information management with REACH

Requirement of REACH Article 31 (3) - SDS lists every ingredient > 0.1 % if dangerous > 1 % if harmful

Example 1: Chloro-kresol

- Allowed for cosmetics (0.2 %)
- Limit in Tattoo / PMU 10 ppm

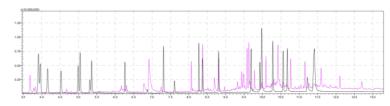
Pigment preservation: c(preservative) < 0.1 % (0.01 %) Use of pigment in colour: 30 % → 0.003 % = 30 ppm Example 2: Acetaldehyde in Glycerol


- Glycerol pa.: max 10 ppm
- Limit in Tattoo / PMU 0.5 ppm

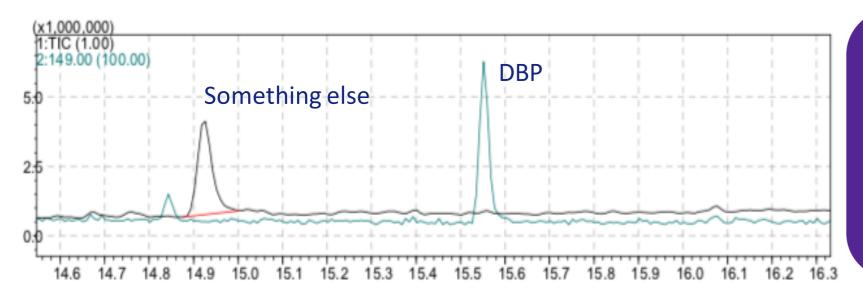
Use of Glycerol in colour: easily > 10 %

→ 1 ppm

No chance to know without test


More than just a standardised measurement

Known peaks – identification and quantification established


Many unidentified peaks:
A chance to measure more in
one measurement

Chromatogram of PAA-measurement

Screening vs analytical method

Phtalates: DBP – Dibutylphtalate (Limit: 0-5 ppm)

Black:

Chromatogram

Green:

Mass-graph; 149 g/mol

Measured concentration:

2.5 ppm

Screening:

You see more, but not very precisely

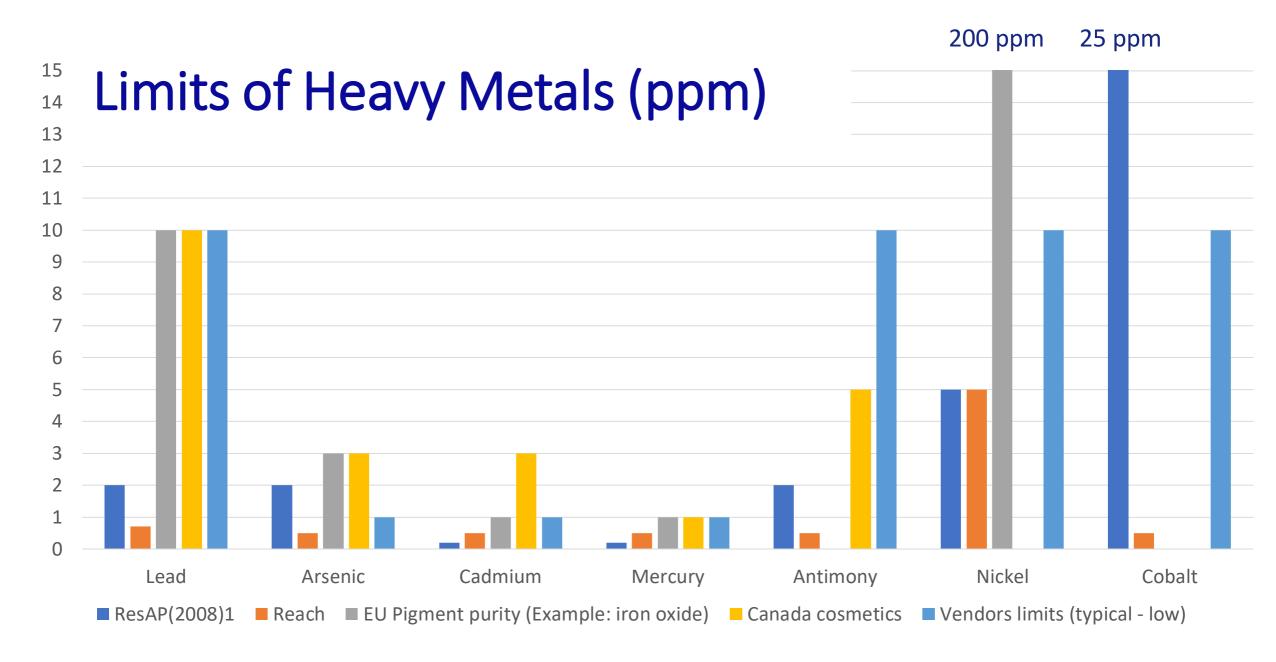
Analytical Method:

You see only, what you prepared, but you see it well

Heavy Metals – good idea, bad side effects

Mercury	0.5 ppm
Nickel	5 ppm
Tin (only tin-organic)	0.5 ppm
Antimon	0.5 ppm
Arsenic	0.5 ppm
Barium (soluble)	500 ppm
Cadmium	0.5 ppm
Chromium (as Chromium (VI))	0.5 ppm
Cobalt	0.5 ppm
Copper (soluble)	250 ppm
Zinc (soluble)	2000 ppm
Lead	0.7 ppm
Selenic	2 ppm

13 Elements – 4 test methods


Chemical point of view: elements are tested as they are used and dangerous

→ Well thought through

Analytical point of view:

4 methods are too much for 13
elements, 2 methods for 1 element each

→ Too much, too costly

Consequences of limits

Example 1: Arsenic

Limit ResAP	2 ppm
Limit REACH	0.5 ppm
Limit Cosmetics EU (example iron oxide)	3 ppm
Guarantee of vendors	< 1 ppm

Raw pigment with 1 ppm arsenic

ResAP: unlimited use possible

REACH: 50 % use possible

Example 2: Cobalt

Limit ResAP	25 ppm
Limit REACH	0.5 ppm
Limit Cosmetics EU (example iron oxide)	No limit
Guarantee of vendors	< 10 ppm

Raw pigment with 10 ppm cobalt

ResAP: unlimited use possible

REACH: 5 % use possible

Using standardised methods (Formaldehyde)

Example: Formaldehyde

- DIN EN ISO 17226-1:2019-04 Leather – Chemical determination of formaldehyde content –

Part 1: Method using high performance liquid chromatography.

Method designed solely for formaldehyde, partially applicable for acetaldehyde too.

No extraction necessary.

Limit: 0.5 ppm; LOQ: 0.5 – 1 ppm

Changes in REACH – textile vs tattoo

Textile:

Regulation 2018/675 October 2018

Added: annex XVII entry 72 + appendix 12

Changes:

 Restriction of: heavy metals / PAHs / Chloro-aromates / Formaldehyde / Several colours / Several organic substances

Tattoo:

Regulation 2020/2081 December 2020

Added: annex XVII entry 75 + appendix 13

Changes (to ResAP):

- Restriction of: multiple substances via link to CLP
- Different limits for existing restrictions

Difference:

All changes for textiles were established in labels, RSLs and standard methods

Perspectives for the future

Good guys:

- Establishing legal formulations
- Regular testing of their products

Bad guys:

- Trying not to get caught

Common goal: safer colours
Working together instead of competing

Analytical company:

- Establishing test methods
- Offering affordable tests

Authorities:

- Establishing test methods
- Deciding what parameters to test

Questions?

Industry meets authority

Different perspective, common goal

Speaker:
Veit Houben
vhouben@ctl-mails.de
+49 521 400 82 89 15
ctl-bielefeld.de

Contact CTL (Tattoo and PMU):

Simone Brockmann

tattoo-pmu@ctl-mails.de

+49 521 400 82 89 28

ctl-bielefeld.de