Improved embryoid bodies for studying development, embryotoxicity, and placental function *in vitro*

Marlon Schneider
Developmental biology – pre-implantational stages

Late blastocyst
>100 cells
E4.5
Developmental biology – post-implantational development

Harrison et al., Science (2017)
Background

Basic and applied research

- Identification of molecular mechanisms and principles of self-organization during embryonic development
- ~20-50% early pregnancy failure (mostly embryo-uterus communication defects) → time of implantation is a developmental “black box”
- Largely based on animal studies (rodents, rabbits)
Background

Embryotoxicity

Prenatal development toxicity study (OECD TG 414)

• test substance is administered to pregnant animals (time span: from implantation to as close as possible to the normal day of delivery)
• females are killed before delivery and foetuses are evaluated for soft tissue and skeletal changes

1. Whole embryo culture (WEC) assay
• embryos at different stages are dissected from maternal tissue
• less expensive and more rapid compared to *in vivo* testing
• does not involve experimentation on adult animals

2. Limb bud micromass (MM) assay
• *ex vivo* culture of limb bud cells of mid-organogenesis embryos
• single cell suspension → differentiation into chondrocytes and neurons
• observation of alcian blue staining (cartilage)
• does not involve experimentation on adult animals

3. Embryonic stem cell test (EST)
• employs embryonic stem cells and 3T3 cells
• composed of two procedures: cytotoxicity (3T3 and D3) and differentiation (D3) assays
• less expensive, no animals needed
• biological relevance?

Marlon Schneider, 14.09.2018, 9th Berlin Workshop on Developmental Toxicology
Drawbacks of embryoid bodies as an experimental tool

Unphysiological gradients of cell proliferation, viability and metabolism

Lack of inductive signals

Hirschhäuser et al., J Biotechnol (2010)
Approach - Self-assembly of all three cell types

- **Cell number**
 - 650 cells/embryoid
 - 36 cells/embryoid

- **Cell ratio**
 - 50% ES, 50% TS
 - 30% ES, 70% TS
 - 8% ES, 8% XEN, 83% TS

- **Coating vs. non-coating**

Cell culture format

- 96-Well
- Matrigel
- Hanging Drop
- Aggrewell™

Marlon Schneider, 14.09.2018, 9th Berlin Workshop on Developmental Toxicology
Results – Successful self-assembly

Non-Coating Coating

- Non-Coating: 64.2%
- Coating: 67.4%

Successful formation of embryoids

Approach: Coating, 50/50 Medium, 3 ES/ 3 XEN /30 TS

Gata6 Oct4 Tfap2c

Synthetic embryos are a hot topic

ETS (ES + TS) embryos
- Combination of ES and TS cells (50%/50%)
- Similar to mouse embryos at 5-6 days after fertilization
- Formation rate: 22%

Blastoids
- Combination of ES and TS cells (29%/71%)
- Delayed addition of TS cells to the ES cell aggregate
- Similar to mouse embryos at 3.5 days after fertilization
- Formation rate: 70%

ETX (ES + TS + XEN) embryos
- Combination of ES, TS and XEN cells (23%, 60%, 17%)
- Similar to mouse embryos at 5.5 days after fertilization
- Formation rate: 70% → 29.8% specific morphology
Potential applications

Basic research
- Testing of chemicals for health effects
- Lineage specification and embryo patterning
- Epigenetic influences on developmental processes
- Embryo-maternal communication and implantation

Outlook

Modi et al., Front Biosci (2012)
Acknowledgements

Prof. Gilbert Schönfelder

Dr. Fanny Knöspel

Dr. Norman Ertych
Konrad Gulich

TS cells

Dr. Satoshi Tanaka

Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences
Graduate School of Agricultural and Life Sciences
University of Tokyo
Tokyo, Japan
Thank you for your attention

Marlon Schneider
References

