Impact of spiking techniques on the survival of *Staphylococcus aureus* in artificially contaminated condiments

Name Dinh Thanh, Mai

Datum 01.06.2016

SPICED Symposium

© Sara Schaarschmidt

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Contamination ways

© Curt Carnemark/World Bank

Would the different contaminations ways affect the survival time?

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Staphylococcus aureus

- Characteristics
 - gram-positive, coccal, non-spore forming
 - facultative anaerobic
 - growth temperature: 6-48°C (optimum: 35-41°C)
 - pH: 4-10 (optimum: 4-7)
 - tolerance to low available water level (≥0.83)
 - prominent for the ability to become resistant to antibiotics
- Role in disease
 - skin infections
 - respiratory infections
 - food poisoning

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

S. aureus colonies on Mueller Hinton agar

S. aureus colonies on Baird Parker agar

Inoculation Methods

Paprika Pepper Oregano Sand

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Recovery rates after the inoculation steps

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Recovery rates after adding condiments

Inoculation methods

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Long term survival of *S. aureus* – different inoculation methods

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Long term survival of *S. aureus* – contamination via water (wet spiking)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Long term survival of *S. aureus* – contamination via sand (sand spiking)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Long term survival of *S. aureus* – contamination with freeze-dried bacteria (lyo W)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Long term survival of *S. aureus* – contamination with freeze-dried bacteria (lyo LP)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

11

Summary

Survival of S. aureus in dried herb and spice matrices (in weeks)

	Wet spiking	Sand spiking	Lyo W	Lyo LP
Paprika	< 15	< 3	<2	> 25
Pepper	>25	< 10	<8	> 25
Oregano	? (< 25)	< 4	<8	> 25

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

Conclusions

- S. aureus has a short life time compared to the storage time of the condiments.
- Survival of S. aureus in artificially contaminated condiments depends on
 - the spiking technique (contamination scenario)
 - the carrier material
- There is no technique that suits to every investigation purpose. Choosing a proper portfolio of methods is the key to assess potential risks.
- Recommendation: at least two different spiking techniques should be considered for tenacity studies.

Thank you for your attention. Questions?

Name of presenter:Dinh Thanh MaiEmail of presenter:Mai.Dinh-Thanh@bfr.bund-deWebsite:http://www.spiced.eu

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 312631.

