Human health risk assessment of nanosilver

Overview of available data

Susan Wijnhoven, RIVM
BfR conference on nanosilver

08 February 2012
Content

1. Introduction risk assessment
2. RA of nanomaterials
3. Available data on nanoAg
4. Knowledge gaps and priorities for future studies
Risk Assessment of nanoparticles

Characteristics nanoparticles

Exposure assessment

Hazard characterization

Hazard identification

Dose response assessment

Internal dose

Risk characterization

Dose Response Curve

Response

Dose
Available data

● **RIVM studies on nanosilver** (data until 2009)

● **Additional literature** (reviews ≥ 2009)
 - EPA Nanomaterial case study (2010): Nanosilver in disinfectant spray
 - Friends of the Earth reports:
 - Nano and biocidal silver, extreme germ killers present a growing threat to human health (2009)
 - Nano-silver, policy failure puts public health at risk (2011)
Consumer exposure

Increase in consumer products with nano claim

The Project on Emerging Nanotechnologies (Woodrow Wilson database)

Time period 2005-2010: 54 - 1317 products

http://www.nanotechproject.org/inventories/consumer/
Consumer exposure

Consumer products with nano-Ag

http://www.nanotechproject.org/inventories/consumer
Detection of nanomaterials in consumer products

- 21 different products, selected on basis of nano claim or on expectation on the presence of nanomaterial (Ag, Zn, Ti, Si)

- microscopic techniques were used to analyse the products, investigate whether these techniques are appropriate
 - SEM, TEM: size distribution
 - EDX: determination of chemical nature
 - XPS: mass concentration

Consumer exposure

Analysed products claimed to contain nano-Ag

Food container
Cuddly toy
Indoor wall paint
Socks
T-shirt
Wound dressing
Tooth brush
Deodorant

- Verify presence of NP in more detail (TEM)
- Size distribution of NP, XPS on isolated fibers
- Optical microscopy, number of Ag coated fibers
- Individual NP or layer, if NP: size distribution
- Presence of coating, Microscopy if it is a layer
- Focus on finding of Ag NP
Results of analysed products with nano-Ag

<table>
<thead>
<tr>
<th>Product</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food container</td>
<td>no Ag detected (<0.8 g/kg)</td>
</tr>
<tr>
<td>Cuddly toy</td>
<td>no Ag in fibrils at the outside (<0.8 g/kg)</td>
</tr>
<tr>
<td>Indoor wall paint</td>
<td>no Ag detected (<0.8 g/kg)</td>
</tr>
<tr>
<td>Socks</td>
<td>Ag present on 1-5/100 fibers on bottom part of sock (continuous layer)</td>
</tr>
<tr>
<td>T-shirt</td>
<td>no Ag detected (<0.8 g/kg)</td>
</tr>
<tr>
<td>Wound dressing</td>
<td>fibrous materials coated with 300-500nm Ag (continuous layer)</td>
</tr>
<tr>
<td>Tooth brush</td>
<td>no Ag detected in hair or back part of toothbrush</td>
</tr>
<tr>
<td>Deodorant</td>
<td>no Ag detected (<0.8 g/kg)</td>
</tr>
</tbody>
</table>

It is impossible to be **conclusive about the absence** of nanomaterial:
- only a small area of the product can be analysed
- techniques are not validated for consumer products
Consumer exposure

Exposure assessment – important characteristics

<table>
<thead>
<tr>
<th>Nanoparticle characteristics determining the possible exposure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomaterial in consumer product</td>
<td></td>
</tr>
<tr>
<td>Chemical entity of the nanomaterial</td>
<td>Actual composition of material</td>
</tr>
<tr>
<td>Shape of nanomaterial (in product)</td>
<td>Composite, solid particle, hollow particle, other particle, aggregate, agglomerate</td>
</tr>
<tr>
<td>Product form</td>
<td>Spray, powder, liquid, suspension, solid/ coating</td>
</tr>
<tr>
<td>Free/ fixed nanoparticles</td>
<td>Free particles, fixed inside matrix</td>
</tr>
<tr>
<td>Concentration</td>
<td>Mostly unknown (based on mass?)</td>
</tr>
<tr>
<td>Application</td>
<td>Direct/ indirect exposure</td>
</tr>
<tr>
<td>Direct/ indirect exposure</td>
<td>Direct exposure to nanomaterials in the product or indirect via release of particles out of the product</td>
</tr>
<tr>
<td>Indoor/ outdoor use</td>
<td>Inside or outside a small space</td>
</tr>
<tr>
<td>Event duration</td>
<td>< 5 min, 5 min- 1 hr, 1 hr- 1 day</td>
</tr>
<tr>
<td>Frequency of events</td>
<td>> 1x/day, 1x/day-1x/week, 1x/week-1x/month, 1x/month- 1x/year</td>
</tr>
<tr>
<td>Number of users in population</td>
<td><10%, 10-50%, 50-90%, >90%</td>
</tr>
<tr>
<td>Exposure route</td>
<td>External exposure</td>
</tr>
<tr>
<td></td>
<td>Inhalation, dermal, oral, combination</td>
</tr>
</tbody>
</table>

Consumer exposure

Indications for high possible consumer exposure

Expert consultation:
- **Nanomaterial in consumer product**
 - Product form: spray
 - Free (single) particles
 - Concentration: mostly unknown

- **Application**
 - Direct exposure
 - Indoor use

- **Exposure route**
 - Inhalation
 - Oral route
Very limited data on exposure to nano-Ag
Not reviewed in previous RIVM studies

- Pilot scale ‘nanostructured particle’ gas phase facility (*Demou et al, 2008*): (representative for nano-silver manufacturing)
 - Average concentration during production was **59100 particles/cm³** for sub-micron particles

- Manual handling of nano-alumina and nano-silver in fume hoods in a laboratory scale facility (*Tsai et al, 2009*)
 - 15 g silver in beaker → peak count of **7000 particles/cm³**

- Analysis of exposure characteristics during liquid phase process in commercial production facility (*Park et al, 2009*)
 - Increase of particle number was higher than during handling of dry powder → impact of liquid phase should be studied further.
Plausible exposure routes of nanomaterials

Exposure man via environment

Man via environment????

RS/RAEng 2004
Relevance of exposure data for risk assessment

Product with nanoclaim: presence / release of nanomaterial

If no absorption = then no internal dose = no risk!!
Toxicokinetics

Toxicokinetics of nano-Ag

- Absorption of silver
 - Dermal route (wound dressings, textiles, creams, tissues)
 - Absorption shown for 15 nm particles on burned skin (wound dressings), human
 - Absorption shown on healthy skin of guinea pigs (acute and sub chronic) after exposure to colloidal silver suspension
 - Oral route (food supplements, toothpaste, lip balm)
 - Ingestion (shown for colloidal silver suspension) human
 - Systemic availability of (nano-)silver after oral exposure of nanosilver particles (60 nm), rat
 - Inhalation (sprays)
 - Systemic availability of (nano-)silver after inhalation exposure nm) silver present in lungs and brain, rat
Toxicokinetics data on nano-Ag relevant for RA

- Single and repeated dose
 - Single and 5 days iv. exposure of 20, 80 and 110 nm particles in rat
 - Silver nanoparticles disappeared rapidly from the blood and distributed to all organs evaluated
 - 20 nm mainly to liver, followed by kidneys and spleen; larger particles mainly to spleen followed by liver and lung
 - Difference in distribution can lead to difference in toxicity
 - Unlikely that silver nanoparticles dissolve all immediately to ions

Lankveld et al, 2010, Biomaterials
Toxicity

Toxicity data on nano-Ag relevant for RA

- Acute toxicity

 - Oral, 2.5 mg directly in stomach, *not relevant*
 - Inhalation, no studies
 - Dermal,
 - wound dressings in burn patients, *not relevant*
 - acute and subchronic tox in guinea pigs, *colloidal silver*
Toxicity data on nano-Ag relevant for RA

- Repeated dose toxicity
 - Oral
 - 28 days tox study in rats, 30, 300 and 1000 mg/kg/day (60nm): dose-dependent tox in liver, high dose *(Kim et al, 2008)*
 - 90 days tox study in rats, 30, 125 and 500 mg/kg/day (56 nm): dose dependent accumulation of silver in organs *(Kim et al, 2010)*
 - Pharmaceutical ingestion of colloidal silver in human: argyria (skin decolourization) in sun-exposed areas, 3.5 mg/kg/day, 3 times a day for 10 months *(Wadhera and Fung, 2005)*
 - Inhalation:
 - 28 days tox study in rats with 0.48, 3.48 and 61 µg/m³ (15 nm)(6h/day, 5 days/week), no sign health effects *(Ji et al, 2007)*
 - 90 days tox study in rats with 49, 133 and 515 µg/m³ (18-19 nm)(6h/day, 5 days/week), main targets for accumulation and tox were lungs and liver *(Sung et al, 2008, 2009)*
Risk assesment for consumer

- Nano-silver case study within the context of REACH (Pronk et al, 2009)
 - Quick and dirty risk assessment
 - Bathroom cleaner, trigger spray with 1% nano-Ag (spherical, 15 ± 5 nm)
 - Consumer exposure, both inhalation and dermal
 - ConsExpo
 - Dermal vs effect dose 28 and 90 days oral tox study:
 Margin of exposure: 2700 – 90000 (based on mass)
 - Inhalation vs effect dose 28 and 90 days inhalation study:
 Margin of exposure 1.3 – 170 and 140 – 1400 (based on mass)

Margins are not of such magnitude that they would support waiving of further testing of systemic effects
Risk assessment

Risk assessment for worker

- First attempt for derivation of Human Indicative No-Effect Levels (INELs) (Christensen et al, 2010)
- Semi-quantitative risk characterisation
- NOAEL/ LOAEL for repeated inhalation from literature
 - LOAEL inhalation
 - LOAEL → NOAEL (factor 3 and factor 10)
 - Assessment factors (interspecies, intra species, sub-chronic to chronic)
 - Lung effects and liver effects

Direct comparison of identified exposure data with toxicity data: with care!

Worker exposure data with derived INELs (in terms of particle numbers):
Same order of magnitude!
Knowledge gaps in human RA of nano-Ag

- Data on nanosilver in public literature relate to different types of nanosilver
 - Different size, distribution, agglomeration state, coating etc
 - Incomplete characterisation
 - Colloidal silver

- Data on exposure are missing
 - Little data on worker exposure: repeated inhalation in working environment
 - Consumer exposure: exposure frequency and levels
 - which products, what types of particles, what concentration, release from products, exposure route etc.
 - inhalation of spray products seems relevant
 - dermal and oral exposure, lack of data for consumer and worker, but exposures lower than for drugs and wound dressings
Knowledge gaps in human RA of nano-Ag

- Internal dose: lack of toxicokinetics data
 - To which extent is silver absorbed via the different routes available as ions, nanoparticles or both

Wijnhoven et al, 2009
Knowledge gaps in human RA of nano-Ag

- **Toxicity:**
 - Potential target organs may involve liver, lung and immune system
 - Very limited well controlled studies with multiple particle sizes
 - Uncertainties in possible direct genotoxic effect of nanoAg
Priorities for future research

1. Generation of exposure data
 - Occupational inhalation, consumer inhalation, dermal

2. Further toxicokinetic studies
 - Absorption, distribution of different types of nanoAg

3. Toxicity studies with levels and types of nanoAg as encountered on the workplace:
 - Sub chronic inhalation

4. Testing of possible direct genotoxicity of nanoAg

5. Oral and dermal toxicity studies relevant for occupational and consumer exposure

6. Studies to identify possible reproductive toxicity
Acknowledgements

RIVM colleagues:

- Susan Dekkers
- Jacqueline van Engelen
- Wim de Jong
- Agnes Oomen
- Marja Pronk
- Robert Geertsma
- Adrienne Sips