HAZARD ASSESSMENT OF NANOMATERIALS WITH RESPECT TO THE ENVIRONMENT – OVERVIEW AND SELECTED ASPECTS

Dr. Kerstin Hund-Rinke

OUTLINE

- Introduction
- Overview on testing
- Selected aspects
 - Test concentrations
 - Illumination
 - Transformation (aging)

Introduction

- Regulation in Europe
 - Regulation under REACH
 - Specific area of application (specific legislation)
- Topics under discussion
 - NM to be tested
 - Assessment of NM in any case
 - Exposure driven assessment
 - Life-cycle of NM
 - Release into the environment
 - Durability (loss of NM properties)
 - Environment
 - Primary compartment
 - Secondary compartment

Cornelis et al., 2014

Introduction

- Regulation in Europe
 - Regulation under REACH
 - Specific area of application (specific legislation)
 - Topics under discussion
 - NM to be tested
 - Assessment of NM in any case
 - Exposure driven assessment
 - Test strategy
 - Discussion on test methods
 - Discussion on PC-properties suitable as trigger for environmental testing

Assessment of nanomaterials

Test strategy: Tier 1 - Effects

Assessment of Hazard

OECD WPMN (Working Party on Manufactured Nanomaterials)

- Screening of OECD TGs on ecotoxicty

 principally suitable
 - Main topics under discussion
 - Application of NM (soil, sediment: dry or wet?)
 - Stability of test dispersion during testing (water: preferably no dispersant / stabilizer / DOM)

Topic: Test concentrations

- Conventional chemicals
 - Screening: Limit tests
- **Nanomaterials**
 - Plateau (maximum effect below 100 %) or lower effects in higher test concentrations
 - \rightarrow Several test concentrations
- Recommendation Testing of NM No limit test!

CeO₂, MWCNT: reproduction test with earthworms

Topic: Illumination

- NM designed for photocatalytic activity (e.g. TiO₂) → increased aquatic toxicity if relevant wavelengths are applied no consideration in test guidelines
- Not limited to photocatalytic NM

Topic: Illumination

Recommendation

- Testing applying conventional illumination and lighting with simulated sunlight.
 - → Results of test conditions with highest ecotoxicity used for hazard assessment.

Topic: Transformation

Material flow diagram: products \rightarrow environmental compartments

- Nano-Ag in socks
- Nano-TiO₂ in sunscreen

nano-TiO₂ - Europe: STP effluent: 0.00347 mg/L STP sludge: 136 mg/kg

nano-Ag - Europe: STP effluent: 0.0000425 ng/L STP sludge: 1.68 mg/kg

Gottschalk et al., 2009

Methods: simulation of sewage treatment plants

Model sewage treatment plants

- OECD 303a
 (device designed to determine the elimination and biodegradation of water-soluble organic compounds by aerobic micro-organisms)
- Denitrification tank, aeration tank (2 3 mg O₂/L), sedimentation tank
- Sewage sludge: local wastewater treatment plant
- Continuous influent (synthetic sewage) and effluent
- Retention time comparable to industrial-scale plant (6 h); mean sludge time: 10 d
- Process control
 - **DOC**, NH_4^+ , NO_2^- , NO_3^-

Methods: Nanomaterial

Nano silver (OECD Sponsorship Programme)

TEM: Coda Cerva, Brussels

NM-300K

Spherical: Ø ~15 nm

I. Fate/effect of Ag in sewage treatment plant

- Continuous influent of nano-Ag: 0.04 16 mg/L
- Sorption to sewage sludge; 0.04 4 mg/L: ~ 90 % 16 mg/L: 39 – 64 %
- NM-300K : no inhibition of C-degradation

I. Fate/effect of Ag in sewage treatment plants

- Ag (AgNO₃): > 90 % sorption to sewage sludge (0.4 2 mg/L)
- Ag (AgNO₃): 4 mg/L: 57 99 %

Inhibition of C-degradation by AgNO₃ (4 mg/L)

II. Effluent – NM-300K: Development of fish embryos (OECD 236)

🗾 Fraunhofer

III. Soil + sewage sludge – NM-300K: Potential ammonium oxidation (ISO 15685)

	EC50
Pristine NM in soil: 28 d	1.6 mg/kg
Sewage sludge with Ag + soil: 30 d	No effect
Sewage sludge with Ag + soil: 140 d	2.3 mg/kg

Recommendation: Hazard assessment of NM

- Consideration of the three environmental compartments (water, sediment, soil) unless exposure / ecotoxicity can definitely be excluded.
- No limit test, testing of several test concentrations.
- Illumination has to be considered.
- Modification / bioavailability of NM over time has to be considered (aging of NM).

