

"Establishing an *in vitro* fiber toxicity test strategy to support risk assessment and facilitate grouping"

4th Joint Symposium on Nanotechnology

Rico Ledwith

Carbon Nanotubes (CNTs)

- **CNTs** are tubular structures made of layer(s) of graphene
- Single-walled CNTs (SWCNTs): Single graphene sheet rolled up Ο
- Multi-walled CNTs (MWCNTs): Consisting of multiple sheets forming concentric 0 cylinders
- **Properties** that make **MWCNTs** useful for industrial applications Ο
 - Tensile strength
 - Electrical and thermal conductivity

• Usages

- Antistatic and electro-paintable thermoplastics
- Anti-fouling coatings
- Batteries (Li-ion)
- Structural composites (*e.g.*, for windmill blades and high performance sporting goods)
- Possibly printed electronics (conductive inks) and conductive coatings for displays and touch screens

CNT classifications:

SWCNT	MWCNT
Negri, V et al., <i>Top Curr Che</i>	m (Z) 378, 15 (2020). DOI: 10.1

Ο

007/s41061-019-0278-8

Fiber - shaped nanomaterials are also referred to as High-Aspect Ratio Nanomaterials (HARNs)

Concerns

- **MWCNT**s may elicit similar toxicity to highly pathogenic **asbestos** fibers due to their morphological similarity •••
- Inhalation is the main route of exposure •••

Amphibole class: Amosite (needle-like fibers)

SEM image of amosite fibers detached from an asbestos cement roof

Campopiano et al. Annals of Occupational Hygiene, Vol 53 (6) 2009, DOI: 10.1093/annhyg/mep036

- Asbestos is banned in the EU \cap
 - Amphiboles 1991
 - Serpentines 2005

Asbestos associated pathologies:

- Fibrosis: Long term inflammation and scarring of the lungs
- Lung Cancer: Malignant neoplasm of the lung arising from the epithelium
- Mesothelioma: Cancer arising from the transformation of mesothelial cells lining the thoracic (pleura) or the abdominal (peritoneum) cavities
 - Aggressive, non-curable cancer
 - Uniquely associated with asbestos exposure Ο
 - Long latency period! Ο

What physiochemical features render a fiber pathogenic?

→ Fiber pathogenicity paradigm

What properties of fibers imbue them with pathogenicity?

Fiber Pathogenicity Paradigm (FPP): Structure toxicity model that predicts whether a fiber is, or is not pathogenic

World Health Organization (WHO) Criteria:

- **1.** Inhalable diameter ($D_{ae} < 3 \mu m$):
- Deposition in the distal lung beyond ciliated airways
- 2. Length (> 5 μm):
- Escape clearance mechanisms, e.g.:
 - Alveolar Macrophages (> 15 μm): Long fibers can not be engulfed

→ Frustrated Phagocytosis!

- Leads to prolonged retention in lung and accumulation over time
- Pathogenic fibers are typically not dissolvable

Very long fibers cannot be fully engulfed by macrophages, causing frustrated phagocytosis \rightarrow Inflammation \rightarrow Cancer development

wald, A.et al. Part Fibre Toxicol 9, 34 (2012). doi.org/10.1186/1743-8977-9-34

Frustrated phagocytosis observed for amosite asbestos by NR8383 rat alveolar macrophages Donaldson et al., Nanomedicine, doi.org/10.2217/nnm.10.139

Challenges of nanofibers

Nanofibers pose a challenge to the WHO fiber criteria **

Classical FPP: Respirable, long and biopersistent fibers are carcinogenic

<u>Rigidity hypothesis</u>: Only long, rigid nanofibers act as fibers while flexible (i.e. thin) nanofibers curl up

In vivo studies on MWCNTs indicated a diameter threshold for carcinogenicity 0 > 30 nm

- Further implications of secondary structures *
- Some types of non-rigid MWCNTs can form highly ordered secondary structures Ο
- Aligned bundles comply with the WHO criteria Ο
 - \rightarrow Fiber paradigm might apply

Primary structure:

Singlet tube

Macrophages perform the "Al-dente"-test (Images by Asmus Meyer-Plath, BAuA)

Possible secondary structure:

Aligned bundle

Simonow, B.K. et al. J Nanopart Res 20, 154 (2018). DOI: 10.1007/s11051-018-4262-y

Regulatory activities on MWCNT by Germany (BfR)

Rigid MWC(N)T (diameter > 30 nm)

• Harmonised classification (2018-21)

Classification and labelling should be harmonised throughout the EU to ensure a high level of protection of human health.

 \rightarrow Fiber-like pathomechanism

Carc. 1B, "Presumed human carcinogen"

STOT-RE 1, Specific Target Organ Toxicity – Repeated Exposure, lung by inhalation (*"Substance produces significant toxicty"*)

Enables authorities to conduct further regulatory risk management.

E.g. substitution of CMR substances

Tangled MWCNT (diameter < 30 nm)

• Substance Evaluation (SEv, 2019)

For clarifying whether their use poses a risk to human health.

During the SEv additional information can be requested from the registrants of the substance to verify the suspected concern, if necessary.

 \mathbf{P}

Registrants applied **grouping and read across approaches** to avoid additional testing.

er < 30 nm) SEv, 2019) e poses a risk

What is Grouping?

- Testing of each nanomaterial for their potential adverse effects is virtually impossible
- Grouping is the most commonly used alternative approach for filling data
- Structural similarity allows to predict properties of substances without having to test them all for each endpoint \succ ('read-across')

Endpoint-specific grouping

For toxicity evaluation (endpoint-specific category building)

Endpoint	
Acute toxicity	• • O
Sub-chronic toxicity	
Mutagenicity	
Skin sensitization	$\bigcirc \longrightarrow \diamond$

- A high aspect ratio and potential biopersistence are key factors for the toxicity and pathogenicity of fibres, these properties can be used for grouping
- Frameworks have been developed in the form of integrated 0 approach to testing and assessment (IATA) to support this grouping

GRACIOUS grouping framework

Figure 1: Basic structure of the GRACIOUS Framework.

IATA consisting of multiple decision nodes (blue boxes) are used to collate the required information to test a grouping hypothesis

GRACIOUS Framework Guidance Document

GRACIOUS Framework Guidance in a Nutshell

Testing strategies and uncertainties

Pre-defined HARN hypothesis:

"Respirable, biopersistent, rigid HARN: Following inhalation exposure, long-term pulmonary retention of HARNs can occur, resulting in lung toxicity"

Uncertainty associated with HARN IATA

- How to measure rigidity?
 - No standardized or validated method available \cap
- How to measure inflammation that is fiber specific? Ο
- How to measure frustrated phagocytosis? Ο

 \rightarrow Biomarker detection by means of omics

Rico Ledwith, 31.05.2022, 4th Joint Symposium on Nanotechnology

EU HARMLESS project

Grant Agreement: 953183

Advanced High Aspect Ratio and Multicomponent Materials: Towards comprehensive intelLigent tEsting and Safe by design Strategies

Coordination: Helmholtz Zentrum München (HMGU) 20 (research, governmental, SME, industry) Partner: from 12 countries Budget/Funding: 8 Mill Euro, (EU NMBP-16) Duration: 4 years (started 01.01.2021)

- Data Collection and Data Management WP1:
- Safety Assessment Strategies WP2:
- WP3: New Approach Methodologies
- Safe Innovation Approach WP4:
- DSS Tool Development WP5:
- WP6: SbD Case Studies
- WP7: Stakeholder Engagement
- Coordination and Management WP8:

Materials

• MWCNT

- Various morphologies (Thin, Thick, Short)
- o NM-400 / NM-401
- o Mitsui 7
 - o Benchmark material for a carcinogenic fiber
- More fibers will be investigated
- Investigation of case study materials (Perovskites, Silicas, Imogolites)

Project partners provide:

- o Physiochemical characterization data
- \circ In vivo data

Di lanni, Part Fibre Toxicol., 2021, doi: 10.1186/s12989-021-00413-2

Cell models

The air-blood barrier:

- Alveolar Epithelium acts as a diffusional barrier •
- Macrophages represent an immunological barrier
- Step 1: Monocultures (my task)

A549: Human, epithelial adenocarcinoma cells

- Widely used as a TII pulmonary epithelial cell model Advantages:
- **Disadvantages:** Do not form **functional tight junctions** (no barrier) / Cancer cells

hAELVi: Human alveolar epithelial lentivirus immortalized

Tight junction formation / Physiologically closer to alveolar cells Advantages: High trans-epithelial electrical resistance (> 1000 Ω^* cm²)

THP-1: Human acute monocytic leukaemia cell line

Advantages: •

phorbol 12-myristate-13-acetate (PMA) \rightarrow dTHP-1

Disadvantages: Cancer cells

Primary monocytic cells

- Advantages:
- **Disadvantages:** Slow proliferation / finite lifespan ۲

Macrophage: (THP-1) / Primary monocytic cells

Epithelial (A549 / hAELVi)

Basolateral

Can be differentiated to macrophages --like cells with

Can be differentiated to macrophages like cells

Proteomics

• Proteomics is applied to mechanistically unravel the mode of action (MoA) of HARNs

• Confocal microscope imaging, e.g. of cytoskeletal

PROTEOMAS workflow

NanoInformaTIX workflow for automated data analysis

Allows for automated handling of:

- o Missing meta data
- Data imputation for missing values
- o Outlier detection

- First measurements are completed
- Data analysis is ongoing

om itory	
Quant option	
	Determine optimal number
NO	of groups (NbClust)
ups (k means)	
ns with cates	
samples ita set	
roup	
	NO
d the control	every pair of groups

Outlook

Comparative assessment of altered pathways:

 Regression modelling - Identify the key factors driving changes in the proteome linked to phys. chem. properties

 Analysis of observed proteomic alterations matching to publicly available data (E.g. transcriptomic data / NM proteome data / aggregated lung proteome alterations)

 Comparative analysis to Adverse Outcome Pathways (AOP) for fibrosis and frustrated phagocytosis induced cancer (AOP 173 / 303)

 \rightarrow Substantiate existing key events / identify candidates of additional key events

Acknowledgment

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 953183.

The BfR team: staff and technical assistants

Group 76

Special thanks to Andrea Haase, Mario Pink & Verónica Dumit

Thank you for your attention

Rico Ledwith

German Federal Institute for Risk Assessment Max-Dohrn-Straße 8-10 • 10589 Berlin, GERMANY Phone +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 - 99 0 99 bfr@bfr.bund.de • www.bfr.bund.de/en

German Federal Institute for Risk Assessment