Developing an Efficient Infrastructure, Standards and Data-Flow for Metabolomics

Christoph Steinbeck

European Bioinformatics Institute (EMBL-EBI)

Developing an Efficient Infrastructure, Standards and Data-Flow for Metabolomics

Slides on http://www.slideshare.net/csteinbeck

Christoph Steinbeck

European Bioinformatics Institute (EMBL-EBI)

The European Molecular Biology Laboratory (EMBL)

A basic research institute funded by public research monies from 20 member states.

Post Genomic Era

[O]ur understanding of the human genome has changed in the most fundamental ways. The small number of genes -- some 30,000 -supports the notion that we are not hard wired. We now know the notion that one gene leads to one protein, and perhaps one disease, is false.

Craig Venter, June 2001

Understanding Phenotypes

Disease

Nutrition

Age

Phenome/

Exposome

Exercise

Environment

Reaction times following external change

- Genetics (decades, centuries...)
- Epigenetics (days, month, years,...)
- Gene Expression (hours)
- Metabolism (seconds)

The Metabolome is the most accessible and dynamically changing Molecular Phenotype

Metabolites:

Small molecules in biological organisms

Metabolomics

Measures occurrence and concentrations of many small molecules (metabolites) in an organism at once.

Metabolomics uses a wide-range of analytical techniques

MRC-NIHR National Phenome Centre

About the centre Access to facilities | FAQs | Latest news

welcome

MRC and NIHR funded and led by Imperial College London and King's College London, the National Phenome Centre will deliver broad access to a world-class capability in metabolic phenotyping.

Back to Department of Surgery and Cancer

Staff related links

- Professor Jeremy K Nicholson (Director of the National Phenome Centre)
- Dr Anthony C Dona (NMR Manager)
- Mr Matthew R Lewis (Mass Spectrometry Manager)
- Miss Lynn Maslen (Centre Manager)
- --> Dr Jake TM Pearce (Informatics Manager)
- Dr Rachel J Shaw (Head of Science Operations and Analytics)

News stories

- New centre will decipher roles of nature and nurture in human health
- National phenome research facility to open at Imperial

Health legacy for London 2012

MRC-NIHR National Phenome Centre

Access to facilities | FAQs About the centre Latest news

> 100,000 patient samples / year > Several PetaBytes/year => ExaBytes of human data at moderate scale-up

Dr Rachel J Shaw

(Head of Science Operations and Analytics)

and

News stories

- New centre will decipher roles of nature and nurture in human health
- National phenome research facility to open at Imperial

Health legacy for London 2012

How do you make sense of all that data?

Share them

Free and Open

http://www.ebi.ac.uk/metabolights

MetaboLights

open-access, cross-species, cross-application, long-term supported

Salek, R.M., Haug, K. and Steinbeck, C. (2013) Dissemination of metabolomics results: role of MetaboLights and COSMOS. Gigascience, 2:8.

MetaboLights Database

SCIENTIFIC DATA

Home Archive About V For Authors V For Referees Data Policies V Collections V

Home
Data Descriptors
Data Descriptor

SCIENTIFIC DATA | DATA DESCRIPTOR OPEN

Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants

Stephan Beisken, Mark Earll, Charles Baxter, David Portwood, Zsuzsanna Ament, Aniko Kende, Charlie Hodgman, Graham Seymour, Rebecca Smith, Paul Fraser, Mark Seymour, Reza M. Salek & Christoph Steinbeck

Affiliations | Contributions | Corresponding authors

Scientific Data 1, Article number: 140029 | doi:10.1038/sdata.2014.29 Received 10 April 2014 | Accepted 06 August 2014 | Published online 16 September 2014

Citation Reprints

Rights & permissions 🛛 📈 Article metrics

Abstract

Abstract • Background & Summary • Methods • Data Records • Technical Validation • Usage Notes • Additional information • References • Data Citations • Acknowledgements • Author information

Application of mass spectrometry enables the detection of metabolic differences between groups of related organisms. Differences in the metabolic fingerprints of wild-type *Solanum lycopersicum* and three monogenic mutants *ripening inhibitor (rin)*, *non-ripening (nor)* and *Colourless non-ripening*.

Advanced search

Go

About Scientific Data

Scientific Data is an open-access, peer-reviewed publication for descriptions of scientifically valuable datasets. Cur primary article-type, the **Data Descriptor**, is designed to make your data more discoverable, interpretable and reusable.

Search

Associated Links

Mol. Inf. | Article

MassCascade: Visual Programming for LC-MS Data Processing in Metabolomics by Stephan Beisken *et al*

Bioinformatics | Article ProteoWizard: open source software for rapid proteomics tools development by D. Kessner et al

npj Systems Biology and Applications

	Metak	oLights						tomato Examples: ala	unine, Homo sa	piens, urine, MTBLS	1	Search			
Homə	Browse Studies	Browse Compounds	Browse Species	Analysis	Download	Help G	ive us	feedback	About		1 Submit Stu	dy 🏾 🎤 Logi	n		
Metabol Sea Filt Type or st or st Orga Orga Valid	Lights > Search arch results ter your results tudy ompound nology mism Part ations Status Details		15 results, showing 1 to 10 A metabolomics approach to unravel the regulating role of phytol carotenoid metabolism in tomato fruit. (Zeaxanthin metabolism) Validations Status () () () () () ()								Show more data from EMBL- EBI Page 1 012 Page 1 012 MTBLS107 1.64GB Lieven van Meulebroek				
			A metabolomics carotenoid metal Validations Status Release date: Organism Solanum lycopers Study Factors Phytohormones	approa bolism	in tomato	vel the r fruit. (al	egula pha-c	study ide Total Stu Submitte	of phyto metaboli entifier idy size ed by	hormones t sm) MTBLS10 1.67GB Lieven va	owards	7			
		1)	www.e netabolig	bi.a hts.	c.uk/n org, n	netal netal	bol bol	ights ights.	.eu)						

MTBLS36: Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants

Authors: Paul Fraser, Graham Seymour, Charlie Hodgman, Mark Seymour, Aniko Kende, Dave Portwood, Charles Baxter, Stephan Beisken, Mark Earli Bubmitted: 07-Feb-2014 , Release date: 07-Feb-2014 , Update date: 02-Jun-2016

Submitted by: Stephan Beisken | Study status: Public

% Share Study

Study Description

🔮 View Metabolites - 🛛 📥 Download Study files

Application of mass spectrometry enables the detection of metabolic differences between groups of related organisms. Differences in the metabolic fingerprints of wild-type Solanum lycopersicum and three monogenic mutants, ripening inhibitor (rin), non-ripening (nor) and Colourless non-ripening (Cnr), of tomato are captured with regard to ripening behaviour. A high-resolution tandem mass spectrometry system coupled to liquid chromatography produced a time series of the ripening behaviour at discrete intervals with a focus on changes post-anthesis. Internal standards and quality controls were used to ensure system stability. The raw data of the samples and reference compounds including study protocols have been deposited in the open metabolicmics database MetaboLights via the metadata annotation tool Isatab to enable efficient re-use of the datasets, such as in metabolomics cross-study comparisons or data fusion exercises.

Stu	dy Design Description	Protocols	Samples	🊈 Assay 🚽	Study Files	Study Validation	<u></u>	Pathways	
	Organism(s)								
	Solanum lycopersicu blank	ım							
	io Study Design Des	cription							
	GO:leaf developmen	t							•
	CHMO:ultra-perform	ance liquid chro	matography-r	nass spectrometr	y				
	CHMO:tandem mass	sepectrometry							
			W	ww.eb	i.ac.uk/	metabol	ligł	nts	
			(meta	aboligh	ts.org,	metabol	igh	nts.eu)	

Data growth in EBI data repositories

Data growth in EBI data repositories

investigation

high level concept to link related studies

the central unit, containing information on the subject under study, its characteristics and any treatments applied.

a study has associated assays

test performed either on material taken from the subject or on the whole initial subject, which produce qualitative or quantitative measurements (data)

> Sansone,... Steinbeck et al. (2012) Toward interoperable bioscience data. Nature Genetics, 44, 121–126.

-STUDY ASSAYS

🛟 add new assay(s)

Al .	MEM) 🗙
metabolite pro	filing
NMR spectrosco	ору
Bruker	
a_live_mtbl3_m	ns_metaboli

STUDY DESIGN DESCRIPTORS

🛟 add a new design column

Field Name	😐 des gr	design	e design	🗧 design	design	design
Study Design Type	NCIT:Metabolo	NCIT:D abetes	NCIT: Metabolic	NCIT: Human S	Urine global pr	OBI:NMR spect

+ New field to design descrip

-STUDY PROTOCOLS-

🛟 add a new protocol column	🤨 select from previous	select from previous protocols											
Field Name	 piratocol 	 protocol 	protocol	 protocol 	 protocol 	 protocol 	 protocol 						
Study Protocol Name	Sample collecti	Extraction	NMR sample	NMR spectrosc	NMR assay	Data transform	Metabolite iden						
Study Protocol Type	Sample col ecti	Extraction	NMR sample	NMR spectrosc	NMR. assay	Data transform	Metabolite iden						
Study Protocol Description	For the human		Aliquots of 400	The spectra of	A 1D NOESY pr	Spectra were p	Assignments w						
Study Protocol URT						http://www.act							

-STUDY ASSAYS

😌 add ne	w assay(s)
AT .	VEW) 🗙
metabolite p NN2 spectros	rofiling
Bruker	rms metaboli

Controlled Vocabularies Ontologies

STUDY DESIGN DESCRIPTORS

🛟 add a new design column									
Field Name	😐 des gr	design	design	🗧 design	design	design			
Study Design Type	NCIT:Metabolo	NCIT: D abetes	NCLT: Metabolic	NCIT:Human S	Urine global pr	OBI:NMR spect			

+ New field to design descrip

STUDY PUBLICATIONS			-	۲
😌 add a new publication column	🦉 search for public	cation	Search ontologies 🕖 view history	🖆 term definition
Field Name	 publication 		-	
Study PubMed ID	17190852		🔿 Recommended Ontologies 🔗 All Ontologies	Term name: Diabetes Mellitus, Type 2
Study Publication DOI	http://dx.doi.or			
Study Publication Author List	Salek RM,Magu		Search for: diabetes type 2	Service Provider: BioPortal
Study Publication Title	A metabolomic.		MEDLINEPLUS - MedlinePlus Health Topics	Source:
Study Publication Status	Published	1	MESH - Medical Subject Headings	http://data.bicontology.org/ontologies/MESH
-STUDY FACTORS add a new factor column Field Name Study Factor Name	select from previous • factor Gender	factors • factor Metabo Ic synd	 MESH:Diabetes Mellitus, Type 2 NATPRO - Natural Products Ontology NCIT - National Cancer Institute Thesaurus NDFRT - National Drug File - Reference Terminology NIFSTD - Neuroscience Information Framework (NIF) Sta OMIM - Online Mendelian Inheritance in Man 	definition: A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease even velvely found in adults. Patients seldem View in resource.
Study Factor Type	NCIT:Gender	Mellitus, Type 2	Selected term (You can also enter frestext here)) MESH/Disheter Malling 1	Select Ontology Term
			Selected term. (Fou can also enter meetext here): MESHEDIabetes Memous, I	+ New field to factor descrip

-STUDY PROTOCOLS-

🛟 add a new protocol column	🔮 select from previous	select from previous protocols											
Field Name	 protocol 	 protocol 	protocol	 protocol 	 protocol 	 protocol 	 protocol 						
Study Protocol Name	Sample collecti	Extraction	NMR sample	NMR spectrosc	NMR assay	Data transform	Metabolite iden						
Study Protocol Type	Sample col ecti	Extraction	NMR sample	NMR spectrosc	NMR. assay	Data transform	Metabolite iden						
Study Protocol Description	For the human		Aliquots of 400	The spectra of	A 1D NOESY pr	Spectra were p	Assignments w						
Study Protocol URT						http://www.acd							

•
ies
term definition
rm name: Diabetes Mellitus, Type 2
rvice Provider: BioPortal
urde:
p://data.picontology.org/ontologies/MES
Colliner A subscript of Dispetter
ELLITUS that is not INSULIN-responsive o
pendent (NIDDM). It is characterized
Bally by INSULIN RESISTANCE and
UCOSE INTOLERANCE; HYPERGLYCEMIA
d overt diabetes. Type II diabetes
stitus is no longer considered a disease clusively found in adults. Patients celdary
ew in resource.
💿 📔 Šelect Ontology Te
+ New field to factor d

 Study Protocol Name
 Sample collecti...
 Extraction
 NMR sample
 NMR spectrosc...
 NMR assay
 Data transform...
 Metabolite iden ...

 Study Protocol Type
 Sample collecti...
 Extraction
 NMR sample
 NMR spectrosc...
 NMR assay
 Data transform...
 Metabolite iden ...

 Study Protocol Description
 For the human...
 Aliguots of 400...
 The spectra of...
 A 1D NDESY pr...
 Spectra were b...
 Assignments w...

iPad 🗢						13.	43									1,007	° 💶 '
< > []]					joı	urnals.	plos.o	rg					C	Û	-	- Ć	כ
Gewöhnlicher Spindels	evonine (CHEB	1:35934)	Per	otide and	d tetrahy	/dro	S	pecies s	earch	d	rosophil	a - Gooç	le-S	😣 jo	urnals.p	los.org/	pl
Metabome analysis of Drosophila	melanogaster durir	g embryo	genesis (N	Iormalize	d data)												
	0-2 Hrs AE	L	p (-	2-4 Hrs AEL			-6 Hrs AEL			6-8 Hrs AEI		5	-10 Hrs AE	L	10	0-12 Hrs AE	EL.
Compound Name	Sample 1 Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample
2-Aminoethanol	0,7136056 0,6639233	0,726679	0,9094056	1,0639767	0,7451021	0,9178169	1,0385232	1,19182	0,9939918	1,1234241	1,2878722	0,8004048	0,9580137	0,9992593	0,7263508	0,6553381	0,67140
3-Hydroxy-DL-Kynurenine	0,0000235 0,0000351	0,0000233	0,0000373	0,0000245	0,0000374	0,0000229	0,0000394	0,0000237	0,0000355	0,0101692	0,0000232	0,0207445	0,0208783	0,0208217	0,0579032	0,0414156	0,04111
Alanine	2,363344 2,4497882	1,9587284	1,8722018	1,0662766	0,6440171	2,0857126	1,4572888	2,3298619	2,6077837	2,4392098	2,8881375	1,8675234	1,4842899	1,4012411	1,195396	1,4318903	1,46094
Ascorbic acid	0,1742054 0,2231896	0,3207919	0,3018765	0,2822338	0,2607638	0,2942426	0,2191213	0,2031219	0,2672933	0,2936285	0,3311912	0,2242365	0,2837459	0,2847014	0,2675374	0,2801292	0,22740
Asparagine	0,2596146 0,18/8/81	0,2500357	0,3638829	0,2940516	0,1303858	0,4239728	0,3791345	0,3946629	0,3926397	0,3827761	0,3737659	0,2760786	0,3199353	0,2984643	0,3166928	0,2773605	0,22933
Aspartic acid Beta-alanine	0 1164733 0 1550048	0 1132455	0.0276766	2,0000399	0,9712430	0.0327494	0.0260449	0.0281522	0.0307903	0.0338734	0.0361165	0.0333167	0.0346692	0.0332905	0.0503103	0,8007474	0.05800
Citric acid + Isocitric acid	0 1435768 0 1338495	0 1382322	0 1447501	0 1940281	0 1945939	0 1507612	0.2011104	0.2036384	0 1987895	0.2535048	0 2737135	0 2408268	0.2633844	0 2703533	0.4862541	0.4130157	0.28826
Citrulline	0.0051612 0.0054029	0.000035	0.0000249	0.0051871	0,0000374	0.0053875	0.0047238	0.0071576	0,0044803	0.000025	0,0085433	0.0000237	0.0072113	0.0077476	0.0090883	0.0000364	0.00815
DL-methionine sulfoxide 3	0,0761757 0,0747659	0.1201906	0,1040812	0,0727024	0,044619	0,0897841	0,0818787	0,0778425	0,0972834	0,0799754	0,1404203	0,0968965	0,1045275	0.1178397	0,0971362	0,0895483	0,09805
D-sorbitol-6-phosphate	0,0331591 0,0229037	0,0259568	0,0325133	0,0202164	0,0189092	0,0464403	0,0283229	0,0329408	0,0426172	0,0232573	0,024848	0,0322811	0,0666123	0,0590467	0,0278436	0,0329669	0,05613
Fructose	0,0357368 0,0378288	0,0272182	0,0177792	0,0153198	0,0180837	0,0148006	0,0161174	0,0318275	0,0184333	0,0180633	0,0409066	0,0196142	0,0175175	0,0148006	0,0216353	0,0199754	0,01657
Fumaric acid	0,076414 0,0652904	0,0754844	0,0828494	0,0808654	0,0689362	0,0951171	0,0791569	0,0843231	0,0890573	0,0732563	0,0971853	0,0633816	0,0832684	0,0797502	0,0648435	0,0675744	0,07338
Glucose	0,7095361 0,5501533	0,3852236	0,3958675	0,4300395	0,5119795	0,4364624	0,685828	1,077795	0,6110588	0,9580169	1,2995462	0,6419494	0,6274609	0,6495449	1,0113695	0,7301603	1.11278
Glutamic acid	2,0733097 1,6586608	3 1,8448216	2,0897297	1,6947575	1,0507528	2,2268974	1,9954899	2,0936122	2,4679364	2,394036	2,3079013	2,0712817	1,9599238	1,9720245	2,2101846	1,7210747	1,59026
Glutamine	0,5190086 0,2506308	3 0,2472681	0,4561196	0,2828118	0,0265633	0,3861026	0,2251665	0,1178161	0,2938935	0,1877676	0,0855201	0,2978794	0,1707982	0,1518017	0,2946971	0,1818956	0,1069
Glycine	1,7810008 1,4730983	0.4657245	1,9962893	1,0/45951	1,4580617	2,1797718	2,1153825	2,3938079	2,5752434	2,0051820	3,2281040	2,3314053	2,575754	2,5209802	2,0094034	2,5251384	2,3318
Histidine	0,5774268 0,4440574	0.000035	0,4321071	0,0000367	0,0000249	0,502182	0,4811016	0,5250455	0,4564915	0,5461333	0,5972302	0,0087316	0,5020673	0,4843953	0.0001564	0,5016179	0,47748
Inosine	0.0374169 0.0513301	0.0588208	0.0492288	0.052275	0.0459741	0.0573186	0.0598509	0.0659944	0.0525845	0.065181	0.0885407	0.0381573	0.0502101	0.0524347	0.0395848	0.04006	0.03823
Inositol	0.0581028 0.0488099	0.043908	0.0253438	0.0192958	0.0209933	0.0431545	0.0441444	0.0509549	0.0719802	0.0815473	0.0946194	0.0647515	0.0843685	0.0833011	0.076145	0.0862398	0.07272
Isoleucine	0,2533648 0,2613839	0,2826754	0,2588686	0,1907158	0,1716318	0,3045073	0,2662669	0,4020253	0,3254359	0,3900108	0,3993988	0,280073	0,3296491	0,298643	0,3016375	0,26372	0,31692
Kynurenine	0,1482142 0,136279	0,1379933	0,1259786	0,1367097	0,0680577	0,1166155	0,1283834	0,1496495	0,1048344	0,1427187	0,1542229	0,0648846	0,0877958	0,0869184	0,0621707	0,0467438	0,04132
Leucine	0,5676777 0,5872688	0,6962387	0,5493921	0,3976597	0,3254446	0,5511283	0,5485723	0,7769521	0,6271054	0,8605283	0,8285109	0,5581725	0,6086046	0,5921815	0,5624558	0,5067277	0,597
Lysine	0,6329632 0,6274365	0,6948958	0,6080672	0,4948297	0,3056569	0,5080311	0,4460694	0,5594914	0,5073111	0,551196	0,661699	0,3873669	0,4037326	0,3895967	0,4562115	0,3974345	0,39716
Malic acid	1,1577921 1,0512629	1,1652814	1,2874752	1,2939721	1,1154523	1,2448634	1,2908391	1,2723759	1,3066265	1,1989087	1,5737636	1,0068557	1,1022516	1,1419068	1,1379496	1,1301572	1,03128
Maltose	0,0000235 0,0000351	0,0000233	0,0000373	0,0135948	0,0000249	0,0205952	0,0236616	0,0244889	0,0248502	0,0301013	0,0385926	0,0248869	0,032611	0,0343368	0,046562	0,0321815	0,02807
Mannose	0,0082773 0,007733	0,0081337	0,0000373	0,0000245	0,0000374	0,0000229	0,0000394	0,0080719	0,0096445	0,008666	0,0213902	0,0111756	0,0093269	0,0094395	0,0082512	0,008567	0,01122
Methionine	0,1294733 0,1299932	0,1459377	0,1445168	0,1004181	0,0571171	0,1210339	0,104495	0,139743	0,1316952	0,1411718	0,1403624	0,0970917	0,0966059	0,0980383	0,0896057	0,0825279	0,08395
N-Acetyi-L-Aspartic acid	0,0182848 0,021564/	0,0251265	0,029/5/5	0,0355789	0,0454694	0,14/9858	0,0000304	0,0060502	0,5170706	0,3295207	0,5/8/05/	0,5408597	0,4245207	0,4018464	0,4292759	0,3979621	0,29795
O-Phosphoethanolamine	0.7271293 0.7444868	0,0000233	0.5828976	0.6160085	0.4499123	0.5055079	0.5565012	0.5446093	0,0008995	0,0092379	0.5631786	0.3282165	0.3777254	0.387899	0.3325001	0,0093433	0.28484
Omithine	0.0278567 0.0319728	0.0351946	0.0319068	0.0251343	0.0203983	0.0268716	0.0270179	0.0387832	0.0248827	0.0333827	0.0320563	0.0221145	0.0203071	0.0228883	0.025585	0.0243484	0.02730
Pantothenate	0.0458472 0.0321277	0.0467659	0.0500779	0.0298719	0.0339307	0.0464891	0.0390722	0.03482	0.0485958	0.0384642	0.0568348	0.043646	0.0442681	0.0476702	0.0440509	0.054956	0.04036
Phenylalanine	0,1208106 0,1103289	0,1290264	0,1292757	0,0870037	0,0641419	0,1418987	0,12054	0,1746015	0,2175426	0,2562081	0,2400905	0,2115608	0,2251579	0,2320303	0,2277993	0,2014617	0,20625
Phosphate	2,1021227 2,3602229	2,4228128	2,4130588	2,3395247	2,1381528	2,3808613	2,5360282	2,7689485	2,3196675	2,61353	3,1324707	2,1033586	2,8506181	2,8885907	2,2688	2,6162969	2,58775
Proline	0,6139192 0,6455688	0,646816	0,4294166	0,327196	0,1750616	0,4371075	0,3991999	0,6127144	0,4582682	0,6519066	0,6014237	0,4407061	0,5154048	0,470494	0,6519253	0,4923079	0,6262
Pyroglutamic acid	0,9224207 1,3461456	1,605224	0,9991446	1,3001012	1,23892	0,7554836	1,282667	1,8359047	0,8301027	1,39918	2, <u>1683758</u>	0,8012185	1,4523559	1,7574176	1,2427298	1,4145168	1,59045
Serine	0,2437604 0,2473739	0,3018444	0,2137145	0,1581005	0,1125801	0,2976059	0,2521942	0,36828	0,3053147	0,3609908	0,3840642	0,2119277	0,2485659	0,2380832	0,1708552	0,1524556	0,1849
Sorbose	0,0555016 0,0669101	0,0484643	0,0334713	0,0282754	0,0313171	0,0277977	0,0280106	0,0504235	0,0372693	0,0372954	0,0637621	0,0308046	0,0286789	0,0269956	0,0421924	0,0341405	0,02937
Succinic acid(or aldehyde)	0, <u>1976778</u> 0, <u>1681202</u>	0, <u>1338944</u>	0, <u>1604764</u>	0, <u>1247114</u>	0, <u>1225705</u>	0,1800843	0, <u>1558549</u>	0,194578	0,2216705	0,2212972	0,3327927	0,208815	0,2660138	0,2706877	0, <u>1987016</u>	0,2607845	0,28138
Threonine	0,1038235 0,106268	0, <u>1542578</u>	0,1153161	0,0728523	0,0530798	0,1068326	0,0919344	0,1383833	0,1247898	0,1442407	0,1400438	0,1135755	0,1237918	0,1235927	0,1344823	0,1132871	0,12380
Truntonhan	0,2796475 0,0000008	0,1240552	0.1235152	0,0951209	0,1421809	0.1478654	0,2980184	0.180353	0,2881808	0,8818292	0,0328081	0 1606803	0 1871074	0 1014102	2,7010309	2,5585997	2,42417
Typophan	0.6595429 0.5325356	0.5656363	0.6376878	0,0998700	0,0389393	0.7384121	0.7224414	0.8138561	0,2002872	0.906274	0,2440638	0.766517	0.7817572	0.8193581	1.0111085	0,104515	0.7760
Uracil	0.0000353 0.0052333	0,0049321	0,0000249	0,0000367	0,0047507	0,0000229	0,0000394	0,0000237	0.0210095	0,0000375	0.031897	0.0218541	0.0181884	0,0211128	0,0120647	0.019748	0.0185
Urea	0,0851062 0,1193629	0,0888794	0,0387435	0.1168267	0,0855869	0.0395131	0.1034201	0,0775011	0,0294726	0,102742	0,0955085	0,0277511	0,0822891	0,063984	0.1276384	0,0537854	0.0749
Uric acid	0,0000235 0,0000351	0,0052205	0,0000249	0,0000367	0,0000249	0,0000344	0,0000263	0,0000356	0,0109919	0,0153788	0,0179178	0,0235554	0,0371264	0,0332703	0,0548785	0,0452457	0,06605
Valine	0,533012 0,5327782	0,681326	0,5291058	0,3475592	0,3136941	0,5153941	0,4835769	0,7305127	0,7080165	0,8629503	0,8821369	0,6322858	0,7283555	0,685441	0,7615518	0,6722779	0,7230
Xylitol	0,0000235 0,0000351	0,0046466	0,004535	0,0000245	0,0000374	0,005356	0,0000263	0,0079621	0,0098962	0,0086035	0,0218188	0,008344	0,008526	0,0082232	0,0000227	0,0078331	0,00847

in

iPad ᅙ			13:4	13				61	1 🖇 85 % 💷 🕨
< > 📖		jo	urnals.p	olos.org			Ċ	<u>1</u> +	- 🗇
Gewöhnlicher Spindels	evonine (CHEBI:35934) Peptide and tetrah	ydro	Species	search	drosophila - Goog	jle-S 🔇	journals.p	los.org/pl
Metabome analysis of Drosophila	melanogaster during embryc	genesis (Normalized data)							
	0-2 Hrs AEL	2-4 Hrs AEL	4-6	6 Hrs AEL	6-8 Hrs	AEL 8	3-10 Hrs AEL	10	0-12 Hrs AEL
Compound_Name	Sample 1 Sample 2 Sample 3	Sample 1 Sample 2 Sample 3	Sample 1 S	Sample 2 Sample 3	Sample 1 Sample	e 2 Sample 3 Sample 1	Sample 2 Sample	3 Sample 1	Sample 2 Sample
2-Aminoetnanoi 3-Hydroxy-DL-Kumurenine	0.0000235 0.0000351 0.0000233	0.0000373 0.0000245 0.0000374	0.0000229 0	0.0000394 0.000023	7 0.0000355 0.010	<u>4241</u> 1,2878722 0,8004048 1692 0.0000232 0.0207445	0,9580137 0,999	217 0.0579032	0.0414156 0.0411
Alame	2,363344 2,4497882 1,9587284	1,8722018 1,0662766 0,6440171	2,0857126 1	1,4572888 2,329861	9 2,6077837 2,439	2098 2,8881375 1,8675234	1,4842899 1,401	411 1,195396	1,4318903 1,4609
Ascorbic acid	0,1742054 0,2231896 0,3207919	0,3018765 0,2822338 0,2607638	0,2942426 0	0,2191213 0,203121	9 0,2672933 0,293	6285 0,3311912 0,2242365	0,2837459 0,284	014 0,2675374	0,2801292 0,2274
Asparagine	0,2596146 0, <u>1878781</u> 0,2500357	0,3638829 0,2940516 0, <u>1365858</u>	0,4239728 0	0,3791345 0,394662	9 0,3926397 0,382	7761 0,3737659 0,2760786	0,3199353 0,298	643 0,3166928	0,2773605 0,2293
Aspartic acid	2,5798803 2,4030774 2,8316859	2,447597 2,0606399 0,9712436	1,4519626 1	1,4632552 1,580486	1 1, <u>1286807</u> 1,362	9721 1, <u>1160588</u> 0,9130334	1,0623508 1,102	786 1,1415617	0,8067474 0,845
Beta-alanine Citrie acid + Isocitrie acid	0,1164733 0,1550048 0,1132455	0,0276766 0,0323768 0,0243359	0,0327494 0	0,0260449 0,028152	2 0,0307903 0,033	8734 0,0361165 0,0333167	0,0346692 0,033	905 0,0503103	0,0474079 0,0580
Citrulline	0.0051612 0.0054029 0.000035	0.0000249 0.0051871 0.0000374	0.0053875 0	0,2011104 0,203638	4 0, <u>1987895</u> 0,255 6 0.0044803 0.00	0025 0.0085433 0.0000237	0.0072113 0.007	476 0.0090883	0.0000364 0.0081
DL-methionine sulfoxide 3	0,0761757 0,0747659 0,1201906	0,1040812 0,0727024 0,044619	0,0897841 0	0,0818787 0,077842	5 0.0972834 0.079	9754 0,1404203 0,0968965	0,1045275 0,117	397 0.0971362	0,0895483 0,0980
D-sorbitol-6-phosphate	0,0331591 0,0229037 0,0259568	0,0325133 0,0202164 0,0189092	0,0464403 0	0,0283229 0,032940	8 0,0426172 0,023	2573 0,024848 0,0322811	0,0666123 0,059	467 0,0278436	0,0329669 0,0561
Fructose	0,0357368 0,0378288 0,0272182	0,0177792 0,0153198 0,0180837	0,0148006 0	0,0161174 0,031827	5 0,0184333 0,018	0633 0,0409066 0,0196142	0,0175175 0,014	006 0,0216353	0,0199754 0,0165
iumaric acid	0,076414 0,0652904 0,0754844	0,0828494 0,0808654 0,0689362	0,0951171 0	0,0791569 0,084323	1 0,0890573 0,073	2563 0,0971853 0,0633816	0,0832684 0,079	502 0,0648435	0,0675744 0,0733
Glass	0,7095361 0,5501533 0,3852236	0,3958675 0,4300395 0,5119795	0,4364624	0,685828 1,07779	5 0,6110588 0,958	0169 1,2995462 0,6419494	0,6274609 0,649	449 1,0113695	0,7301603 1,1127
Glutamic acid	2,0733097 1,6586608 1,8448216	2,0897297 1,6947575 1,0507528	2,2268974 1	1,9954899 2,093612	2 2,4679364 2,39	4036 2,3079013 2,0712817	1,9599238 1,972	245 2,2101846	1,7210747 1,5902
Glycine	1.7810008 1.4730983 1.8368889	1.9962893 1.6745931 1.4580617	2.1797718 2	2 1153823 2 393807	9 2.5752434 2.603	1826 3.2281646 2.3314653	2.573754 2.520	802 2.6694634	2.5251384 2.3318
Histidine	0.3774268 0.4440374 0.4657245	0,4321071 0,4423467 0,1707564	0.502182 0	0.4811016 0.525045	5 0,4564915 0,546	1333 0.5972302 0.4196568	0.5020673 0.484	953 0.6355165	0,5016179 0,4774
Hypoxanthine	0,0000353 0,0000234 0,000035	0,0000249 0,0000367 0,0000249	0,0000344 0	0,0000263 0,000035	6 0,0000237 0,000	0375 0,0162815 0,0087316	0,008656 0,007	611 0,0091564	0,0000364 0,0143
Inosine	0,0374169 0,0513301 0,0588208	0,0492288 0,052275 0,0459741	0,0573186 0	0,0598509 0,065994	4 0,0525845 0,06	5181 0,0885407 0,0381573	0,0502101 0,052	347 0,0395848	0,04006 0,0382
Inositol	0,0581028 0,0488099 0,043908	0,0253438 0,0192958 0,0209933	0,0431545 0	0,0441444 0,050954	9 0,0719802 0,081	5473 0,0946194 0,0647515	0,0843685 0,083	011 0,076145	0,0862398 0,0727
Isoleucine	0,2533648 0,2613839 0,2826754	0,2588686 0, <u>1907158</u> 0, <u>1716318</u>	0,3045073 0	0,2662669 0,402025	3 0,3254359 0,390	0108 0,3993988 0,280073	0,3296491 0,29	643 0,3016375	0,26372 0,3169
Kynurenine	0,1482142 0,136279 0,1379933	0,1259786 0,1367097 0,0680577	0,1166155 0	0,1283834 0,149649	5 0, <u>1048344</u> 0, <u>142</u>	7187 0,1542229 0,0648846	0,0877958 0,086	184 0,0621707	0,0467438 0,0413
Leucine	0.6329632 0.6274365 0.6948958	0.6080672 0.4948297 0.3056569	0,5511285 0	0,5485725 0,776952	4 0.5073111 0.55	5285 0,8285109 0,5581725 1196 0.661699 0.3873669	0,6080046 0,592	815 0,5624558 967 0.4562115	0,307/277 0,59
Malic acid	1,1577921 1,0512629 1,1652814	1.2874752 1.2939721 1.1154523	1.2448634 1	1.2908391 1.272375	9 1.3066265 1.198	9087 1.5737636 1.0068557	1,1022516 1,141	068 1.1379496	1,1301572 1,0312
Maltose	0,0000235 0,0000351 0,0000233	0,0000373 0,0135948 0,0000249	0,0205952 0	0,0236616 0,024488	9 0,0248502 0,030	1013 0,0385926 0,0248869	0,032611 0,034	368 0,046562	0,0321815 0,0280
Mannose	0,0082773 0,007733 0,0081337	0,0000373 0,0000245 0,0000374	0,0000229 0	0,0000394 0,008071	9 0,0096445 0,00	8666 0,0213902 0,0111756	0,0093269 0,009	395 0,0082512	0,008567 0,0112
Methionine	0,1294733 0,1299932 0,1459377	0,1445168 0,1004181 0,0571171	0,1210339	0,104495 0,13974	3 0, <u>1316952</u> 0, <u>141</u>	1718 0,1403624 0,0970917	0,0966059 0,098	383 0,0896057	0,0825279 0,0839
N-Acetyl-L-Aspartic acid	0,0182848 0,0215647 0,0251265	0,0297575 0,0355789 0,0454694	0,1479858 0	0, <u>1674359</u> 0, <u>189614</u>	3 0,3170706 0,329	5207 0,3787037 0,3408597	0,4243207 0,401	464 0,4292759	0,3979621 0,2979
O Phoethosthonolomina	0,0000235 0,0000351 0,0000233	0,0000373 0,0000245 0,0000374	0,0000229 0	0,0000394 0,006050	2 0,0068995 0,009	2379 0,0135332 0,0075658	0,0106356 0,011	744 0,0097465	0,0093433 0,0127
Ornithine	0,7271295 0,7444808 0,0974505	0.0319068 0.0251343 0.0203983	0.0268716 0	0,5565012 0,544609	2 0.0248827 0.033	3827 0.0320563 0.0221145	0,3777254 0,38	899 0,3325001	0.0243484 0.0273
Pantothenate	0.0458472 0.0321277 0.0467659	0.0500779 0.0298719 0.0339307	0.0464891 0	0.0390722 0.0348	2 0.0485958 0.038	4642 0.0568348 0.043646	0.0442681 0.047	702 0.0440509	0.054956 0.0403
Phenylalanine	0,1208106 0,1103289 0,1290264	0,1292757 0,0870037 0,0641419	0,1418987	0,12054 0,174601	0,2175426 0,256	2081 0,2400905 0,2115608	0,2251579 0,232	303 0,2277993	0,2014617 0,2062
Phosphate	2,1021227 2,3602229 2,4228128	2,4130588 2,3395247 2,1381528	2,3808613 2	2,5360282 2,768948	5 2,3196675 2,6	1353 3, <u>1324707</u> 2, <u>1033586</u>	2,8506181 2,888	907 2,2688	2,6162969 2,5877
Proline	0,6139192 0,6455688 0,646816	0,4294166 0,327196 0, <u>1750616</u>	0,4371075 0	0,3991999 0,612714	4 0,4582682 0,651	9066 0,6014237 0,4407061	0,5154048 0,47	494 0,6519253	0,4923079 0,626
Pyroglutamic acid	0,9224207 1,3461456 1,605224	0,9991446 1,3001012 1,23892	0,7554836	1,282667 1,835904	7 0,8301027 1,3	9918 2, <u>1683758</u> 0,8012185	1,4523559 1,757	176 1,2427298	1,4145168 1,5904
Serine	0,2437604 0,2473739 0,3018444	0,2137145 0,1581005 0,1125801	0,2976059 0	0,2521942 0,3682	8 0,3053147 0,360	9908 0,3840642 0,2119277	0,2485659 0,238	832 0, <u>1708552</u>	0,1524556 0,1849
Sorbose Succinic acid(or aldebude)	0.1976778 0.1681202 0.1338944	0.0534713 0.0282754 0.0515171	0,0277977 0	0,0280106 0,050425	5 0,0372095 0,037. 8 0.2216705 0.221	2954 0,0657621 0,0508046 2972 0.3327027 0.208815	0,0286789 0,026	950 0,0421924 877 0 1987016	0,0341405 0,0295
Threenine	0.1038235 0.106268 0.1542578	0.1153161 0.0728523 0.0530798	0.1068326 0	0.0919344 0.138383	3 0.1247898 0.144	2407 0.1400438 0.1135755	0.1237918 0.123	927 0.1344823	0.1132871 0.1238
Trehalose	0,2796473 0,0606068 0,1240332	0,1027748 0,0951209 0,1421869	0,1571007 0	0,2980184 0,267709	1 0,5881808 0,881	8292 0,6328081 1,5325015	1,7071206 1,940	558 2,7016369	2,5383997 2,4241
Tryptophan	0,1328337 0,1070515 0,1009809	0,1235152 0,0998706 0,0589395	0,1478654 0	0,1455593 0,18935	3 0,2062872 0,220	0753 0,2440638 0,1606893	0,1871974 0,191	102 0,1870824	0,164513 0,158
Tyrosine	0,6595429 0,5325356 0,5656363	0,6376878 0,5319195 0,3749202	0,7384121 0	0,7224414 0,813856	1 0,8614112 0,90	6274 0,9404516 0,766517	0,7817572 0,819	581 1,0111085	0,8782975 0,7760
Uracil	0,0000353 0,0052333 0,0049321	0,0000249 0,0000367 0,0047507	0,0000229 0	0,0000394 0,000023	7 0,0210095 0,000	0375 0,031897 0,0218541	0,0181884 0,021	128 0,0120647	0,019748 0,0185
Urea	0,0851062 0,1193629 0,0888794	0,0387435 0,1168267 0,0855869	0,0395131 0	0,1034201 0,077501	1 0,0294726 0,10	2742 0,0955085 0,0277511	0,0822891 0,06	984 0, <u>1276384</u>	0,0537854 0,074
Une acid	0,0000235 0,0000351 0,0052205	0,0000249 0,0000367 0,0000249	0,0000344 0	0,0000263 0,000035	5 0,0109919 0,015	5/88 0,0179178 0,0235554 0503 0,8821360 0,622266	0,0371264 0,033	441 0.7616610	0,0452457 0,0660
Xvlitol	0.0000235_0.0000351_0.0046466	0.004535 0.0000245 0.0000374	0.005356 0	0,4855709 0,750512	1 0.0098962 0.008	6035 0.0218188 0.008344	0.008526 0.008	232 0.0000227	0.0078331 0.0084
1.	0,0000200 0,00000001 0,0040400	0,0000000000000000000000000000000000000	0,0000000 0	0,0000203 0,001302	. 0,0070702 0,000	0000 0,0210100 0,000344	0,000,00,0000	252 0,0000227	0,000 000 1 0,0004

iPad 🔝									13	:43									\$ 857	۶ L D
<	>	m						jo	urnals.	plos.o	rg					C		I –	– ľ	
`		4																	L	
Gewöhnli	icher Sni	ndole	evonin		1.35034) Do	ntide an	d tetrah	vdro	G	naciae e	earch	d	rosonhil	a - Goor	2-alm	🔹 io	urnale n	los oral	nl
Gewonnin	cher opr	nuels	evonin		1.33334		stue an	u tetran	yuro	3	pecies s	earch	ŭ	losopiii	a - 000	gie-3		urnais.p	103.019/	pi
Metabome a	analysis of	f Drosophila	melanoga	ster durin	g embryo	genesis (N	ormalize	d data)												
				0-2 Hrs AEI	L		2-4 Hrs AEI	L		4-6 Hrs AEL	,		6-8 Hrs AEI	2		8-10 Hrs AE	L	1	0-12 Hrs AE	ŝL.
Compound Na	ame		Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3
2-Aminoethan	ol		0,7136056	0,6639233	0,726679	0,9094056	1,0639767	0,7451021	0,9178169	1,0385232	1,19182	0,9939918	1,1234241	1,2878722	0,8004048	0,9580137	0,9992593	0,7263508	0,6553381	0,67140
3-Hydroxy-DI	Kymurenine	1	0,0000235	0,0000351	0,0000233	0,0000373	0,0000245	0,0000374	0,0000229	0,0000394	0,0000237	0,0000355	0,0101692	0,0000232	0,0207445	0,0208783	0,0208217	0,0579032	0,0414156	0,04111
Alamne			2,363344	2,4497882	1,9587284	1,8722018	1,0662766	0,6440171	2,0857126	1,4572888	2,3298619	2,6077837	2,4392098	2,8881375	1,8675234	1,4842899	1,4012411	1,195396	1,4318903	1,46094
Ascorbic acid			0 <u>,1742054</u>	0,2231896	0,3207919	0,3018765	0,2822338	0,2607638	0,2942426	0,2191213	0,2031219	0,2672933	0,2936285	0,3311912	0,2242365	0,2837459	0,2847014	0,2675374	0,2801292	0,22740
Asparagine			0,2596146	0, <u>1878781</u>	0,2500357	0,3638829	0,2940516	0 <u>,1365858</u>	0,4239728	0,3791345	0,3946629	0,3926397	0,3827761	0,3737659	0,2760786	0,3199353	0,2984643	0,3166928	0,2773605	0,22935
Aspartic acid			2,5798803	2,4030774	2.8316859	2.447597	2,0606399	0.9712436	1.4519626	1.4632552	1.5804861	1.1286807	1.3629721	1.1160588	0.9130334	1.0623508	1.10297 <u>86</u>	1,1415617	0,8067474	0,8458
Beta-alanine			0, <u>11647</u>														205	0,0503103	0,0474079	0,05802
Citric acid + Is	socitric acid		0,14357				-										33	0,4862541	0,4130157	0,28826
Citrulline DI mathiania			0,00516	1000													1/6	0,0090883	0,0000364	0,00815
DL-methioning	e suitoxide_3	· /	0,07617			and the second second									100		167	0,09/1562	0,0895483	0,09805
D-sorbitoi-o-pi	nospnate		0,03313	1000	-												107	0,0278430	0,0329009	0,05015
Fructose			0.0764	A													100	0.0648435	0.0675744	0,01037
Glutter			0.70953		E. 15			1000			100				1000		149	1.0113695	0,007301603	1 11278
Glutamic aciu			2.07330					1000			- 640						45	2.2101846	1.7210747	1.59026
Glutamine			0.51900		10 Aug. 10	-	-	22			100		2		-		117	0.2946971	0.1818956	0.10691
Glycine			1,78100		No.	3 50		6 6					MA	- N-	Parent 1	4	302	2,6694634	2.5251384	2,33180
Histidine			0.37742				Concession of the	100 N				10/	1 and the	- 11	1000	R.	53	0,6355165	0,5016179	0,47748
Hypoxanthine			0,00003				100	100				1.1		A.			511	0,0091564	0,0000364	0,01430
Inosine			0,03741			1000	N 1	1			100			1.000			47	0,0395848	0,04006	0,03827
Inositol			0,05810	• • • • •)11	0,076145	0,0862398	0,07272
Isoleucine			0,25336			1000		1 1 1						1000			43	0,3016375	0,26372	0,31692
Kynurenine			0,14821	and the second				1000									84	0,0621707	0,0467438	0,04132
Leucine			0,56767	1000					100			100	1000				315	0,5624558	0,5067277	0,597
Lysine			0,63296			1.00	1										67	0,4562115	0,3974345	0,39716
Malic acid			1,15779	100					100)68	1,1379496	1, <u>1301572</u>	1,03128
Maltose			0,00002	1.000			-										68	0,046562	0,0321815	0,02807
Mannose			0,00827		1000	\sim								\sim			195	0,0082512	0,008567	0,01122
Methionine			0, <u>12947</u>	and the second second													83	0,0896057	0,0825279	0,08395
N-Acetyl-L-As	spartic acid		0,01828	1000													464	0,4292759	0,3979621	0,29799
O Phaseheath	analamina		0,00002			11							-				44	0,009/465	0,0093433	0,01273
O-Phosphoetha	anotamine		0,72712				1							100			199	0,3323001	0,5151704	0,28484
Bantothemate			0,02783														102	0,025585	0.0243404	0,02730
Phenylalanine			0.12081								100	4 1.					103	0.2277993	0.2014617	0.20625
Phosphate			2,10212		4		N				1.44	يغر د					207	2.2688	2.6162969	2.58775
Proline			0.61391	-	_						1.1				-		194	0.6519253	0.4923079	0.6262
Pvroglutamic a	acid		0.92242														76	1.2427298	1.4145168	1.59045
Serine			0.24376	-		1.1					-						32	0,1708552	0,1524556	0,18497
Sorbose			0,05550	Sar	m_{11}	2 - 1 -	-120	rkcr	n		S	ami	ID.	-n-I	ack	SOL	1 156	0,0421924	0,0341405	0,02937
Succinic acid(e	or aldehyde)		0,19767	Jai	nuc		Jac	-121			5	ann	uer	D -J	acr	100	1 377	0,1987016	0,2607845	0,28138
Threonine	, ,		0,10382														27	0,1344823	0,1132871	0,12386
Trehalose			0,2796473	0,0606068	0,1240332	0,1027748	0,0951209	0,1421869	0,1571007	0,2980184	0,2677091	0,5881808	0,8818292	0,6328081	1,5325015	1,7071206	1,9402558	2,7016369	2,5383997	2,42417
Tryptophan			0,1328337	0,1070515	0,1009809	0,1235152	0,0998706	0,0589395	0,1478654	0,1455593	0,189353	0,2062872	0,2200753	0,2440638	0,1606893	0,1871974	0,1914102	0,1870824	0,164513	0,1582
Tyrosine			0,6595429	0,5325356	0,5656363	0,6376878	0,5319195	0,3749202	0,7384121	0,7224414	0,8138561	0,8614112	0,906274	0,9404516	0,766517	0,7817572	0,8193581	1,0111085	0,8782975	0,77605
Uracil			0,0000353	0,0052333	0,0049321	0,0000249	0,0000367	0,0047507	0,0000229	0,0000394	0,0000237	0,0210095	0,0000375	0,031897	0,0218541	0,0181884	0,0211128	0,0120647	0,019748	0,01852
Urea			0,0851062	0,1193629	0,0888794	0,0387435	0,1168267	0,0855869	0,0395131	0,1034201	0,0775011	0,0294726	0,102742	0,0955085	0,0277511	0,0822891	0,063984	0,1276384	0,0537854	0,0749
Uric acid			0,0000235	0,0000351	0,0052205	0,0000249	0,0000367	0,0000249	0,0000344	0,0000263	0,0000356	0,0109919	0,0153788	0,0179178	0,0235554	0,0371264	0,0332703	0,0548785	0,0452457	0,06609
Valine			0,533012	0,5327782	0,681326	0,5291058	0,3475592	0,3136941	0,5153941	0,4835769	0,7305127	0,7080165	0,8629503	0,8821369	0,6322858	0,7283555	0,685441	0,7615518	0,6722779	0,7230
Xylitol			0,0000235	0,0000351	0,0046466	0,004535	0,0000245	0,0000374	0,005356	0,0000263	0,0079621	0,0098962	0,0086035	0,0218188	0,008344	0,008526	0,0082232	0,0000227	0,0078331	0,00847

iPad 🗢	13:43	L 🗸 🕏 85 % 🔲
< > 四	journals.plos.org C	
Gewöhnlicher Spindels	evonine (CHEBI:35934) Peptide and tetrahydro Species search drosophila - Google-S	🛞 journals.plos.org/pl
Metabome analysis of Drosophil Compound_Name 2-Aminoethanol 3-Hydroxy.DL Kymurenine Alasine Ascorbic acid Asparagine	Ia melanogaster during embryogenesis (Normalized data) 6-8 Hrs AEL 8-10 Hrs AEL 0-2 Hrs AEL 2-4 Hrs AEL 4-6 Hrs AEL 6-8 Hrs AEL 8-10 Hrs AEL Sample 1 Sample 2 Sample 3 Sample 2 Sample 3 Sample 2 Sample 3 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 Sample	AEL 10-12 Hrs AEL 2 Sample 3 Sample 1 Sample 2 Sample 3 37 0,9992593 0,7263508 0,6553381 0,67140 83 0,0208217 0,0579032 0,0414156 0,04111 99 1,4012411 1,195396 1,4318903 1,46094 59 0,2847014 0,2675374 0,2801292 0,22740
Aspartic acid Beta-alanine Citric acid + Isocitric acid Citrulline DL-methionine sulfoxide_3 D-sorbitol-6-phosphate Fructose Sumaric acid Glutamic acid Glutamic acid Glutamine Glycine Histidine Hypoxanthine Inosine Inositol Isoleucine Kynurenine Leucine Lysine Malic acid Maltose Mannose	CHEBI:24431 chemical entity [↑] ∧ CHEBI:33579 main group molecular entity [↑] ∧ CHEBI:33579 main group molecular entity [↑] ∧ CHEBI:33575 p-block molecular entity [↑] ∧ CHEBI:33582 carbon group molecular entity [↑] ∧ CHEBI:33585 heteroorganic molecular entity [↑] ∧ CHEBI:33285 heteroorganic entity [↑] ∧ CHEBI:36962 organochalcogen compound [↑] ∧ CHEBI:36963 organoxygen compound [↑] ∧ CHEBI:36963 organoxygen compound [↑] ∧ CHEBI:35605 carbon oxoacid [↑] ∧ CHEBI:3575 carboxylic acid [↑] ∧ CHEBI:33709 amino acid [↑] ∧ CHEBI:33704 q-amino acid [↑] ∧ CHEBI:35705 L-q-amino acid [↑] ∧ CHEBI:15705 L-q-amino acid [↑] ∧ CHEBI:22658 aspartate family amino acid	Relationship Types △ is a ◇ has part > is conjugate base of ∰ is conjugate acid of ① is toutomer of ② has functional parent > has parent hydride ② is substituent group from ③ has role Status ■ Checked
Methionine N-Acetyl-L-Aspartic acid Nicotinic acid O-Phosphoethanolamine Ornithine Pantothenate Phenylalanine Phosphate Proline Pyroglutamic acid Serine Sorbose Succinic acid(or aldehyde) Threonine Trehalose Tryptophan Tyrosine Uracil Urea Uric acid Valine	0.0851062 0.1193642 0.0888794 0.0888794 0.0888794 0.0888794 0.0888794 0.0888794 0.0888794 0.0888794 0.0888794 0.0888794 0.000249 0.000249 0.000249 0.000249 0.000249 0.000249 0.000249 0.000249 0.000249 0.000249 0.000244 0.000263 0.000255 0.000255 0.082205 0.082205 0.000249 0.000249 0.000249 0.000249 0.000263 0.000235 0.000255 0.082205 0.000249 0.000245 0.000235 0.02991919 0.153788 0.017178 0.0232554 0.023112 0.5327782 0.681326 0.522058 0.272855 0.22855 0.228554 0.22855	91 0,063984 0,1276384 0,0537854 0,0748 64 0,0332703 0,0548785 0,0452457 0,06609 55 0,685441 0,7615518 0,6722779 0,7230

Global Standards and Data Exchange In Metabolomics

MetabolomeXchange 2014

An international data aggregation and notification service for metabolomics.

ſ

Browse

Datasets are stored in external data repositories independent of MetabolomeXchange. Use this browse option to zoom in om a specific data provider. It will give you direct access to the repository itself and the meta-data of the provider.

Learn more...

۳

Subscribe

RSS is used to allow users to be notified of new or updated datasets. On serveral pages you will see the orange RSS icon that allows you to subscribe to the feed using your own preferred reader.

Learn more...

\$

API

The primairy objective of MetabolomeXchange is to improve and encourage the exchange of Metabolomics data. One of the ways we do this is to provide an API (Application Programmable Interface). Providing a single point of entry when searching for Metabolomics data sets.

Learn more...

The MetaboLights Reference Layer

•8.7 mio eukaryotic species on earth (+- 1.3mio)

8.7 mio eukaryotic species on earth (+- 1.3mio) 1.2 mio species identified and classified

•8.7 mio eukaryotic species on earth (+- 1.3mio)

- I.2 mio species identified and classified
- 3000 4000 complete species genomes sequenced

•8.7 mio eukaryotic species on earth (+- 1.3mio)

- I.2 mio species identified and classified
- 3000 4000 complete species genomes sequenced

8.7 mio eukaryotic species on earth (+- 1.3mio)
1.2 mio species identified and classified
3000 - 4000 complete species genomes sequenced

What about completed metabolomes?

8.7 mio eukaryotic species on earth (+- 1.3mio)
1.2 mio species identified and classified
3000 - 4000 complete species genomes sequenced

What about completed metabolomes?

Typical total ion chromatogram of serum from a healthy subject.

Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, et al. (2011) The Human Serum Metabolome. PLoS ONE 6(2): e16957. doi:10.1371/ journal.pone.0016957 http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0016957

There are **known knowns**; there are things we know we know.

We also know there are **known unknowns**; that is to say, we know there are some things we do not know. But there are also **unknown unknowns** – the ones we don't know we don't know.

-<u>United States Secretary of Defense</u>,

Donald Rumsfeld

Metabolites. 2016 Feb 15;6(1)

Communication

The Time Is Right to Focus on Model Organism Metabolomes

Arthur S. Edison ¹, Robert D. Hall ², Christophe Junot ³, Peter D. Karp ⁴, Irwin J. Kurland ⁵, Robert Mistrik ⁶, Laura K. Reed ⁷, Kazuki Saito ⁸, Reza M. Salek ⁹, Christoph Steinbeck ⁹, Lloyd W. Sumner ¹⁰ and Mark R. Viant ¹¹,*

Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, *i.e.*, phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

Species Metabolomes are being assembled on the fly right now through data sharing in Metabolomics

Repository Entry

						Services	Research Training About
MetaboL	ights				Exa	mples: alanine, Homo saplens, urine, MTBL	Search
ome Browse Studies Brows	e Compounds B	rowse Species Anal	lysis Download	Help Give us fee	edback About		土 Submit Study 🎤 Log
etaboLights > Study							
Submitted		In cu	ration		In review		Public
wio assay)							
wio assay)							
Authors: Shi Jianxin , Hu Ci	haoyang			1	Submitted: 30-Nov-2015	5 , Release date: 03-May-2016 , U	pdate date: 03-May-2016
Authors: Shi Jienxin , Hu Ci Share Study	haoyang			<u>1</u>	≟ Submitted: 30-Nov-2015	5 , Release date: 03-May-2016 , U Submitted by: Chaoyang Hu	pdate date: 03-May-2016 Study status: Public
Authors: Shi Jienxin , Hu G Share Study Study Description	haoyang			4 ±	≟ Submitted: 30-Nov-2015	5 , Release date: 03-May-2016 , U Submitted by: Chaoyang Hu View Metabolites Assay	pdate date: 03-May-2016 I I ■ Study status: Public

Repository Entry

≯ Metabolites

Show 10 ‡ e	ntries			Search:
Metabolite identification	Chemical formula	Species 1	Smiles 11	InChi It
5-Oxoproline (Pyroglutamate) (CHEBI:16010)	C5H7NO3	Oryza sativa	OC(=0)C1CCC(=0)N1	InChI=1S/C5H7NO3/c7-4-2-1-3(6-4)5(8)9/h3H,1- 2H2,(H,6,7)(H,8,9)
Adenine (CHEBI:16708)	C5H5N5	Oryza sativa	C1=NC2=C(N1)C(=NC=N2)N	InChI=1S/C5H5N5/c6-4-3-5(9-1-7-3)10-2-8-4/h1-2H, (H3,6,7,8,9,10)
Alanine (CHEBI:16449)	C3H7NO2	Oryza sativa	CCOC(=O)N	InChI=1S/C3H7NO2/c1-2-6-3(4)5/h2H2,1H3,(H2,4,5)
Arginine (CHEBI:29016)	C6H14N4O2	Oryza sativa	C(CC(C(=O)O)N)CN=C(N)N	InChI=1S/C6H14N4O2/c7-4(5(11)12)2-1-3-10- 6(8)9/h4H,1-3,7H2,(H,11,12)(H4,8,9,10)
Benzoate (CHEBI:30746)	C7H6O2	Oryza sativa	OC(=O)c1ccccc1	InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H, (H,8,9)
Beta-Alanine (CHEBI:16958)	C3H7NO2	Oryza sativa	C(CN)C(=O)O	InChI=1S/C3H7NO2/c4-2-1-3(5)6/h1-2,4H2,(H,5,6)
Dehydroascorbate (CHEBI:17242)	C6H6O6	Oryza sativa	OCC(0)C1OC(=0)C(=0)C1=0	InChI=1S/C6H6O6/c7-1-2(8)5-3(9)4(10)6(11)12- 5/h2,5,7-8H,1H2
Fructose (CHEBI:28757)	C6H12O6	Oryza sativa		
Fumarate	C4H4O4	Oryza sativa	OC(=0)C=CC(0)=0	InChl=1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)

Reference Layer

EMBL-EBI		Services R	esearch Training About us
MetaboLights		Examples: alanine, human, urine, MTBLS1	Search
Home Browse Studies Browse Compounds Browse Species Download	d Help Give us feedback About	4	1. Submit Study 🎤 Login
MetaboLights > Species search			
Species selection page			
See below for some direct links to some common model organisms and a wider lis	st of all the organisms we have information about	t.	
Model organisms	Taxonomy Search		
 Homo sapiens (Human) Mus musculus (Mouse) Arabidopsis thaliana (thale cress) E. coll Saccharomyces cerevisiae (Baker's yeast) Caenorhabditis elegans 	Start typing the first 3 letters of the species name		
Taxonomy Browser (1593 species)			
Animals Bacteria Chromista Fungi Others Plants	Ascomycota • Basidiomycota •	 Farrowia semin Fusarium solar Geotrichum Gliocladium Gliocladium viru Halorosellinia of Hirsutella koba Hypocrella spein Hypocrella spein Hypoxylon trun Isaria farinosa Isaria sinclairii Isaria tenuines 	iuda ii ens oceanica yasii cies icatum

Filter your results

15 results, showing 1 to 10

EMBL-E	3I 🍈								Services	Research	Training	About us
	Metak	ooLights							Examples: alanina, Homo sapiens, urine, MTBL	<u>81</u>	Sea	rch
Home	Browse Studies	Browse Compounds	Browse Species	Analysis	Download	Help	Give us feedback	About		1 Submi	t Study	🎤 Login

MetaboLights > Compound page

Tyrosine			MTBLC18186
2D 3D	Chemistry Biology	NMR spectra	MS spectra Literature
	An alpha-amino acid that is	s phenylalanine bearin	ig a hydroxy substituent at position 4 on the phenyl ring.
	Chemical Properties	Chemical Properties	
ОН	Synonyme	Property	Value
110	External links	InChlKey	OUYCCCASQSFEME-UHFFFAOYSA-N
		InChi	InChl=1S/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)
		Formula	C9H11NO3
tyrosine - (CHEBI:18186)		Molecular Weight	181.18889
1 Upload Reference Spectra		Exact Mass	181.07389

7 most annotated metabolomes in MetaboLights

http://www.ebi.ac.uk/training/past-courses-held-embl-ebi

If you would like to register your interest in this course and be the first to hear of any updates please send us an email using the following link: Keep me posted

Friedrich-Schiller-Universität Jena

Funding and Collaborators

UK Research Councils (BBSRC, MRC)

European Commission

Thank you!

Metabolights-help@ebi.ac.uk