

Bundesinstitut für Risikobewertung

Determination of pyrrolizidine alkaloids (PA) in plant material by SPE-LC-MS/MS

Method Protocol

BfR-PA-Tea-2.0/2014

CONTENT

1	Sco	Scope 1				
2	Principle					
3 Reagents		agents	. 1			
	3.1	General	. 1			
	3.2	Chemicals	. 2			
	3.3	Solutions	. 3			
	3.3	1 Extraction solution	. 3			
	3.3	2 Aqueous ammoniacal solution for neutralisation	. 3			
	3.3	.3 2.5 % ammonia in methanol for SPE elution (black tea and green tea)	. 3			
	3.3	4 HPLC mobile phase	. 3			
	3.3	5 Standard solution for calibration	. 3			
4	Арр	paratus	. 4			
5	Pro	cedure	. 6			
	5.1	Sample preparation (grinding of plant material)	. 6			
	5.2	Extraction	. 6			
	5.3	SPE-procedure	. 7			
	5.4	Reconstitution of the sample	. 7			
6	HPI	LC-MS/MS analysis	. 7			
	6.1	Liquid chromatographic separation	. 7			
	6.2	Mass spectrometric operation conditions	. 7			
	6.3	Measurement	. 8			
7	Cal	culation	. 8			
	7.1	Calibration function	. 8			
	7.2	Quantification	. 8			
	7.3	Reporting of results	. 9			
8	Anr	nex	10			
	8.1	LC-MS/MS measurement	10			
	8.2	Typical Chromatogram	13			
	8.3 Provider of PA-Standards14					
	8.4	Flow chart of the sample preparation procedure	17			

1 Scope

Pyrrolizidine alkaloids (PA) are secondary plant metabolites with carcinogenic and genotoxic properties. Currently, more than 600 PA are known. They occur in plants of families of Boraginaceae, Asteraceae and Fabaceae. The worldwide spread of these plants may lead to a contamination of herbal foodstuff, herbal medicines and animal feed (EFSA Panel on Contaminants in the Food Chain (CONTAM) 2011).

This method describes the determination of the following PA in plant material: echimidine (Em), echimidine-N-oxide (EmN), erucifoline (Er), erucifoline-N-oxide (ErN), europine (Eu), europine-N-oxide (EuN), heliotrine (Hn), heliotrine-N-oxide (HnN), intermedine (Im), intermedine-N-oxide (ImN), jacobine (Jb), jacobine-N-oxide (JbN), lasiocarpine (Lc), lasiocarpine-N-oxide (LcN), lycopsamine (La), lycopsamine-N-oxide (LaN), monocrotaline (Mc), monocrotaline-N-oxide (McN), retrorsine (Re), retrorsine-N-oxide (ReN), senecionine (Sc), senecionine-N-oxide (ScN), seneciphylline (Sp), seneciphylline-N-oxide (SpN), senecivernine (Sv), senecivernine-N-oxide (SvN), senkirkine (Sk), trichodesmine (Td).

The limits of determination and quantification for toxins determined during in-house validation are listed in the Annex 8.1.

2 Principle

A test portion of plant material is sonicated twofold in aqueous sulphuric acid solution for PA extraction. After centrifugation an aliquot of the supernatant is purified by solid-phase extraction (SPE) using reversed phase C18 material. PAs are released from the cartridge using methanol. Subsequently, the eluate is evaporated to dryness and reconstituted in methanol/water (initial HPLC conditions).

For chromatographic separation, an RP-HPLC column is used with a binary gradient. Analytes are detected by triple stage quadrupole mass spectrometry. Quantification of pyrrolizidine alkaloids is accomplished by means of matrix matched calibration.

3 Reagents

3.1 General

<u>Please note:</u> Since the use of this method involves reagents harmful to health, appropriate precautionary and protective measures such as avoiding skin contact and using an extractor hood must be taken.

If not specified elsewise, reagents of analytical grade and solvents suitable for HPLC-MS/MS must be used. Water must be distilled in glass vessels or demineralised before use, or must be of equivalent purity.

3.2 Chemicals

3.2.1	echimidine	(Em)
3.2.2	echimidine-N-oxide	(EmN)
3.2.3	erucifoline	(Er)
3.2.4	erucifoline-N-oxide	(ErN)
3.2.5	europine	(Eu)
3.2.6	europine-N-oxide	(EuN)
3.2.7	heliotrine	(Hn)
3.2.8	heliotrine-N-oxide	(HnN)
3.2.9	intermedine	(Im)
3.2.10	intermedine-N-oxide	(ImN)
3.2.11	jacobine	(Jb)
3.2.12	jacobine-N-oxide	(JbN)
3.2.13	lasiocarpine	(Lc)
3.2.14	lasiocarpine-N-oxide	(LcN)
3.2.15	lycopsamine	(La)
3.2.16	lycopsamine-N-oxide	(LaN)
3.2.17	monocrotaline	(Mc)
3.2.18	monocrotaline-N-oxide	(McN)
3.2.19	retrorsine	(Re)
3.2.20	retrorsine-N-oxide	(ReN)
3.2.21	senecionine	(Sc)
3.2.22	senecionine-N-oxide	(ScN)
3.2.23	seneciphylline	(Sp)
3.2.24	seneciphylline-N-oxide	(SpN)
3.2.25	senecivernine	(Sv)
3.2.26	senecivernine-N-oxide	(SvN)
3.2.27	senkirkine	(Sk)
3.2.28	trichodesmine	(Td)

- 3.2.29 formic acid 98 100%, e.g. Sigma-Aldrich
- 3.2.30 methanol (MeOH) in LC-MS quality, e.g. Merck LiChrosolv®
- 3.2.31 sulphuric acid 98%, e.g. Merck

- 3.2.32 ammonia 32%, e.g. Merck
- 3.2.33 ammonium formate in LC-MS quality, e.g. Fluka
- 3.2.34 acetonitrile, e.g. Merck LiChrosolv®

3.3 Solutions

3.3.1 Extraction solution

2.665 mL of sulphuric acid (H_2SO_4) (3.2.31) are filled up to 1000 mL with water. The final concentration is 0.05 M.

3.3.2 Aqueous ammoniacal solution for neutralisation

To prepare the ammonical solution for neutralisation of sample extracts before SPE, 5 mL of ammonia (3.2.32) are filled up to 25 mL with water.

3.3.3 2.5 % ammonia in methanol for SPE elution (SPE elution for black tea and green tea)

To prepare the 2.5 % ammonia solution in methanol 7.8 mL of ammonia (3.2.32) are filled up to 100 mL with methanol (3.2.30). The solution has to be freshly prepared per working day.

3.3.4 HPLC mobile phase

Eluent A:

315 mg ammonium formate (3.2.33) are dissolved in 5 mL of water, 1 mL of formic acid (3.2.29) is added and filled up to 1000 mL with water.

Eluent B:

315 mg ammonium formate (3.2.33) are dissolved in 5 mL of water, 1 mL of formic acid (3.2.29) is added and filled up to 1000 mL with methanol (3.2.30).

3.3.5 Standard solution for calibration

Stock solution (0.1 mg/mL):

To create a stock solution, 1 mg of a pyrrolizidine alkaloid standards are weighed using analytical balance (4.4) and filled up with acetonitrile (3.2.34) in a volumetric flask to make 10 mL. The concentration of the stock solution is 0.1 mg/mL.

Standard working solution (PA mixture, 1 µg/mL)

For preparation of the standard working solution, respective volumes of each PA stock solution (0.1 mg/mL) are pipetted into a volumetric flask and is filled up with acetonitrile (3.2.34), to obtain a concentration of 1 μ g/mL.

Preparation of matrix matched standards (MMS)

For a correction of matrix effects a matrix matched calibration is used. In order to obtain the same matrix effect for MMS and for the samples the blank plant material has to be processed as described in section 5. Afterwards, MMS levels have to be prepared according to table 1.

<u>Please note:</u> In order to prepare of a sufficient amount of blank-extract, two times 10 mL of neutralised blank-extract (5.2) from one blank sample can be purified using two SPE-cartridges. Thereby, 2 mL of reconstituted blank-extract for the MMS preparation can be received without extraction of an additional blank sample.

table 1: Matrix matched standards							
	Final PA mass	Final PA mass	Aliquot taken from	Aliquot Volume	Aliquot taken from blank		
	calibration	concentration	i olii	Volume	plant material		
	solution				extract		
	ng/mL	µg/kg		μL	μL		
MMS_1	5,0	10,0	MMS_5	20	280		
MMS_2	10,0	20,0	MMS_8	20	280		
MMS_3	25,0	50,0	MMS_8	20	100		
MMS_4	50,0	100,0	PA-Mix	10	100		
MMS_5	75,0	150,0	PA-Mix	15	185		
MMS_6	100.0	200,0	PA-Mix	20	180		
MMS_7	125,0	250,0	PA-Mix	25	175		
MMS_8	150,0	300,0	PA-Mix	60	340		

4 Apparatus

4.1 General

Usual laboratory glassware and equipment should be used and, in particular, the following:

- 4.2 centrifugal mill with 0.5 mm sieve, e.g. Retsch
- 4.3 various piston pipettes and multiple dispensers, e.g. Brand
- **4.4** analytical balance, capable of weighing to 0,0001 g
- 4.5 centrifuge for 50 mL centrifuge tubes, capable of at least 5 000 x g
- 4.6 ultrasonic bath
- 4.7 overhead shaker, e.g. Heidolph
- 4.8 laboratory shaker, e.g. Vortex
- 4.9 evaporation station, e.g. TurboVap
- 4.10 centrifuge tube 50 mL
- 4.11 test tubes 15 mL
- 4.12 volumetric flasks, 10 and 20 mL
- 4.13 folded filters, e.g. Munktell
- 4.14 SPE cartridges: DSC-C18 SPE (Supelco), 500 mg sorbent material, 6mL
- 4.15 SPE vacuum chamber
- **4.16 Membrane filter** 0.2 μm, e.g. VWR 0,5 mL centrifugal filters, modified nylon membrane
- 4.17 HPLC vials 2 mL
- 4.18 Glass inserts, 250 µL conic for HPLC vials
- **4.19** chromatographic column, e.g. Thermo, Hypersil Gold®; 150 x 2.1 mm; 1,9 µm
- 4.20 LC-MS/MS system

5 Procedure

5.1 Sample preparation (grinding of plant material)

To determine the PA-content which is representative for the entire sample, the plant material should meet the following characteristics: uniform particle size and a homogenous distribution of PA or PA-containing material, respectively. Therefore, the entire sample material is mixed with dry ice (ratio 2:1), ground to a particle size of 0.5 mm (4.2) and homogenized for example by shaking over head (4.7). As an alternative to grinding with dry ice (excellent grinding results due to shear forces and porosity of the frozen sample material), the sample material may also be ground to a particle size of 0.25 mm if there is no considerably generation of heat.

If the test material can neither be ground with dry ice nor ground to a particle size of 0.25 mm, it is also possible to increase the weighed sample amount in contrast to 5.2 to at least 10 g (particle size 0.5 mm). In order to keep a constant ratio of sample amount to extraction volume, the used volume of extraction solution (3.3.1) needs to be increased by the same factor as the weighed sample amount.

5.2 Extraction

For the extraction of PA 2.0 g \pm 0.1 g of plant are weighed into a centrifuge tube (4.10).

Extraction step 1	For the first extraction step 20 mL of the extraction solution (3.3.1) are added to the sample. The sample material has to be wetted completely before extraction in an ultrasonic bath (4.6) for 15 min at ambient temperature.
Centrifugation	The sample is centrifuged for 10 min \pm 2 min at 3800 x g (4.5). The supernatant (extract 1) is transferred into a clean test tube. The sediment is used for the second extraction step.
Extraction step 2	Next, 20 mL of extraction solution (3.3.1) are added to the already ex- tracted sample. The centrifuge tube is shaken vigorously to distribute the sample (the sample can also be stirred if necessary). The sample is again extracted in the ultrasonic bath for 15 min at ambient tempera- ture.
Centrifugation	The sample is centrifuged applying the above mentioned conditions. The supernatant is added to the first extract.
Neutralisation	The combined extracts are set to pH 7 using the neutralisation solution (3.3.2). Control of the pH value is accomplished using indicator strips. Usually, about 500 μL to 1000 μL of the solution are needed.

The complete neutralised extract is passed through a folded filter (4.13). An aliquot of the filtrate is used for SPE. The filtration step prior to SPE can be repeated in case of larger quantities of remaining particles in the solution. Thereby, blockage of SPE cartridges can be avoided.

5.3 SPE-procedure

The Solid Phase Extraction (4.14) is carried out using a vacuum chamber (4.15).

Conditioning step 1	5 mL of methanol (3.2.30)			
Conditioning step 2	5 mL of water			
Sample load	10 mL sample (filtrate of neutralised extract)			
Washing step	2 x 5 mL of water			
Drying of cartridges	5 - 10 min (use the vacuum chamber (4.15))			
Elution of PA	2 x 5 mL methanol (3.2.30) or			
	in case of green and black tea 2 x 5 mL 2.5 % ammonia in methanol (3.3.3)			

The eluate is dried under a nitrogen stream at 50 °C \pm 5 °C.

5.4 Reconstitution of the sample

The residue is dissolved in 1 mL of methanol/water (5/95, v/v) by shaking (4.8).

The reconstituted sample extracts are filtered through 0.2 μ m membrane filters (4.16). When using centrifugal filters, 500 μ L of the sample are centrifuged at 20 000 x g for 10 min ± 3 min. 200 μ L of the filtrate are transferred into an HPLC vial (4.17) with a glass insert (4.18).

6 HPLC-MS/MS analysis

6.1 Liquid chromatographic separation

The measurements can be carried out with different high-performance liquid chromatographs (HPLC) and separation columns. The chromatographic conditions can be chosen freely. The acceptable minimum retention time is twice the retention time for the dead volume of the column. Analytes which cannot be distinguished by means of mass spectrometry must be separated chromatographically. The conditions listed in the annex 8.1 using a C18column (4.19) and the mobile phase described in 3.3.4 have shown to be suitable in pretrials. However, they are to be seen as examples only.

6.2 Mass spectrometric operation conditions

The measurements can be carried out with MS/MS devices of different manufacturers. In the annex 8.1, the device-specific settings of one measuring system are given as an example. These conditions have shown to be suitable in pre-trials.

<u>Please note:</u> For the qualitative detection and for quantification, it is necessary to detect and report two substance-specific transitions per analyte.

6.3 Measurement

For a quantitative analysis, the following criteria are defined.

Injection:

Samples and standards are injected in duplicate in order to assess repeatability of MS detection and to check for possible response drift during the sequence.

Sequence

To determine pyrrolizidine alkaloids, the following array of analysis is defined in a sequence.

- 1. Matrix matched standards (5 150 ng/mL)
- 2. Solvent blank
- 3. Samples (first injection)
- 4. Solvent blank
- 5. Matrix matched standards (5 150 ng/mL)
- 6. Solvent blank
- 7. Samples (second injection)

7 Calculation

The quantitative determination is performed according to the method of the matrix matched standard by integration of the peak areas in relation to the calibration line.

7.1 Calibration function

Equation1: Calibration function

$$f_{(x)} = y = ax + b$$

where

y is the peak area of the target analyte
a is the slope of the calibration function
x is the concentration of the target analyte [ng/mL] in the MMS
b is the intercept of the calibration function

7.2 Quantification

Equation2: Calculation of the PA content (analysis equation)

$$PA \ concentration = \beta \ x \ DF = \left[\left(y - b \right) x \frac{1}{a} \right] x \frac{V_{Extract}}{m_{weight}} \ x \frac{1}{V_{Application}} \ x V_{sample}$$

where

is the analyte concentration [ng/mL] in the sample extract
is the conversion factor from ng/mL to µg/kg
is the peak area of the target analyte
is the axis intercept from the matrix calibration
is the increase from the matrix calibration
is the volume of extraction agent [mL]
is the sample weight in [g]
is the volume of the extract applied for SPE [mL]
is the final sample volume [mL]

7.3 Reporting of results

The results are reported in μ g/kg with two significant decimals. To convert the concentration from ng/mL injected solution to μ g/kg plant material a factor of 2 is used according to the sample preparation procedure described in chapter 5.

Reference list

DIN ISO 32645. (1994) Chemical Analsysis; Decision limit, Detection limit and determination limit, Estimation in case of repeatability, terms, methods, evaluation. Deutsches Institut für Normung DIN.

EFSA Panel on Contaminants in the Food Chain (CONTAM). (2011) Scientific Opinion on Pyrrolizidine alkaloids in food and feed. The EFSA Journal 9, 1-135

8 Annex

8.1 LC-MS/MS measurement

LC-MS/MS system consisting of

Triple quadrupole mass spectrometer (Thermo TSQ Vantage)

HPLC system	HPLC pump (e. g. Thermo Accela 1250),
	Degasser
	Autosampler (e. g. CTC Analytics PAL ATS MYX)
	Column oven (e. g. MayLab MistraSwitch)

HPLC settings

Gradient	Time (min)	% A	% B	
Total runtime	15 minutes			
Column	e. g. Thermo Hy	persil Gold; 1	50 x 2.1 mm, 1.	9 µm
Injection volume	10 µL			
Flow rate	300 µL/min			
Column temperature	40 °C			
Eluent B	refer to (3.3.4)			
Eluent A	refer to (3.3.4)			

	Time (min)	% A	% B
	0.0	95	5
	0.5	95	5
	7.0	50	50
	7.5	20	80
	7.6	0	100
	9.0	0	100
	9.1	95	5
_	15.0	95	5

MS settings

Ionisation	Electrospray positive (ESI +)
lon spray voltage [V]	3500 (positive polarity)
Capillary temperature [°C]	270
Vaporiser temperature [°C]	300
Sheath gas pressure [psi]	45.0
lon sweep gas pressure [psi]	2.0
Aux gas pressure [psi]	10

Substance-specific parameters

The analytes are detected by Selected Reaction Monitoring (SRM). For analyte identification, two PA specific transitions to two product ions are chosen. The relevant transitions and the collision energy (CE) can be found in .

table **2**. The table also lists the retention time per analyte which apply for the HPLC settings described above.

analyte	precursor	fragment	CE	S Lens	retention time [min]
Мс	326.2	120.3	35	130	4.25
		237.3	25	130	
McN	342.1	118.3	37	141	4.99
		137.4	29	141	
ErN	366.1	136.1	30	129	5.16
		120.1	33	129	
Jb	352.1	120.1	36	110	5.25
		155.2	29	120	
Eu	330.1	138.1	20	89	5.34
		156.2	28	89	
Im	300.1	138.3	18	112	5.40
		156.3	28	112	
JbN	368.1	120.1	32	110	5.51
		296.1	23	110	
La	300.1	138.3	18	112	5.53
		156.3	28	112	
EuN	346.1	111.2	41	91	5.63
		172.1	31	91	
ImN	316.1	111.2	37	95	5.91
		138.1	26	95	
LaN	316.1	111.2	37	95	6.02
		138.1	26	95	
Td	354.2	120.3	35	137	6.37
		222.3	28	137	
ReN	368.2	136.2	30	145	6.41
		118.2	40	145	
Sp	334.2	120.3	26	138	6.56
		138.4	28	138	
Hn	314.2	138.3	19	119	6.72
		156.3	28	119	
Er	350.2	120.3	32	110	4.87
		138.1	30	110	
SpN	350.2	118.2	36	135	6.79
		136.3	32	135	
HnN	330.2	138.2	22	121	7.03
		172.1	27	121	
Sv	336.2	120.1	27	135	7.26
		138.1	27	135	
Sc	336.2	120.2	27	130	7.33
		138.2	29	130	
SvN	352.1	118.1	30	110	7.42
		120.1	36	110	
Re	352.2	120.3	27	140	7.54
		138.3	29	140	

table 2: Substance-specific parameters of the LC-MS/MS method

analyte	precursor	fragment	CE	S Lens	retention time [min]
ScN	352.2	118.1	28	116	7.54
		136.3	27	116	
EmN	414.2	254.1	32	129	8.01
		352.1	27	129	
Em	398.2	120.3	23	139	8.02
		220.3	17	139	
Sk	366.2	150.3	24	132	8.19
		168.2	28	132	
Lc	412.2	120.2	30	139	8.99
		336.3	17	139	
LcN	428.2	136.1	29	135	9.33
		254.1	27	135	

table 3: Limits of detection (LOD) and limits of quantification (LOQ) determined during in-house validation of the described method*

analyte	LOD [µg/kg]	LOQ [µg/kg]
Мс	0,9	2,8
McN	1,7	5,4
ErN	1,2	3,8
Jb	1,3	4,0
Eu	0,7	2,1
Im	1,0	3,1
JbN	1,3	4,2
La	2,0	6,4
EuN	0,7	2,3
lmN	1,2	3,8
LaN	1,5	4,9
Td	1,0	3,1
ReN	1,4	4,6
Sp	1,3	4,0
Hn	0,5	1,7
Er	0,6	1,9
SpN	0,9	2,7
HnN	0,6	2,0
Sv	1,7	5,3
Sc	1,8	5,9
SvN	0,8	2,6
Re	0,8	2,7
ScN	0,9	2,9
EmN	1,9	6,1
Em	0,8	2,6
Sk	0,8	2,4
Lc	0,8	2,4
LcN	0,9	2,8

* LOD and LOQ were determined according to DIN EN ISO 32645 Calibration method (DIN ISO 32645 1994)

retention time (min) Figure 1: Typical chromatogram of a PA standard mixture (1 ng/mL), TIC of SRM-transitions

6.5

7.0

7.5

8.0

8.5

6.0

Bf

9.0

9.5

R

)(

4.0

4.5

5.0

5.5

8.3 Provider of PA-Standards

pyrrolizidine alkaloid	mass	CAS	provider	order code
echimidine	397,47	520-68-3	Oskar Tropitzsch	7550006
			PhytoLab*	89553
			PlantaAnalytica	-
			Carl Roth	1657.1
erucifoline	349.38	40158-95-0	Oskar Tropitzsch	7550021
			PhytoLab*	83446
arusifalina Navida	365,37	123864-94-8	Carl Roth	1664.1
eracitoline-IN-oxide			PhytoLab*	83434
europine-bydrochloride	365.86	570-19-4	Carl Roth	1676.1
europine-nyurochionde	303,00	570-13-4	PhytoLab*	83237
	345,39	65582-53-8	AppliChem	A9574,0010
europine-N-oxide			Carl Roth	1687.1
			Oskar Tropitzsch	7500063
			PhytoLab*	83238
		303-33-3	AppliChem	A9583,0020
1 B 2 B	040.40		Carl Roth	1929.1
heliotrine	313,40		Latoxan*	L6007
			Oskar Tropitzsch	7550511
			PhytoLab	80403
	329,39	6209-65-0		A9590,0010
heliotrin-N-oxide			Carl Roth	1944.1
			Oskar Tropitzsch	70004
				1060 1
indicine-bydrochloride	335,83	1195140-94-3	Ockar Tropitzech	7500.0
Indicine-nydrochionde			Phytol ab	83234
	315,36	41708-76-3	AppliChem	Δ9593 0010
			Carl Roth	1961 1
indicine-N-oxide			Oskar Tropitzsch	7500070
			Phytol ab	83235
			Carl Roth	1962.1
intermedine	299.37	10285-06-0	Oskar Tropitzsch	7501610
			PhytoLab*	82424
intermedine-N-oxide	315,36	95462-14-9	PhytoLab*	83434
lasiocarpine	411,49	303-34-4	AppliChem	A9596,0010
			Carl Roth	2090.1
			Oskar Tropitzsch*	7500019
			PhytoLab	80412
	457,5	127-30-0	AppliChem	A9600,0010
lasiocarpina N ovida			Carl Roth	2202.1
lasiocarpine-N-oxide			Oskar Tropitzsch*	7501284
			PhytoLab	83220
lycopsamine	299,37	10285-07-1	Carl Roth	2208.1
			Oskar Tropitzsch	7501080
			PhytoLab*	89726
lycopsamine-N-oxide	315 36	95462-15-0	Oskar Tropitzsch	7501358
iyoopsamine-iv-oxide	010,00		PhytoLab*	83447

pyrrolizidine alkaloid	mass	CAS	provider	order code
		315-22-0	Carl Roth	3418.1
			Fluka	37024
			Sigma	C2401
monocrotaline	325.35		Oskar Tropitzsch	7550522
			PhytoLab*	89251
			R&D Chemicals	7351
			Santa Cruz Biotechnology	sc-211921
			Carl Roth	2249.1
monocrotaline-N-oxide	341 36	35337-98-5	Oskar Tropitzsch	7501658
	011,00		Phytol ab*	82629
			AppliChem	A4922 0020
		480-54-6	Carl Roth	1213.1
			Fluka	37025
retrorsine	351 40		Oskar Tropitzsch	7550659
	551,40		Phytol ab	89775
			Santa Cruz Biotechnolog	sc-215805
			Sigma*	R0382
		15503-86-3	AppliChem	A8668 0010
			Carl Both	6733 1
retrorsine-N-oxide	367,40		Oskar Tropitzsch	7500347
			Phytol ab*	82630
	335,40		AppliChem	Δ2071 0020
			Carl Roth*	2261 1
			Fluka	37031
		130-01-8	Oskar Tropitzsch	7550292
senecionine			Phytol ab*	80780
			R&D Chemicals	1828
			Sigma	17806
			Santa Cruz Biotechnology	sc-286770
senecionine-N-oxide	351,40	13268-67-2	AppliChem	<u>A8678 0010</u>
			Carl Both	673/ 1
			Oskar Tropitzech	7500301
			Dokal hopiczech Doutol ob*	82631
				A 2072 0020
	333,39	480-81-9	Applichem Carl Both*	AZ072,0020
seneciphylline			Eluko	27022
			PIUKA PRD Chamicala	1950
			Sonto Cruz Riotochnology	1650
			Inc	sc-229697
				AB16707/
			Abert Gilbin Phytol ab*	80275
	349,38	38710-26-8	AppliChem	Δ8684 0010
			Carl Roth	6725 1
seneciphylline-N-oxide			Oskar Tropitzech	7500572
			Phytol ah*	100010
	335.40	72755-25-0		22032
seneciverning			Oskar Tropitzech	7550066
senecivernine			Dhytal ah*	8213E
			FIIYIOLAD	03430

mass	CAS	provider	order code
351,39	101687-28-9	Carl Roth	2215.1
		PhytoLab*	83437
		AppliChem	A6765,0010
365,43	2318-18-5	Carl Roth	4934.1
		Fluka	37032
		Oskar Tropitzsch	7500441
		PhytoLab*	89274
353,41	548-90-3	Latoxan*	L6049
	mass 351,39 365,43 353,41	mass CAS 351,39 101687-28-9 365,43 2318-18-5 353,41 548-90-3	massCASprovider351,39101687-28-9Carl Roth PhytoLab*365,432318-18-5AppliChem Carl Roth Fluka Oskar Tropitzsch PhytoLab*353,41548-90-3Latoxan*

* substances were used for the in-house validation by BfR

8.4 Flow chart of the sample preparation procedure

