

Viral Genetics and Biosecurity Unit (UGVB) **ANSES** Ploufragan

Julie HUREL

Supervision :

Fabrice TOUZAIN (bioinformatics) Stéphanie BOUGEARD (statistics) Mathieu Rolland (biology)

modified bacteria by statistical analysis of high throughput

sequencing data

UNIVERSITÉ DE **RENNES**

- 1. Introduction
- 2. Objectives
- 3. Data preparation
- 4. Calculation of the distances
- 5. Design of the prediction model
- 6. Results
- 7. Conclusion
- 8. Perspectives

1. Introduction

2. Objectives

- 3. Data préparation
- 4. Calculation of the distances
- 5. Design of the prediction model
- 6. Results
- 7. Conclusion

8. Perspectives

- A Genetically Modified Organism : GMO
 - Living being whose genetic material has been modified in a non-natural way
 - Simplified description of the structure of a GMO
 - « Host » genome Junction sequences Insert
 - Insert : often CDS(s) (coding sequence)

GMO

- A Genetically Modified Organism : GMO
 - Living being whose genetic material has been modified in a non-natural way
 - Simplified description of the structure of a GMO

- A Genetically Modified Organism : GMO
 - Living being whose genetic material has been modified in a non-natural way
 - Simplified description of the structure of a GMO

Insert : often CDS(s) (coding sequence)

- **B** Existing detection methods
 - For known GMO
 - Methods based on protein detection or DNA detection
 - ► Use of qPCR : greater sensitivity and acurate quantification
 - GMOseek [Morisset et al. 2014]

Credit: Vit Kovalcik/Shutterstock.com

B – Existing detection methods

- For partially known GMO
 - New sequencing techniques coupled with
 - Molecular methods [Fraiture *et al.*, 2017, 2018]
 - Bioinformatics/Statistics [Willems et al., 2016]
 - ▶ DNA walking [Fraiture *et al.*, 2015, 2018]
- For unknown GMO
 - No method available so far

C – State of the art

Current detection limits

	Detection of known and partially known GMO		Detection of unknown GMO	
	Prokaryotes	Eukaryotes	Prokaryotes	Eukaryotes
Intergenic sequences	~	 	×	×
Truncated gene	 ✓ 	v	~	~
Fused gene	 ✓ 	v	~	~
Insertion/deletion in a gene	~	v	×	×
% of point mutations ≥ 9%	~	v	×	×
% of point mutations < 9%	~	v	×	×

1. Introduction

2. Objectives

- 3. Data preparation
- 4. Calculation of the distances
- 5. Design of the prediction model
- 6. Results
- 7. Conclusion

8. Perspectives

A – General information

No method available for the detection of unknown GMO

Creation of a method to address this issue

DUGMO : Detection of Unknown Genetically Modified Organism [Hurel et al., BMC Bioinformatics 2020] https://github.com/ANSES-Ploufragan/DUGMO

Basic idea of the method

 Identify the vocabulary differences between the host genome and the insert

- **B** General principle of DUGMO
 - Particularity : use the CDS of the host genome
 - Specific genomic vocabulary
 - Species-specific
 - Composed of words

- **B** General principle of DUGMO
 - Particularity : use the CDS of the host genome
 - Specific genomic vocabulary
 - Species-specific
 - Composed of words

Nucleotidic sequence

- Species 1
 GTCGGGTCGACGTCGGGTCGTGTCGAGTCGG

 Over-represented 4 letter-words
- **Species 2** AGGCTCAGCTGAGCTTCAGTCGTGTACTAGC

- 1. Data preparation
 - Cleaning, assembly, annotation pipeline
 - Sorting of the CDSs in the sample
 - Filtering of the databank of known GMOs
- 2. Characterisation of the « host » genome CDSs based on their overrepresented words
- 3. Calculation of the distances to support the comparaison to the host genome CDSs
- 4. Design of a prediction model

- 1. Data preparation
 - Cleaning, assembly, annotation pipeline
 - Sorting of the CDSs in the sample
 - Filtering of the databank of known GMOs
- 2. Characterisation of the host genome CDSs based on their overrepresented words
- 3. Calculation of the distances to support the comparaison to the host genome CDSs
- **4.** Design of a prediction model

- 1. Data preparation
 - Cleaning, assembly, annotation pipeline
 - Sorting of the CDSs in the sample
 - Filtering of the databank of known GMOs
- 2. Characterisation of the host genome CDSs based on their overrepresented words
- Calculation of the distances to support the comparaison to the host genome CDSs
- 4. Design of a prediction model

- 1. Data preparation
 - Cleaning, assembly, annotation pipeline
 - Sorting of the CDSs in the sample
 - Filtering of the databank of known GMOs
- 2. Characterisation of the host genome CDSs based on their overrepresented words
- Calculation of the distances to support the comparaison to the host genome CDSs
- 4. Design of a prediction model

Data preparation : cleaning/assembly/annotation, sorting and filtering

Databank of known GMO CDSs C

- Characterizes what we are not looking for
- ► Other CDSs, absent from the pangenome
- Non-species sequence variability
- Computation of distances to characterize :
 - ▶ the vocabulary of a
 - ▶ the vocabulary of **c**
 - ▶ the vocabulary of each sequence in the set **b**

Data preparation : cleaning/assembly/annotation, sorting and filtering

Sample

Set of CDSs of the host genome a

Set of CDSs which are potential inserts b

Databank of known GMO CDSs C

- Characterizes what we are not looking for
- ► Other CDSs, absent from the pangenome
- Non-species sequence variability
- Computation of distances to characterize :
 - ▶ the vocabulary of a
 - ▶ the vocabulary of **c**
 - ▶ the vocabulary of each sequence in the set **b**

Data preparation : cleaning/assembly/annotation, sorting and filtering

Sample

Set of CDSs of the host genome a

Set of CDSs which are potential inserts b

Databank of known GMO CDSs

- Characterizes what we are not looking for
- Other CDSs, absent from the pangenome
- Non-species sequence variability
- Computation of distances to characterize :

C

- ▶ the vocabulary of a
- ▶ the vocabulary of **c**
- ▶ the vocabulary of each sequence in the set **b**

Data preparation : cleaning/assembly/annotation, sorting and filtering

Sample

Databank of known GMO CDSs

- Characterizes what we are not looking for
- Other CDSs, absent from the pangenome

anses

15/03/2023

- Non-species sequence variability
- Computation of distances to characterize :
 - ► the vocabulary of a
 - ▶ the vocabulary of **c**
 - ▶ the vocabulary of each sequence in the set **b**
- ► Design of a prediction model

Data preparation : cleaning/assembly/annotation, sorting and filtering

Sample

- Characterizes what we are not looking for
- Other CDSs, absent from the pangenome

anses

15/03/2023

Databank of known GMO CDSs C

- Non-species sequence variability
- Computation of distances to characterize :
 - the vocabulary of a
 - the vocabulary of c
 - the vocabulary of each sequence in the set b

Data preparation : cleaning/assembly/annotation, sorting and filtering

Sample

Databank of known GMO CDSs C

- Characterizes what we are not looking for
- Other CDSs, absent from the pangenome

anses

15/03/2023

- Non-species sequence variability
- Computation of distances to characterize :
 - the vocavulary of a
 - the vocavulary of c
 - the vocavulary of each sequence in the set b

Design of a prediction model => GMO ?

- 1. Introduction
- 2. Objectives of the PhD
- 3. Data preparation
- 4. Computation of distances
- 5. Design of a prediction model
- 6. Results
- 7. Conclusion

8. Perspectives

A – Pangenome: wild-type and representative of species

15/03/2023

A – Data required as input to the software

1. High throughput sequencing data

2. Reference genome (wild-type)

3. Pangenome (wild-type) and its associated CDSs

Species of the potentially GM bacterium

4. Databank of known GMO inserts

B – Objectives

- Data cleaning, assembly, annotation of sequencing data
- Sorting of the sample CDSs
- Filtering of the database of known GMO inserts

B – Cleaning pipeline

Assembly and annotation of high throughput sequencing data

Step 1 : Comparison of the potental GMO CDSs with pangenome's CDSs

Potential GMO CDSs

Step 1 : Comparison of the potental GMO CDSs with pangenome's CDSs

Step 1 : Comparison of the potental GMO CDSs with pangenome's CDSs

15/03/2023

Step 1 : Comparison of the potental GMO CDSs with pangenome's CDSs

15/03/2023

Step 1 : Comparison of the potental GMO CDSs with pangenome's CDSs

D – Filtering the GMO insert databank

Using the host genome CDSs

CDS related to the

host genome

Databank of known GMO inserts Comparison criteria identical to step 1

D – Filtering the GMO insert databank

Using the host genome CDSs

CDS related to the

15/03/2023

D – Filtering the GMO insert databank

C – Get the three needed distinct datasets

- 1. Introduction
- 2. Objectives of the PhD
- 3. Data preparation

4. Computation of the distances

- 5. Design of a prediction model
- 6. Results
- 7. Conclusion

8. Perspectives

A – Objectives

 Objective : characterization of the host genome CDSs and of the two other CDS sets

Approach : determine the best combinations of parameters

Purpose : establish explanatory variables for the development of the prediction model

- **B** Characterization of the genomic vocabulary
 - R'MES [Schbath, S. and Hoebeke, M. 2011]: Searches for the exceptional words in a sequence
 - Determine the number of occurrences of each word and its exceptional character
 - It defines a set of words that are over-represented in the host genome
 R^IMFS
 - ► Three distance formula and two types of calculations
 - ► Euclidean distance
 - ► Kullback-Leibler distance [Trifonov et Rabadan, 2010]
 - ► Bray-Curtis distance

- **B** Characterization of the genomic vocabulary
 - R'MES : Searches for the exceptional words in a sequence
 - Determine the number of occurrences of each word and its exceptional character
 - It defines a set of words that are over-represented in the host genome

anses

- Three distance formula and two types of calculations
 - Euclidean distance
 - Kullback-Leibler distance [Trifonov et Rabadan, 2010]
 - Bray-Curtis ~distance (dissimilarity measurement)

- **B** Characterization of the genomic vocabulary
 - Type of distance calculation named « in Frequencies »
 - Concatenation of the third codon positions into a new sequence

	Word size	<u>Running</u> <u>R'mes</u>
AGTACGTCAGGTAGTATCCAGCTAATG	27	impossible
TGATTCGAG	9	fast

10% of over-represented words

Type of distance calculation named « in Proportions »

- ► Whole CDS
- ► All words

B – Characterization of the genomic vocabulary

Type of distance calculation named « in Frequencies »

Concatenation of the third codon positions into a new sequence

AGTACGTCAGGTAGTATCCAGCTAATG

TGATTCGAG

Arginine

CGA CGG

anses

15/03/2023

10% of over-represented words

Type of distance calculation named « in Proportions »

- ► Whole CDS
- All words

B – Characterization of the genomic vocabulary

Type of distance calculation named « in Frequencies »

Concatenation of the third codon positions into a new sequence

AGTACGTCAGGTAGTATCCAGCTAATG

TGATTCGAG

► 10% of over-represented words

Type of distance calculation named « in Proportions »

- Whole CDS
- All words

Detection/characterisation of undescribed GM bacteria by statistical analysis of high-throughput sequencing data 45

Arginine

CGU

CGC

CGA

CGG

C – Combinations of parameters

List of tested parameters :

- Word sizes
- Order of the Markov model
- Percentage of over-/under-represented words
- Concatenation of the third codon positions

D – Explanatory variables retained in DUGMO for one CDS

Bray-Curtis distances

- « In frequencies »
 - F L9M7 : Word size 9 and Markov model order 7
- In proportions »
 - P L3M1 : Word size 3 and Markov model order 1
 - P L4M2 : Word size 4 and Markov model order 2
- ► Average exceptionality scores in the host genome for L4M2 et L9M7
- Count density per nucleotide for 4-letter and 9-letter words

Sum of all word counts CDS length

► Percentage of GC

D – Explanatory variables retained in DUGMO for one CDS

- Bray-Curtis distances
 - In frequencies »
 - F L9M7 : Word size 9 and Markov model order 7
 - In proportions »
 - P L3M1 : Word size 3 and Markov model order 1
 - P L4M2 : Word size 4 and Markov model order 2
- Average exceptionality scores provided by R'MES in the host genome for L4M2 and L9M7
- Count density per nucleotide for 4-letter and 9-letter words

Sum of all word counts CDS length

Percentage of GC

E – Application of distance calculations

E – Application of distance calculations

anses 15/03/2023

- 1. Introduction
- 2. Objectives of the PhD
- 3. Préparation des données
- 4. Calcul de distances

5. Design of the prediction model

- 6. Results
- 7. Conclusion

8. Perspectives

15/03/2023

A – Objectives

- Approach : use of Machine Learning methods
- Purpose : predict proven CDSs of GMO inserts

B – Machine Learning

12 tested methods

Logit : generalized linear model StepLDA : linear discriminant analysis StepQDA : quadratic discriminante analysis Plsda : partial least squares regression	parametric
NN : neural networks	non parametric
SvmRadial : support vector machines	including decision
KNN : K nearest neighbors	trees
C5.0 : classification algorithm	
Rpart : recursive partitionig trees	
<u>RF : random forests</u>	
Treebag : classification trees with bagging	
Xgboost : extreme gradient boosting	

15/03/2023

- **D** Comparison of the tested methods
 - Centered, reduced, and stratified data
 - Optimisation of the parameters of each method in 10-fold cross-validation
 - 2-fold cross-validation comparison of methods

2-fold cross-validation

Introduction	Objectives	Data preparation	Calculation of the distances	Prediction model	Results	Conclusion	Perspectives
--------------	------------	---------------------	------------------------------------	---------------------	---------	------------	--------------

E – Selection criteria

Confusion matrix

		Predictions of a model		
		GMO	Non-GMO	
Real data	GMO	True positives	False negatives	
	Non-GMO	False positives	True negatives	

Specificity : ++
 False positive rate: --

► Sensitivity : ++

► False negative rate : +++

F – Final choice

- Union of the results of two methods
 - ► **RF** : Random Forests
 - Logit : Generalized linear model

	Results for prediction data						
	Logit	Logit RF Union of RF and Logit					
False negative rate	0.04	0.01	0.01				
Specificity	0.94	0.98	0.99				
Sensitivity	0.95	0.98	0.99				
False positive rate	0.05	0.01	0.09				

15/03/2023

anses

A – Tested data

- 1 wild-type genome and 1 GM genome of B. subtilis bacterium
- ▶ 3 GM genomes of *E. coli* bacterium
- 6 wild-type genomes of bacteria
 - ► Campylobacter jejuni
 - Lactococcus lactis
 - Listeria monocytogenes
 - Mycobacterium tuberculosis
 - Staphylococcus aureus
 - Salmonella Typhimurium
- 42 synthetic GM genomes
 - Combinations : 6 wild-type bacteria + 7 exogenous genes

B – Global results

- With the 2 *B. subtilis* genomes
 - WT: No insert
 - GM: 25 detected inserts + 12 false negatives (maximum)
- ▶ With the 3 GM genomes of *E. coli*
 - 3 known inserts are detected
 - 1 false positive
- With the 48 synthetic WT genomes
 - 47: No insert
 - 1 false positive (M. tuberculosis)
 - ▶ With the 48 synthetic GM genomes
 - ► 47: insert found
 - ▶ 1 false negative (*S. aureus* including a *C. jejuni* gene)

C – GM Escherichia coli

► In the genome modified with a gene from *S. pyogenes* : 1 false positive

- ► arlS gene
- Truncated gene because of the assembly

Legend

Original genome, gene Reads

Minimal coverage depth (60)

assembled genome, truncated gene

C – GM Escherichia coli

► In the genome modified with a gene from *S. pyogenes* : 1 false positive

Solution : minimal coverage depth of 60 (bacteria)

<u>Legend</u>

original genome, gene Reads

Minimal coverage depth (60)

assembled genome

D – Wild-type Mycobacterium tuberculosis

One false positive detected by DUGMO: labelled GM while it is not

15/03/2023

E – Synthetic data

- Objectives
 - Test the sensitivity of the method to dicodon optimization

E – Synthetic data

Objectives

Test the detection threshold of the method

E – Synthetic data

Generation of mutations in a wild-type gene of B. subtilis

15/03/2023

- 1. Introduction
- 2. Objectives of the thesis
- 3. Data preparation
- 4. Computation of the distances
- 5. Design of a prediction model
- 6. Results

7. Conclusion

8. Perspectives

Introduction	Objectives	Data preparation	Calculation of the distances	Prediction model	Results	Conclusion	Perspectives
--------------	------------	---------------------	------------------------------------	---------------------	---------	------------	--------------

C – Summary: before

	Detection kno knowr	wn or partially n GMO	Detection unkown GMO		
	Prokaryotes	Eukaryotes	Prokaryotes	Eukaryotes	
Intergenic sequence	 	 	×	×	
Truncated gene	 ✓ 	v	~	~	
Fused gene	v	~	~	~	
Insertion/deletion in a gene	~	v	×	×	
% of point mutations ≥ 9%	~	v	×	×	
% of point mutations < 9%	~	v	×	×	

Introduction	Objectives	Data preparation	Calculation of the distances	Prediction model	Results	Conclusion	Perspectives
--------------	------------	---------------------	------------------------------------	---------------------	---------	------------	--------------

C – Summary: after

	Detection kno knowr	wn or partially n GMO	Detection unknown GMO		
	Prokaryotes	Eukaryotes	Prokaryotes	Eukaryotes	
Intergenic sequences	✓	~	×	×	
Truncated gene	 ✓ 	v		Z	
Fused gene	V	v	~	Z	
Insertion/deletion in a gene	~	v	~	2	
% of point mutations ≥ 9%	~	v	\checkmark	2	
% of point mutations < 9%	✓	v	×	×	

- 1. Introduction
- 2. Objectives of the thesis
- 3. Data preparation
- 4. Computation of the distances
- 5. Design of a prediction model
- 6. Results
- 7. Conclusion

8. Perspectives

A – General

Adapt the method for application to other organisms

tokopedia.com Tetra Import Glowfish

Possibility to provide assembly data as input (Illumina, Pacbio)

GloFish®

Detection/characterisation of undescribed GM bacteria by statistical analysis of high-throughput sequencing data 72

Ackowledgements

 Machine Learning (Anses)
Stéphanie Bougeard

- Biology : LSV Angers (Anses)
 Vincent Hérau,
 Mathieu Rolland anses
 Anne-Laure Boutigny
- Word statistics: INRAE of Jouy en Josas
 Sophie Schbath INRAE

Joint Research Centre

CRA-W (Belgique) Fredérique Debode

BVL (Allemagne)
Lutz Grohmann

Federal Office of Consumer Protection and Food Safety

Thank you for your attention

https://github.com/ANSES-Ploufragan/DUGMO

© copyright 2023. Anses

Answers reflect my personal opinion, they are not the expression of the ANSES opinion

Detection/characterisation of undescribed GM bacteria by statistical analysis of high-throughput sequencing data 74

18 months post-doc position in bioinformatics DUGMO for Eukaryotic genomes

Conditions:

- out of France for 18 months from May 2020
- work in a P2+ lab

Contact: fabrice.touzain@anses.fr

https://github.com/ANSES-Ploufragan/DUGMO