Consumer exposure to silver (nanoparticles) in consumer products

Natalie von Goetz

ETH Zurich, Institute of Chemical and Bioengineering
The “blue man”

Paul Karason after 15 years of oral intake of colloidal silver
(source: www.telegraph.co.uk)
Silver in consumer products

The Nanotechproject: 313 products (24% of the inventory) use silver nanoparticles

- Medication: alternative medicine → “Blue man”, sporadic
- Medication (treatment of burns): since 50 years, routine treatment
- Textiles: since 10 years, especially functional textiles
- Biocidal sprays for indoor use
- Toothpaste (US, Poland), toothbrush
- Facial cream (e.g. CH)
- Tupperware (US, Korea)
- Toys (US)

www.nanotechproject.org

Silver in consumer products
Inhalation: EU consumer sprays

Household Sprays

Biocides: NanoSys

Personal Care Products

Antiperspirant: Nivea Silver Protect

NanoSpray I: ETH and EMPA, 2008-2010

Foot Spray: e.g. Hansaplast Silver Active Fußspray

NanoSpray II: Sabrina Losert, Andrea Ulrich, EMPA, Start 2011

Shoe sprays
Analysis of spray dispersion

TEM

ICP-MS [ppm]

propellant gas spray

pump spray

<table>
<thead>
<tr>
<th>Component</th>
<th>Ia</th>
<th>IIa</th>
<th>IIIa</th>
<th>IVa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al, C, Cl, Mg, O, Si</td>
<td>C, Cl, F, O, Zn</td>
<td>C, Cl, F, O</td>
<td>Ag, C, O, Si</td>
<td></td>
</tr>
<tr>
<td>6.8±0.7 silver</td>
<td>470±10 zinc</td>
<td>no metals</td>
<td>9.1±0.1 silver</td>
<td></td>
</tr>
</tbody>
</table>

Lorenz et al, 2011, J Nanoparticle Research, 13, 3377-3391
Hagendorfer et al, 2010, J Nanoparticle Research, 12, 2481-2494

Analysis of aerosol

- **Particle shape/size/elemental analysis:**

 Transmission electron microscopy (TEM) with EDX

- **Particle size distribution** 10-100 nm (No. of particles per cm3 air):

 Scanning mobility particle sizer (SMPS)

Diagram:

- Size distribution
- SMPS
- Electrostatic sampler
- Air-in
- Vent, Vacuum
- HEPA Filter
- Thermo-desorber
- Spraying: 0.2-3.5 g

Exposure to nanoparticles in sprays

BUT: no silver confirmed in aerosol!!

Deposition of nanoparticles in different regions:
- Nasal region
- Tracheobronchial region
- Alveolar region

ICRP model

BUT: NP/ND if sprayed with propellant gas

Nanoparticles in US consumer sprays

<table>
<thead>
<tr>
<th>Publication</th>
<th>Quadros & Marr, 2011</th>
<th>Nazarenko et al, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>design comparable to Hagendorfer et al, 2010</td>
<td>focus on nanoparticles in general, not silver</td>
</tr>
<tr>
<td>Sprays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Antiodor spray</td>
<td></td>
<td>1. Disinfectant personal care silver spray</td>
</tr>
<tr>
<td>2. Surface disinfectant</td>
<td></td>
<td>2. Nasal spray (water based)</td>
</tr>
<tr>
<td>3. Throat spray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray dispersion</td>
<td>1-100nm (size specific conc)</td>
<td>1. 3-65 nm particles</td>
</tr>
<tr>
<td>1. 1.7 ppm</td>
<td>2. 1.8 ppm (mainly Ag+)</td>
<td>2. <3-435 nm particles</td>
</tr>
<tr>
<td>3. 16.5 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag in aerosol</td>
<td>0.24-56 ng silver per spray action</td>
<td>no quantification, only size distribution</td>
</tr>
<tr>
<td>Size of aerosols</td>
<td>1-2.5 µm</td>
<td>particles 13nm - 20µm</td>
</tr>
<tr>
<td>general</td>
<td></td>
<td>nanoparticles also from non-ENP containing products</td>
</tr>
</tbody>
</table>
Ingestion from food contact materials

Target: Commercial tupperware and PE-bags claiming “Nano silver inside”

- Product Analysis with scanning ICP-MS and TEM
- Release experiments with food simulants, analysis with ICP-MS and TEM

<table>
<thead>
<tr>
<th>Tradename</th>
<th>Producer</th>
<th>Bulk Material/Description</th>
<th>Origin</th>
<th>Silver content in µg/g plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic Go Green Nano Silver Basic</td>
<td>Kinetic, Pathway Davenport, US</td>
<td>Polypropylene</td>
<td>US</td>
<td>18.7</td>
</tr>
<tr>
<td>Kinetic Go Green Nano Silver Premium</td>
<td>Kinetic, Pathway Davenport, US</td>
<td>Polypropylene</td>
<td>US</td>
<td><0.1</td>
</tr>
<tr>
<td>Nanosilber-Frischhaltedosen, Everin®</td>
<td>Newlife Co., Korea</td>
<td>Rubber sealing</td>
<td>Germany</td>
<td><0.1</td>
</tr>
<tr>
<td>FresherLonger™</td>
<td>Sharper Image Corporation, US</td>
<td>Polyethylene</td>
<td>US</td>
<td>37.1</td>
</tr>
</tbody>
</table>
Release from food boxes

Multiple use, after 10 d

MD-ICP-MS: 10-20% Ag as particles

N von Goetz, L Fabricius et al., 2012, submitted
Exposure to Ag from food boxes

Worst case assessment:

30 ng/cm² (worst case new box, acetic acid)

100 ml food in tupperware will cover 140 cm² (1x10x10)

→ worst-case acute exposure to 4.2 µg silver

Comparison to natural sources:
- Ag concentrations in drinking water in the US: 0.1 to 9 µg/L (1969)
- also food contains trace amounts of silver

→ exposure to Ag from these food boxes very low, but might consist of nanoparticles
→ product claim is questionable (under threshold of bactericidal activity)
Dermal exposure from PCP&C

Remederm repair cream: 0.1% Ag

silver lotion

silver antiperspirant

\[E = w_{\text{Prod}} \cdot a_{\text{Ret}} \cdot f_{\text{Event}} \cdot \frac{q_{\text{Prod}}}{m_{\text{bw}}} \]
Aggregate dermal exposure

Lorenz et al., 2011, “Potential exposure of German consumers to engineered nanoparticles in C&PCP”, Nanotoxicology, 5 (1), 12-29

→ Personal hygiene (medium case)
 0.5 * 60 kg = 30 µg/day
→ Cremes: e.g with 0.1% Ag in Remederm Repair
 hand cream + face cream, 3 times a day, both 0.8 g
 4500 µg/day
Uptake of silver nanoparticles

- **Inhalation:** no data for silver; gold: **1.5% for 40 nm**
 (Sadauskas et al, 2009 Chemistry Central Journal (3) 16)
- **Oral:** not more than **1% (largest for 30 nm)**
 (Bouwmeester et al, 2011 ACSNano (5) 5)
- **Dermal:** less than **0.01%**
 (Larese et al, 2009 Toxicology (255))

BUT: potentially size, surface (coating), shape dependent

Project: Gerald Bachler “The total exposure to silver”
Conclusions

- Spray: mind the generation of secondary nanoparticles
- Oral: current use in food contact material not alarming
- Dermal: external exposure comparatively large → uptake crucial

Silver in consumer products further means

- depletion of resources
- destruction of a potent antibiotic (resistance building)
Acknowledgement

Gerald Bachler, Martin Scheringer, Konrad Hungerbühler, S&E Group

Financial support: Swiss Federal Office of Public Health

Collaboration: Harald Hagendorfer, Andrea Ulrich (EMPA)

Reto Glaus, Detlef Günther (ETH, Anorganic Laboratory)