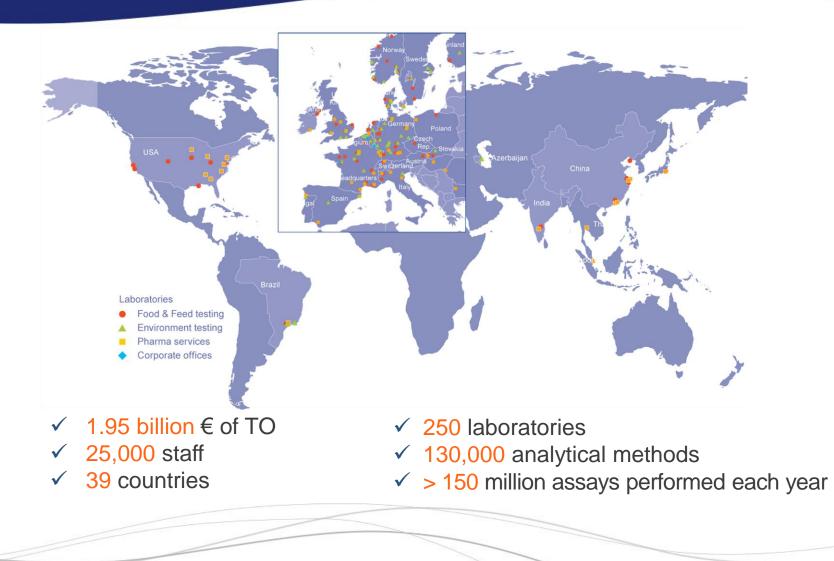
International Symposium "Standardisation of non-targeted methods for food authentication", Session II: Standardisation of Analytical Methods

Challenges in Nuclear Magnetic Resonance Spectroscopy Based Non-Targeted Analysis


Freddy Thomas, Dr. Eric Jamin – Eurofins Analytics France 28 – 29 November 2016, Berlin

Outline

- Eurofins' experience in non-targeted testing using 1H NMR
- The advantages of using 1H NMR to ensure food authenticity
- What are the challenges to the successful standardisation of nontargeted 1H NMR
- Some solutions: what has already been achieved and what could be done in the future

Key figures Eurofins group

Specialised in food authenticity testing

Eurofins Analytics France laboratory based in Nantes (France) is the group Competence Centre for authenticity of food products

Nantes, France-

Our vision of market needs

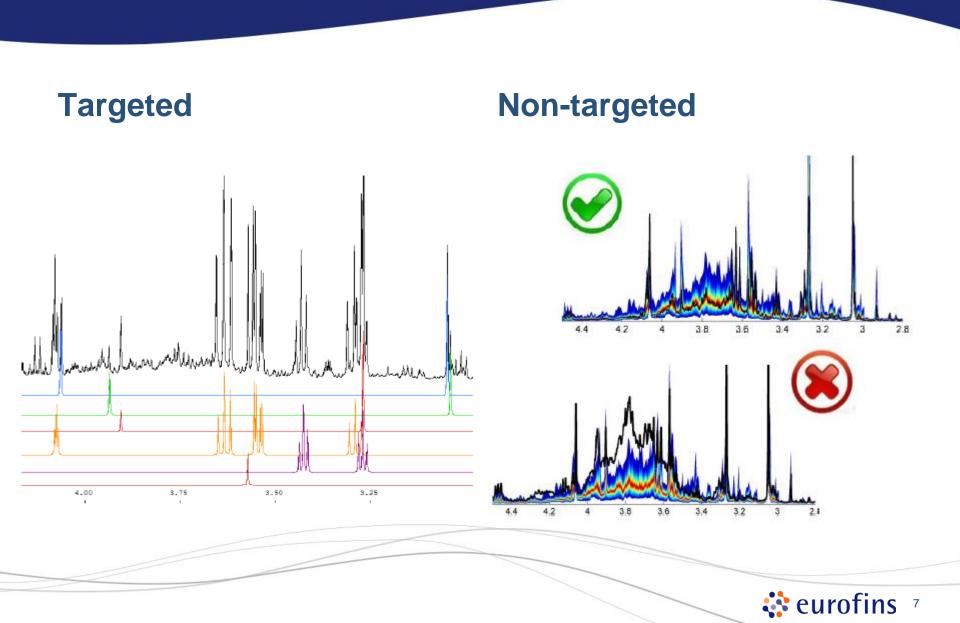
Analyses must help to enforce regulations & protect brands but:

- Need for a high number of parameters
- Often limited time, and
- Always a limited budget

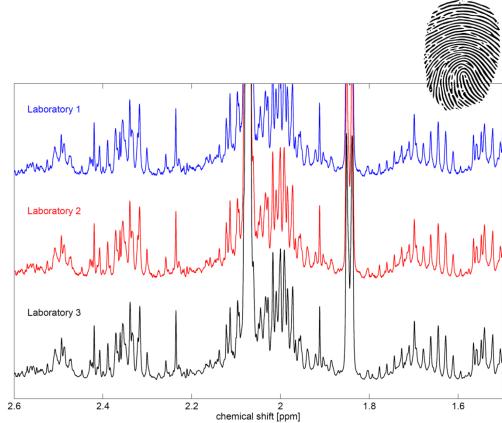
- Targeted analysis efficiency is often limited
- A large part of adulterations are still undetectable

→ Profiling 1H-NMR is a complementary tool

Eurofins experience in NMR non-targeted approach

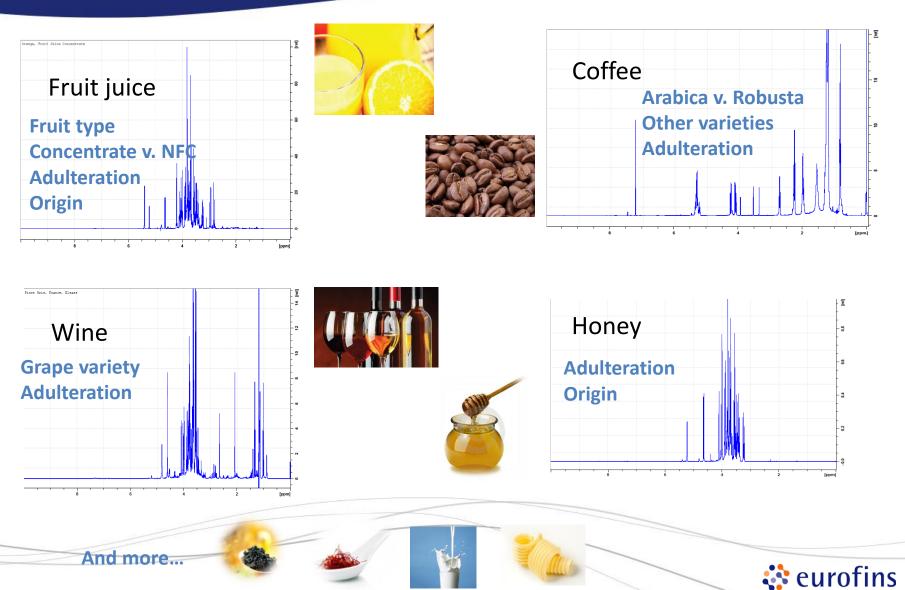

- 4 NMR spectrometers in Nantes (2 for SNIFNMR, 2 for Profiling) BRUKER 400MHz with autosampler, BCU and BOSSIII
 2 qualified instruments for non-targeted approach
 2 BBI probes
- a dedicated Production Unit Profiling NMR (since 2012)
- > 5000 routine analyses in 2015 fruit juices@, wines@, honey@, coffee@, soft drinks@, milk, spices....

ISO-17025 accreditation for quantification (for the moment...)
 (scope available under <u>http://www.cofrac.fr/Annexes/Sect1/1-0287.pdf</u>)


eurofins 🔅

Two approaches using the same experiment

Features of 1H-NMR Profiling

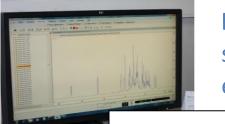

- Complex signal with multiple
 resonances for a single compound
- Primary method for quantification no need to calibrate each compound
- High reproducibility, even inter-laboratory
- Non-targeted detection of all protons
- 1H-NMR profile can be regarded as unique fingerprint of the sample
- Long-term build of reference databases possible
- Retrospective analysis possible also quantification of further compounds

Example : preparation and acquisition in 3 different labs

(wine sample)

Eurofins routine applications for non-targeted 1H NMR

9


The challenges to the standardisation of non-targeted 1H NMR

Sample preparation: differences at this stage can lead to different NMR spectra for the same sample

¹**H NMR measurement**: a clear protocol is required (field strength, pulse type, acquisition time, etc.) to produce repeatable/reproducible data

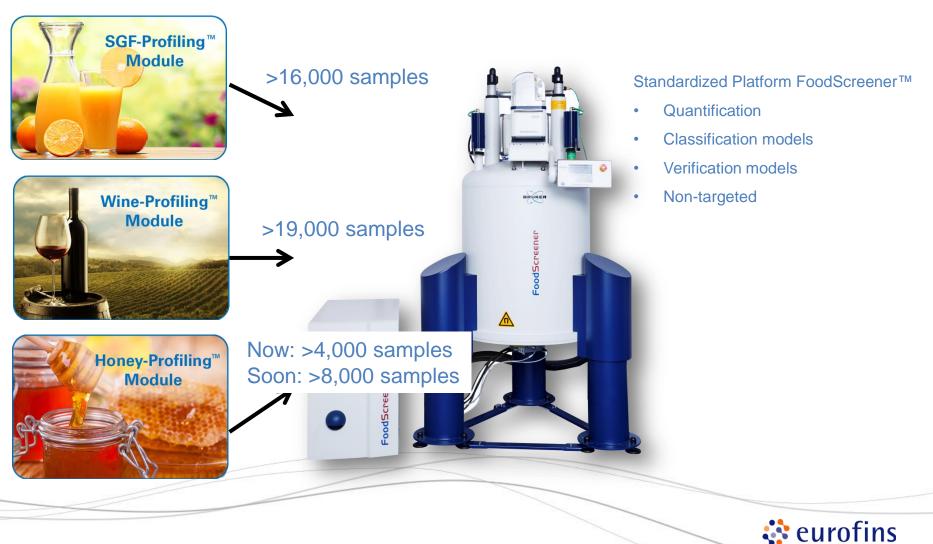
Data processing and analysis: different statistical approaches can lead to different evaluations

The challenges to the standardisation of non-targeted 1H NMR

What can be done to ensure standardized sample preparation and ¹H NMR measurement ?

SOP preparation

🛟 eurofins 🖽

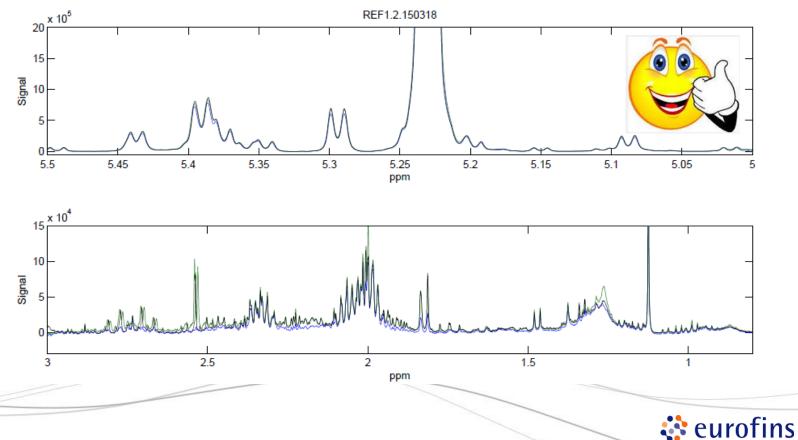

- SOP acquisition
- Quality criteria

Need:

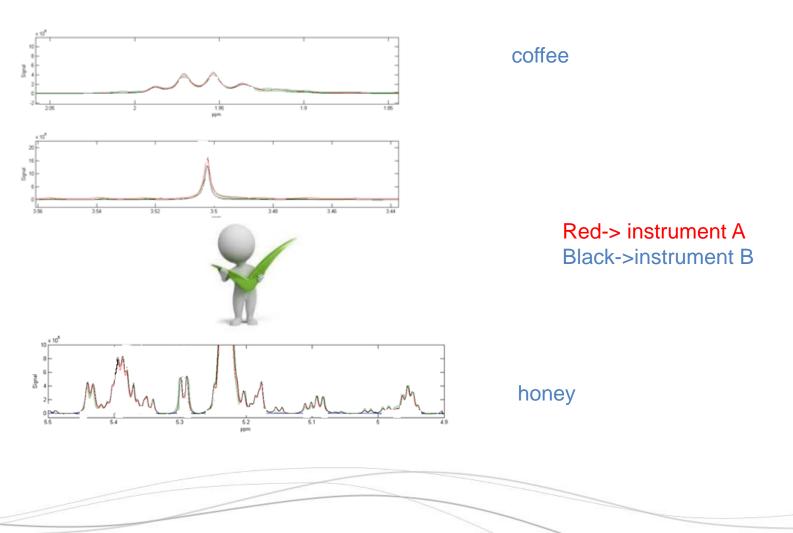
- Include internal quality control measures
- Carry out regular comparison of NMR instruments (internally and in peer to peer comparison
- Validation, qualification

Collaborative analytical tools: FoodScreener[™] - Platform-Concept

Large databases for widely spread single-ingredient commodities



Internal Reference Material, two per session Daily Quality Control


QC1	EX1	EX2	EX 3	EX 4	EX 5	EX 6	EX 7	EX 8	QC2	
-----	-----	-----	------	------	------	------	------	------	-----	--

Black => QC of the day

Blue and Green => upper and lower limits based on 3 weeks characterisation (more than 20 experiments)

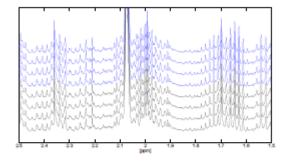
Comparison between our 2 instruments - Qualification

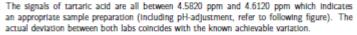
eurofins

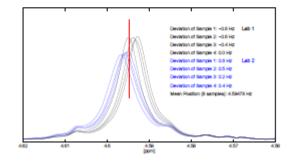
Inter-laboratory process validation: Peer to Peer comparison Bruker - Eurofins

Lab Comparison

1.1 White Wine


Methods: Wine-Profiling


1.1.1 Spectroscopical View


Lab 2: Eurofins, Nantes

Date: March 2013

Following figure shows the spectroscopical comparison of the white wine samples prepared in Lab 1: Bruker BioSpin GmbH, Rheinstette both labs (4 samples in each lab, phase 3). There is no evidence for a significant difference between the preparation and measurement of both labs besides the normal achievable variation.

1.1.2 Quantitative Comparison

Following table shows the comparison of some quantified parameters of the white wine samples which were prepared in both labs (4 samples in each lab, phase 3).

Compound	\bar{x}_1 Lab1	\bar{x}_2 Lab2	rel. comparison [%]	rel. std. Lab2 [%]
2,3-butandiol	382	385	100.6	5.9
3-methyl-butanol	213	205	96.1	0.7
acetic acid	355	343	96.8	1.4
alanine	27	28	101.7	5.0
ethanol	93944	95557	101.7	0.6
fructose	2673	2660	99.5	1.9
glucose	762	725	95.1	12.6
glycerol	4952	4912	99.2	1.3
lactic acid	294	295	100.4	8.2
malic acid	1919	1860	96.9	1.5
succinic acid	617	594	96.3	1.8

Result:

There is no significant deviation between Lab1 and Lab2 (mean values). The standard deviation of Lab2 is for high-concentrated compounds less than 2% (e.g. ethanol, malic acid) which indicates an appropriate sample preparation.

Periodic comparaison : wine, juice, honey

Eurofins

Sample code Nr.:	370-2016-10134150
Variety:	Pinot Gris
Country:	France
Region:	Elsass
Vintage:	
Type of Wine:	white
Measuring Date:	23-Jul-2016 01:53:31
Reporting Date:	25-Jul-2016 09:28:32, Version 3.0.2, 8 pages

Results Summary

Type of Analysis	Analysis ID	Result	Status
Classification Analysis			
White Wine Variety	WI-1104-01/0681	In-Model	
Targeted Analysis			
Quantification	WI-Q/1001		0
Comparison with NMR Reference Database	WI-QC/0707	-	
Untargeted Verification Analysis			
Univariate Verification	WI-2002-02/705	In-Model	
Multivariate Verification	WI-2002-02/705	In-Model	
Wine Content Analysis	WI-4002-01/706	In-Model	

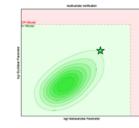
Sample ID: 4150-LAB-WI-30062016

Additional Samp	ale Information
Customer:	EUROFINS
Variety:	Pinot Gris
Country:	France
Region:	Elsass
Vintage:	2014
Type of Wine:	white
Measuring Date:	04-Jul-2016 17:56:21
Reporting Date:	12-Jul-2016 18:11:34, Version 3.0.2, 9 pages
Approval:	approved by Monika Moertter on 12-Jul-2016 18:10:00

Results Summary

Type of Analysis	Analysis ID	Result	Statur
Classification Analysis	1	1	
White Wine Variety	WI-1104-01/0681	In-Model	
White Wine Vintage	WI-1190-01/1001	In-Model	•
Targeted Analysis	- 1001201 - 2002200		100
Quantification	WI-Q/1001		0
Comparison with NMR Reference Database	W1-QC/0707		•
Untargeted Verification Analysis			
Univariate Verification	W1-2002-02/705	In-Model	•
Multivariate Verification	WI-2002-02/705	In-Model	•
Wine	1000000000000000000000	C200000-000	

Untargeted Verification Analysis


Applied Model: Pinot Blanc/Gris

Univariate Verification

Result: No deviation was detected in univariate verification (In-Model).

Multivariate Verification

Result: No deviation was detected in multivariate verification (In-Model).

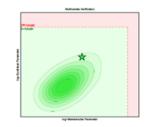
Wine Content Analysis

Result: Based on the comparison with the reference database, there is no indication for an addition of water.

Untargeted Verification Analysis

Applied Model: Pinot Blanc/Gris

(Analysis-ID: W1-2082-82/705)


Univariate Verification

Analysia-ID: Wi-2002-027-05

Result: No deviation was detected in univariate verification (In-Model).

Multivariate Verification

Result: No deviation was detected in multivariate verification (In-Model).

Wine Content Analysis

Result: Based on the comparison with the reference database, there is no indication for an addition of water.

The challenges to the standardisation of non-targeted 1H NMR

Data processing and analysis

What are the effects of processing and how can discrepancies be overcome ?

=>automatic process is the safest solution ! (Matlab routines, FoodScreeneer...)

Collaborative study Example: Wheat : organised by a PT organisator (only quantification)

Validation of NMR fingerprinting methods: effects of processing on measure reproducibility and laboratory performance assessment

Innovative Solutions S.r.l., zona H 150/B, 70015 Noci (BA), Italy Contact person: Prof. Vito Gallo Phone: +39 0805963607 Email: direzione@innovative-solutions.it

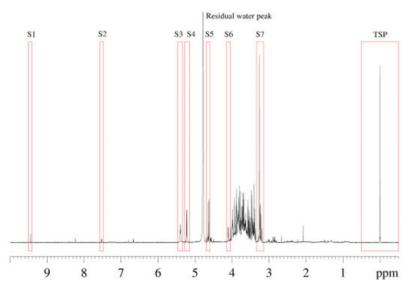


Table 2

Registered Participants	37					
Available NMR spectrometers						
Delivered set of samples						
Spectrometers producing results						
Magnetic Field (Larmor frequency)						
9.4 T (400 MHz)	16					
11.7 T (500 MHz)	7					
14.1 T (600 MHz)	14					
16.4 T (700 MHz)	2					
Spectrometer manufacturers						
Bruker						
Varian	4					

Figure 1. Typical 1D H-NOESY spectrum for the present ILC

IS NMR ILC 001_2014

	Table 5							
Number of operators	Processing procedure	Software	Integration mode*					
many	phase and baseline correction according to operator expertise	no limitation	no limitation					
one	manual phase correction and automatic baseline correction	TOPSPIN & AMIX	integral					
one (different from session ILC2)	manual phase correction and automatic baseline correction	Mnova	sum					
one (the same as in session ILC3)	manual phase correction and automatic baseline correction	Mnova	peak					
	operators many one different from session ILC2) one (the same as in session ILC3)	operators procedure many phase and baseline correction according to operator expertise one manual phase correction and automatic baseline correction one (different from session ILC2) manual phase correction and automatic baseline correction one (the same as in) manual phase correction and	operators procedure Software many phase and baseline correction according to operator expertise no limitation one manual phase correction and automatic baseline correction TOPSPIN & AMIX one (different from session ILC2) manual phase correction and automatic baseline correction Mnotta automatic baseline correction one (the same as in session ILC3) manual phase correction and automatic baseline correction Mnotta					

Table 2

It is important to point out that laboratory performance assessment is strongly dependent on the operator. It was found that laboratories obtaining unacceptable |z-scores| (>10) in the first elaboration, ILC1, gained better results in the new elaborations ILC2-4 carried out by a single operator and in many cases their performance were satisfactory. No substantial effects of the software and of the integration procedure were found.

NMR Interlaboratory Comparison

IS NMR ILC 001_2016

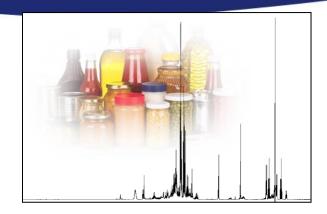
Validation of a combined NMR method for analysis of wine grapes (Project: Re.Ge.Vi.P.)

Timetable

0	2016/10/24 - Start	
0	2016/11/07 - 2016/12/11	Call open and registration of the participants
\odot	2017/01/15	: Conclusion of the stability tests
0	2017/01/31	Publication of the "Guidelines and contract terms
0	2017/02/01 - 2017/02/28	Sample preparation and delivery to participants
0	2017/03/01 - 2017/03/31	NMR experiment registration and results submis
0	2017/04/01 - 2017/05/31	Data elaboration and publication of the report.

0.03062

Internal


In line with the results reported in the previous volume, b the new data elaboration indicate that the NMR experiment (1D :H NOESY) proposed for the fingerprinting of wheat and flour aqueous extracts is a robust experiment. In fact, the majority of the participants produced NMR spectra that can be considered "statistically equivalent". Thus, the main goal of this inter-laboratory comparison, the validation of the 1D 1H NOESY experiment, was achieved.

🛟 eurofins

vww.innovative-solutior	D . IL

Inte	gral io				I	$_{\rm S1}/{ m I}_{\rm TSP}$				
Tu	be					В				
Lab Co	dell	ILC1 /erage	ILC1 Z- score	ILC2 Average	ILC2 Z- score	ILC3 Average	ILC3 Z- score	ILC4 Average	ILC4 Z- score	
C5	0.02	420	-1.0	0.02516	-2.4	0.02498	-0.1	0.03174	1.3	
E3	2.63	706	1228.9	0.02604	-1.5	0.02328	-1.6	0.02986	-0.3	
A1	0.02	383	-1.1	0.02493	-2.6	0.02172	-3.0	0.03194	1.4	
H4	0.03	070	2.1	0.02928	1.9	0.02526	0.1	0.03042	0.2	
G5	0.02	520	-0.5	0.02714	-0.3	0.02580	0.6	0.02822	-1.6	
B1	0.02	751	0.6	0.02742	-0.1	0.02498	-0.1	0.02862	-1.3	
D1	0.02	471	-0.7	0.02711	-0.4	0.02398	-1.0	0.02970	-0.4	
C3	0.02	409	-1.0	0.02415	-3.4	0.02246	-2.3	0.03036	0.1	
B2	2.70	651	1261.6	0.02706	-0.4	0.02532	0.1	0.03102	0.7	
F4	0.02	753	0.6	0.02535	-2.2	0.02498	-0.1	0.02834	-1.5	
D 3	0.02	493	-0.6	0.02551	-2.0	0.02722	1.8	0.02956	-0.5	
G1	0.02	312	-1.5	0.02772	0.3	0.02504	-0.1	0.03252	1.9	
E1	0.02	680	0.3	0.02771	0.3	0.02612	0.8	0.03036	0.1	
E5	0.02	558	-0.3	0.02770	0.2	0.02470	-0.4	0.02868	-1.2	
В3	0.05	428	13.2	0.02455	-3.0	0.02394	-1.0	0.03254	1.9	
A5	0.02	207	-2.0	0.02765	0.2	0.02764	2.2	0.03090	0.6	
A4	0.02	301	-1.5	0.02765	0.2	0.02764	2.2	0.03090	0.6	
H2	0.02	924	1.4	0.02813	0.7	0.02538	0.2	0.02982	-0.3	
B4	0.02	551	-0.3	0.02742	-0.0	0.02448	-0.6	0.02924	-0.8	

The challenges to the standardisation of non-targeted 1H NMR

How to avoid errors in the interpretation of product authenticity

=>a unique validated database is the key!

Validation Files

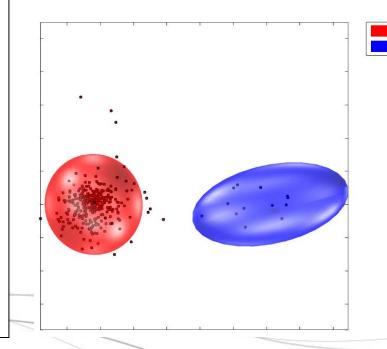
- Classification Models -

- Validation by Monte-Carlo/Cross-Validation
- Analysis of Confounders
- Wrong prediction rate < 3%

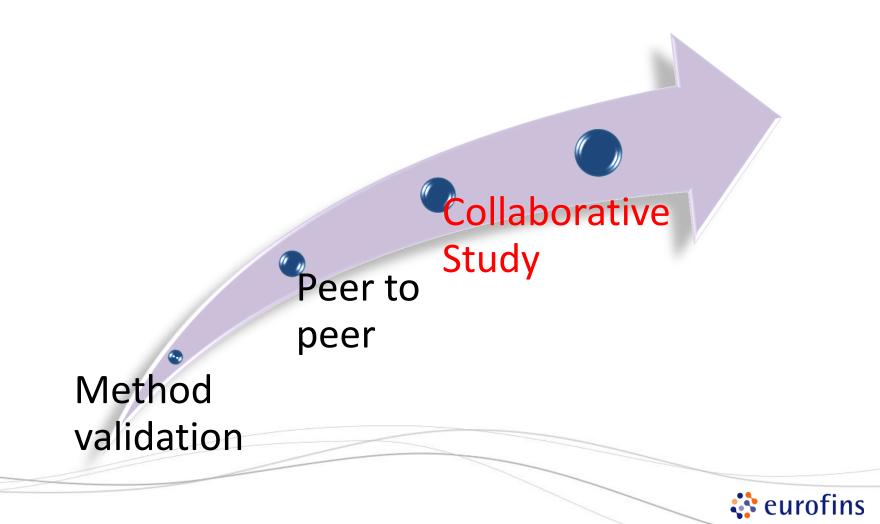
Overview of classes

Class	Samples	Percentage
non-Acacia	2753	96.3
Acacia	107	3.7
Total	2860	100.0

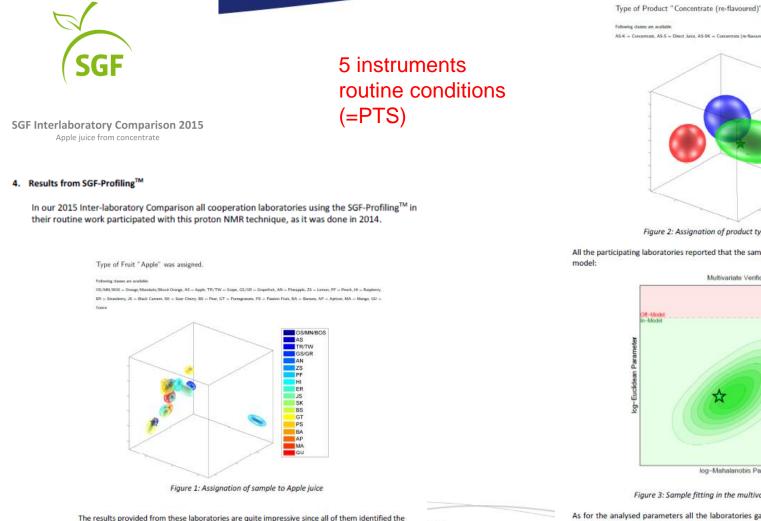
non-Acacia Acacia


🔅 eurofins

3.2.1 PLIMIT = 0.01


	1	2	Amb.OK	None	Wrong
1: non-Acacia	96.2	2.3	0.0	1.5	2.3
2: Acacia		97.2	0.0	2.8	

	1	2	Double	Triple
1: non-Acacia			0.0	0.0
2: Acacia			0.0	0.0


Correct Prediction Rate Unique:	96.2%
Correct Prediction Rate Ambiguous:	0.0%
Correct Prediction Rate Total:	96.2%
False Prediction Rate:	2.2%
Prediction Rate 'None':	1.6%

Larger Collaborative studies already made

1-Juice : In the frame of BIPEA PTS

samples as apple juice and as 100% juice from concentrate.

Type of Product "Concentrate (re-flavoured)" was assigned.

AS-K = Concentrate, AS-S = Direct Juice, AS-SK = Concentrate (re-flavoured)

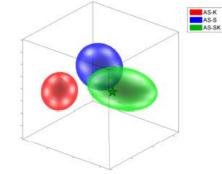


Figure 2: Assignation of product type: from concentrate

All the participating laboratories reported that the sample fits in the multivariate verification

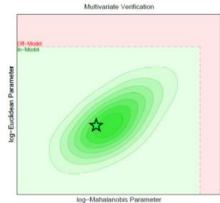
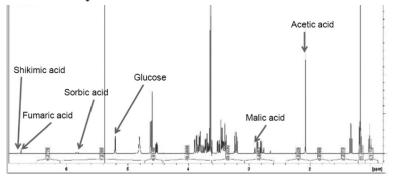


Figure 3: Sample fitting in the multivariate verification model

As for the analysed parameters all the laboratories gave similar values, and moreover, the obtained values are very much in line with the target values. In Table 4, the values obtained by the NMR can be seen.

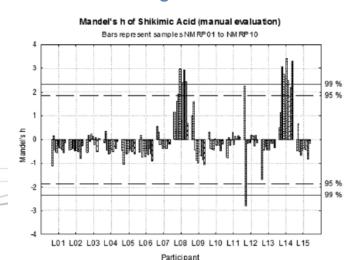

🔅 eurofins

2-Wine : organised by Dr. Ristow

GODELMANN ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 99, NO. 5, 2016 1295

FOOD COMPOSITION AND ADDITIVES

Quantitation of Compounds in Wine Using ¹H NMR Spectroscopy: Description of the Method and **Collaborative Study**



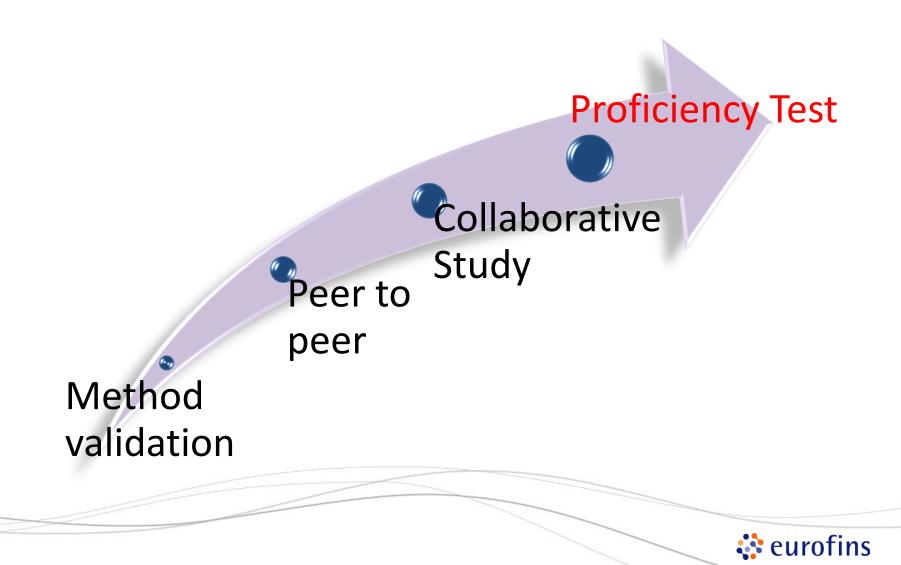
Anlage 1: Verzeichnis der Teilnehmer

ALNuMed GmbH	D-95448	Bayreuth
BAM Bundesanstalt für Materialforschung	D-12489	Berlin
Bayerisches Landesamt für Gesundheit		
und Lebensmittelsicherheit	D-97082	Würzburg
BfR Bundesinstitut für Risikobewertung	D-10589	Berlin
Bruker BioSpin GmbH Rheinstetten	D-76287	Rheinstette
Bruker Italia	I-20158	Milano
chelabHemmingen	D-30966	Hemminger
Chemisches und Veterinäruntersuchungsamt		
Karlsruhe	D-76187	Karlsruhe
Eurofins Analytics - Nantes	F-44323	Nantes Ceo
Eurofins Analytik GmbH - Hamburg	D-21079	Hamburg
Hochschule Geisenheim University	D-65366	Geisenhein
Institut Heidger	D-54518	Osann-Mor
LGC Teddington	GB-TW110LY	Teddington
Quality Services International GmbH	D-28199	Bremen
WINESPIN ANALYTICS GmbH & Co.KG	D-55459	Aspisheim

Würzburg Berlin Rheinstetten Milano Hemmingen (Han.) Karlsruhe Nantes Cedex 3 Hamburg Geisenheim Osann-Monzel Teddington Middlesex Bremen

15 instruments Manual integration

Prüfgut-Kode	Externer Kode	Jahrgang	Beschreibung
NMRP01		ohne	Modellwein
NMRP02	DWA 1050807	ohne	Standardlösung zur Weinanalytik
NMRP03		2011/2012	Merlot di Venetia DOC, dotiert
NMRP04	FT14P02	2011	Dornfelder und Spätburgunder, Rheinhessen
NMRP05	DWA 1061305	ohne	Standardlösung zur Weinanalytik
NMRP06	FT14P04	ohne	Französischer Rotwein "Medinet", halbtrocken
NMRP07	FT13P02	2010	Scheurebe, Pfalz (säurereich)
NMRP08	FT14P05	2013	Riesling, Pfalz
NMRP09		2011	Chardonnay, Central Ranges, Australien, dotiert
NMRP10		2013	Cabernet Sauvignon, Central Valley, Chile, dotiert


Analyte	Mean recovery, %ª	Variation, %	Methods of determination ^b
Glucose	100.0 (n = 9)	95.2–106.4	OIV MA-AS-311-02 and MA-AS-311-03 and equivalent enzymatic and HPLC methods
Malic acid	104.1 (<i>n</i> = 7)	91.4–124.1	OIV-MA-AS313-11 and MA-AS313-12A/12B and equivalent enzymatic and HPLC methods
Acetic acid	108.9 (<i>n</i> = 10)	99.9–123	Enzymatic and HPLC methods
Fumaric acid	96.8 (n = 6)	80.5–104.1	HPLC methods
Shikimic acid	105.2 (<i>n</i> = 10)	91.2-122.3	OIV MA-AS313-17 and equivalent HPLC methods
Sorbic acid	100.2 (n = 8)	97.9–102.5	OIV MA-AS313-20 and equivalent HPLC methods

8 instruments Automatic integration

Part of the collaborative study included the integration of signals and data evaluation in automatic mode with WineScreenerTM (Bruker BioSpin).

This indicates that the elimination of personal effects/ influences during the spectral evaluation did have a decisive influence on the reproducibility of the results, notwithstanding uniform instrumental equipment and measurement settings.

Next challenge

Our suggestion : from FIT-PTS towards Profiling-PTS

• FIT-PTS:

Initiated in 1994 => more than 20 years of experience !

- Dedicated to Food analysis using Isotopic Techniques (IRMS, SNIFNMR)
- Complies with the ISO/IUPAC/AOAC International Harmonised Protocol for Proficiency Testing of analytical laboratories
- 70 participants (worldwide)

Recognized by accreditation bodies

Our vision of future NMR profiling proficiency testing

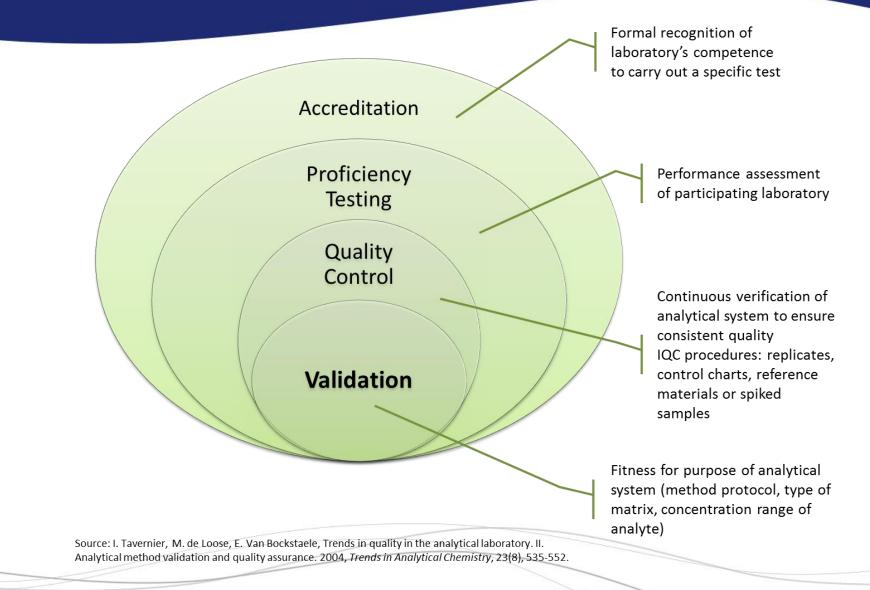
Profiling PTS

Initial project: matrices shared with isotopic PTS (Wine, Juice, Honey)

1 sample per trimester

Targeted : calculation of z-scores Non-targeted: Classification scores?

Spectra evaluation and quantifications?


A need for accreditation and commercial acceptance

First Round will be in 2017, in parallel with the FITPTS distribution,

Eurofins will take care of the organisation (preparation, parcels, results...)

Accreditation process

ISO 17025: inter-laboratory accreditation

NMR-Tube

Preparation

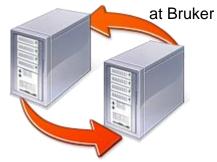
 standardized operating procedure (SOP)

ofra

Accréditation nº 1-028

ortée disponible su

www.cofrac.fr


Acquisition

 Criteria to have spectra validated (SOP)

Analysis and Reporting

Data Analysis Server

 reference database and analysis routines (chemometrics, models) (SOP)

Portée disponible sur www.cofrac.fr

Accréditation nº 1.025

ortée disponible su

www.cofrac.ft

encrypted

data transfer

results/report

Work in progress

Thank you for your attention!

Roundtable Discussion after Jana's speech...

🔅 eurofins