

Cellular and Ecotoxicological Analysis of Nanofunctionalized Textiles (Project TECHNOTOX)

Prof. Dr. Dirk Höfer BfR, Berlin, February 9th 2012

COMPETENCE IN TEXTILES

Hohenstein Institute Department Hygiene, Environment and Medicine

Hohenstein is a public and independent textile research institute.

→ Research & Development using public funding

Department Hygiene, Environment & Medicine

- \rightarrow Life science studies on functionalized textiles
- \rightarrow Efficacy and safety of products along the textile chain

No. 3

Interaction Textile Environment

Silver and the human skin microflora

- Field study with 60 subjects (21 65 years)
- microbiological and dermatological supervision
- Halved shirts (verum/placebo) were worn for 8 h/d over a period of 5 weeks

International Scholarly Research Network ISRN Dermatology Volume 2011, Article ID 369603, 8 pages doi:10.5402/2011/369603

Research Article

Antimicrobial Active Clothes Display No Adverse Effects on the Ecological Balance of the Healthy Human Skin Microflora

Dirk Hoefer and Timo R. Hammer

Institute for Hygiene and Biotechnology, Hohenstein Institutes, Schloss Hohenstein, 74357 Boennigheim, Germany

Correspondence should be addressed to Dirk Hoefer, d.hoefer@hohenstein.de

Received 13 January 2011; Accepted 27 February 2011

Human skin microflora was not affected

FIGURE 2: Boxplot diagram showing total germ count after application of fabric 1. PES-silver Verum side (V) and placebo side (P). T_0 = baseline, T_7 = after 1 week wear trial, T_{14} = after 2 weeks, T_{21} = after 3 weeks, T_{28} = after 4 weeks, T_{35} = 1 week after the wearing time (*n* = 30).

FIGURE 3: Boxplot diagram showing total germ count after application of fabric 2. Silver-finish Verum side (V), placebo side (P). $T_0 =$ baseline, $T_7 =$ after 1 week wear trial, $T_{14} =$ after 2 weeks, $T_{21} =$ after 3 weeks, $T_{28} =$ after 4 weeks, $T_{35} = 1$ week after the wear period (n = 30).

Skin physiology experiments

Research project TECHNOTOX (2011 – 2013)

acc. to Krug & Wick (2011), Angew. Chem. 123(6): 1294-1314

Nanomaterials in textiles

Nanomaterials	Properties/Applications
Carbon nanofibres	Increased tensile strength High chemical resistance Electrical conductivity
Carbon black nanoparticles	Improved abrasion resistance and roughness High chemical resistance Electrical conductivity
Clay nanoparticles	Electrical heat and chemical resistance Block UV light Flame retardant, Anticorrosive
Metal nanoparticles (Ag, Au, Cu)	Antimicrobial Self sterilization Antiodour
Metal oxide nanoparticles (TiO ₂ , Al ₂ O ₃ , ZnO, MgO)	Photocatalytic ability Electrical conductivity UV absorption Photooxidizing activity against chemical and biological species Antimicrobial/self-sterilization
Carbon nanotube	100X tensile strength of steel at one sixth of the weight Electrical conductivity similar to copper Good thermal conductivity
Chitin nanofibrils	Increased tensile strength High temperature resistance Drug delivery capacity

No. 10

Use of organic biocides and silver in textiles

- 100 t/a organic biocides
- 28 t/a silver
- <0.2 t/a metallic nanosilver (mainly 50-500 nm AgCl particles)</p>

Source: Burkhardt et al. (2011), Forschungsbericht HSR, UMTEC, Rapperswil (CH)

Fibre functionalization with nanosilver

Material modification

\rightarrow Different abrasion behaviour \rightarrow Exposition

Textile abrasion

Mechanical stress (worst case scenario)

INSTITUT FÜR TEXTIL- UND VERFAHRENSTECHNIK DENKENDOR 25 20 15 10 5 0,487 mg / L 0 10 100 1000 Partikeldurchmesser (nm)

Detection and collection

iolien/Hammer/11-12-14 Nano-Forum.ppt/aj Folien Nr. 13; 01.03.2012 @ Hohenstein Institute

Distribution sites

The lung as ,main entrance' for nanoparticles

Size matters

TECHNOTOX lung model

Lung model

Lung cell vitality after 30 min exposure to NP-aerosol

No. 17

Cell toxicity studies – according to DIN EN ISO 10993-5

Different cell types vary in their susceptibility!

nAg versus AgNO₃ – <u>lung</u> cells

Silver ions are toxic for cells

nAg versus AgNO₃ – <u>liver</u> cells

Dose-response relation

Effects of nAg on Daphnia magna

• acc. to DIN EN ISO 6341:2010

Effects of aerosols and textile abrasion samples

Luminescent bacteria test acc. to DIN EN ISO 11483-1

Effects of textile abrasion samples

Daphnia magna lethality after 48 h exposition

Zebrafish early larval stage test acc. to DIN EN ISO 15988

Outlook TECHNOTOX project

- More realistic exposition scenarios
- Testing further textile abrasion samples
 - \rightarrow genotoxic potential
 - \rightarrow zebrafish early larval stage test
- Human 3D skin model
- Mucosa penetration (mouth, gut)
- Resorption into the blood

No. 25

Outlook TECHNOTOX dialog

- Scientific publications
- Public presentation in web

Conclusion

- Safety of products and processes is assessed with standardized biological test systems. These should be reliable, robust, sensitive and predictive.
- Realistic working concentrations must be used. No overload experiments.
- Textile products should be evaluated seperately depending on the exposition scenario.

Thanks for your attention !

Prof. Dr. Dirk Höfer Hohenstein Institute Schloss Hohenstein 74357 Bönnigheim Telefon +49 7143 271 432 Fax +49 7143 271 94432 E-Mail d.hoefer@hohenstein.de www.hohenstein.de