

Was im Essen steckt Abschlussbericht BfR-MEAL-Studie

28. Juli 2023

Wissenschaftsbericht

28. Juli 2023

Abschlussbericht BfR-MEAL-StudieErste Total-Diet-Studie in Deutschland

Die BfR-MEAL-Studie stellt als erste Total-Diet-Studie Deutschlands repräsentative Gehaltsdaten für verzehrfertig zubereitete Lebensmittel zur Verfügung. Diese Gehaltsdaten sind eine wichtige Datengrundlage für Expositionsschätzungen des BfR und damit zur Bewertung möglicher Risiken, die von Lebensmitteln ausgehen. Darüber hinaus ermöglichen die Daten die Ableitung von Verzehrempfehlungen für ausgewählte Bevölkerungsgruppen. Im Falle einer Krise bilden die Daten ebenfalls eine wichtige Vergleichsbasis, um auftretende Gehalte schnell und zuverlässig einschätzen zu können.

Bei dem Einkauf und der Zubereitung wurden umfangreiche Marktdaten berücksichtigt, die eine repräsentative Abbildung des Einkaufverhaltens und der Rezeptauswahl bei der Zubereitung von Speisen der Bevölkerung in Deutschland ermöglichte.

Die Liste der beprobten Lebensmittel (Lebensmittelliste) der BfR-MEAL-Studie deckt mehr als 90 % des Verzehrs der berücksichtigten deutschen Bevölkerungsgruppen ab. Für die Auswahl der Lebensmittel wurden in einem ersten Schritt aus den Daten zur Lebensmittelzufuhr der Nationalen Verzehrsstudie II (14-80 Jahre) und der VELS-Studie (<1-4 Jahre) die am meisten verzehrten Lebensmittel ausgewählt. Diese Lebensmittel wurden durch weitere Lebensmittel ergänzt, die wenig verzehrt werden, aber in der Vergangenheit häufiger hohe Gehalte aufwiesen. Die Lebensmittelliste umfasst für das Basismodul, in dem Proben für die Untersuchung auf Elemente und Umweltkontaminanten gezogen wurden, 356 Lebensmittel. Für 151 Lebensmittel wurden zusätzliche Poolproben aus vier Regionen, von zwei Saisons oder nach Erzeugungsart getrennte Poolproben hergestellt. Dies resultierte im Basismodul der Studie in einer Gesamtprobenzahl von 869 Poolproben, bestehend aus 13.552 Teilproben. In den beiden Feldphasen der Studie wurden in einem Zeitraum von 4 Jahren und 8 Monaten insgesamt ca. 56.750 Einzellebensmittel eingekauft, verbrauchertypisch zubereitet und anschließend auf ausgewählte Stoffe untersucht. Das modulare Design der BfR-MEAL-Studie berücksichtigte insgesamt 336 Stoffe in neun Modulen: "Basismodul" für Elemente und Umweltkontaminanten, "Mykotoxine", "Perfluorierte Alkylsubstanzen", "Nährstoffe", "Pharmakologisch aktive Substanzen", "Pflanzenschutzmittelrückstände", "Aus Lebensmittelkontaktmaterialien migrierende Stoffe", "Prozesskontaminanten" und "Lebensmittelzusatzstoffe".

Umfangreiche Daten wurden erhoben oder beschafft, um die Poolproben repräsentativ zusammenzusetzen. In drei Verbraucherstudien wurden das Zubereitungsverhalten von Speisen, die Vorliebe von Bräunungsgraden von Speisen und die präferierten Küchenutensilien während der Zubereitung von Speisen ermittelt. Hierfür wurden repräsentativ nach Wohnort und Größe des Haushalts die Hauptverantwortlichen für die Zubereitung von Speisen befragt.

Die analytischen Untersuchungen der Poolproben erfolgten, abgesehen von der Stoffgruppe der Weichmacher, durch externe Labore nach öffentlicher Ausschreibung. Die Anforderungen an die Analytik, inklusive der qualitätssichernden Aspekte, wurden im Vorfeld in den modulbegleitenden Expertengruppen und mit dem internationalen Beirat diskutiert und definiert. Ziel war es, möglichst geringe Bestimmungsgrenzen zu erreichen, die dennoch zuverlässig in allen zu untersuchenden Lebensmittelmatrizes bestimmt werden können.

Von den analytischen Rohdaten jeder Substanz oder Substanzgruppe wurden 20–30 % der Ergebnisse auf Plausibilität geprüft. Hierzu wurden alle vorliegenden Daten zu Lebensmitteln aus dem Lebensmittel-Monitoring mit Gehalten der BfR-MEAL-Studie verglichen. Darüber hinaus wurden einige Lebensmittelgehalte mit Gehalten aus wissenschaftlicher Fachliteratur (z. B. Bewertungen der europäischen Lebensmittelsicherheitsbehörde (EFSA) oder wissenschaftlichen Datenbanken (z. B. Weltgesundheitsorganisation (WHO) GEMS/Food Datenbank, Bundeslebensmittelschlüssel) verglichen.

Die im Rahmen der BfR-MEAL-Studie generierten Datensätze werden nach wissenschaftlicher Publikation über die Website des BfR als Public-Use-File der Fachöffentlichkeit oder interessierten Verbraucherinnen und Verbrauchern zur Verfügung gestellt.

Gehaltsdaten aus der BfR-MEAL-Studie nutzte das BfR beispielsweise bereits in einer Mitteilung zu nicht-dioxinähnlichen PCBs (Mitteilung Nr. 037/2018), zwei Stellungnahmen zu Iod (Stellungnahme Nr. 026/2022, Stellungnahme Nr. 005/2021) und in einer Stellungnahme zu Süßungsmitteln in Erfrischungsgetränken (Stellungnahme Nr. 006/2023).

Inhalt

Α	bkürzungsverzeichnis	7
Ta	abellenverzeichnis	9
Α	bbildungsverzeichnis	10
1	Einleitung	11
2	Design der BfR-MEAL-Studie	12
	2.1 Auswahl der Lebensmittelliste für das Basismodul	12
	2.2 Regionale, saisonale und produktionsbezogene Faktoren im Basismodul	13
	2.3 Anzahl Teilproben je Poolprobe im Basismodul	16
3	Ergänzende Datengrundlagen	16
	3.1 Marktdaten	17
	3.2 Daten über die haushaltstypische Zubereitung	17
	3.3 Außer-Haus-Verzehr	18
4	Durchführung	19
	4.1 Einrichtung der MEAL-Studienküche	19
	4.2 Einkauf der Lebensmittel und Entsorgung der Küchenabfälle	20
	4.3 Transport der Lebensmittel zur MEAL-Studienküche	21
	4.4 Annahme von Lebensmitteln und Lagerung	22
	4.5 Zubereitung der Lebensmittel	22
	4.6 Homogenisierung zu Poolproben	23
5	Analytik	24
6	Qualitätssicherung	24
7	Internationaler Beirat und Expertengruppen	26
8	Module	27
	8.1 Basismodul	28
	8.2 Modul "Perfluorierte Alkylsubstanzen"	32
	8.3 Modul "Mykotoxine"	33
	8.4 Modul "Prozesskontaminanten"	36
	8.5 Modul "Nährstoffe"	41
	8.6 Modul "Aus Lebensmittelkontaktmaterialien migrierende Stoffe"	44
	8.7 Modul "Pflanzenschutzmittelrückstände"	48
	8.8 Modul "Pharmakologisch aktive Subtanzen"	54
	8.9 Modul "Lebensmittelzusatzstoffe"	56
9	Satellitenstudien	59
	9.1 Messung von Radionukliden	60

	9.2	Messung eines erweiterten Nährstoffspektrums	60
	9.3	PFAS-Vorläufersubstanzen	60
	9.4 [Mykotoxin-Schnelltest	60
	9.5	Arsen-Speziationen	61
10)	Langzeitlagerung von Proben	61
11	-	Nutzung der Daten	62
	11.1	Erlasse und Bewertungen	62
	11.2	2 Überschreitungen von Höchstmengen	63
	11.3	B Wissenschaftliche Publikationen	64
	11.4	Bereitstellung der Daten und Public Use File	67
	11.5	5 Veranstaltungen	67
	11.6	6 Online-Kommunikation	68
	11.7	Print- und Multi-Media-Kommunikation	68
12	2	Budget und Kosten	70
13	}	Ausblick	71
14	ļ	Literatur	73
Da	nks	agung	76
An	han	ng Carlotte	77

Kernaussagen zur BfR-MEAL-Studie

Durch die BfR-MEAL-Studie und die nachhaltige Etablierung einer Total-Diet-Studie (TDS) in Deutschland können für eine Vielzahl von Stoffen das Wissen zu Gehalten, Exposition, Risiken und Nutzen der in Deutschland verzehrten Lebensmittel erweitert und die Datenlage für die wissenschaftliche Politikberatung verbessert werden. Infrastruktur und wissenschaftliche Expertise des MEAL-Studienzentrums können so am BfR auch über das Jahr 2022 hinaus zur Verbesserung der Lebensmittelsicherheit genutzt und weiterentwickelt werden.

1

Die BfR-MEAL-Studie analysiert für die gesundheitliche Bewertung ca. 300 Stoffe und deckt mehr als 90 % der in Deutschland verzehrten Lebensmittel ab.

Durch die BfR-MEAL-Studie und die nachhaltige Etablierung einer Total-Diet-Studie (TDS) in Deutschland können für eine Vielzahl von Stoffen das Wissen zu Gehalten, Exposition, Risiken und Nutzen der in Deutschland verzehrten Lebensmittel erweitert und die Datenlage für die wissenschaftliche Politikberatung verbessert werden. Infrastruktur und wissenschaftliche Expertise des MEAL-Studienzentrums können so am BfR auch über das Jahr 2022 hinaus zur Verbesserung der Lebensmittelsicherheit genutzt und weiterentwickelt werden.

2

Die BfR-MEAL-Studie analysiert erstmals in Deutschland systematisch Lebensmittel im verzehrfertigen Zustand.

Sie berücksichtigt daher auch Stoffe, die zugesetzt oder bei der Verarbeitung bzw. Zubereitung entstehen oder abgebaut werden. In ausgewählten Lebensmitteln werden Prozesskontaminanten (wie z.B. Acrylamid) entsprechend verschiedener Zubereitungsmethoden (z.B. Frittieren oder Backen), der Verwendung verschiedener Haushaltsgeräte (z.B. Kohle-, Gas- und Elektrogrill) sowie verschiedener Bräunungsgrade bestimmt. Diese in Deutschland einzigartige Datengrundlage ermöglicht eine realitätsnahe Schätzung der langfristigen Aufnahme sowie bezogen auf Prozesskontaminanten die Herleitung von Zubereitungsempfehlungen für Verbraucherinnen und Verbraucher. Die BfR-MEAL-Studie stellt erstmals Gehaltsdaten für ausgewählte Zusatzstoffe bereit, die eine repräsentative Aufnahmeschätzung für Deutschland ermöglichen. Die Analyse von Zusatzstoffen und Prozesskontaminanten in haushaltstypisch zubereiteten Lebensmitteln ist eine sinnvolle Ergänzung des Lebensmittelmonitorings.

3

Die BfR-MEAL-Studie bildet auf wissenschaftlicher Grundlage die Stoffgehalte in Lebensmitteln für die Bevölkerung in Deutschland repräsentativ ab.

Das Design und die Probengewinnung der BfR-MEAL-Studie basieren auf repräsentativen Umfragen und umfangreichen Marktdaten. Sie erlauben eine Differenzierung der Proben nach regionalen, saisonalen oder produktionstechnischen (biologisch/konventionell) Faktoren, soweit dies für die Stoffgehalte relevant ist. Das Design der Studie mit ihrem modularen Aufbau zielt auf logistische Synergieeffekte bei Einkauf und Probenvorbereitung ab und ermöglicht dadurch eine Maximierung der Informationsausbeute.

Mit der BfR-MEAL-Studie wurde eine in Deutschland einzigartige Infrastruktur zur Bearbeitung von Fragestellungen geschaffen, auf die andere Erhebungsmethoden nicht ausgerichtet sind.

Die Fortführung der BfR-MEAL-Studie als ergänzende Infrastruktur zur bestehenden Lebensmittelüberwachung würde die Verbrauchersicherheit in Deutschland erhöhen, da mehr Stoffe berücksichtigt und Unsicherheiten, z.B. durch die Verarbeitung von Lebensmitteln in Haushalt und Industrie, reduziert werden. Durch die Zubereitung von Speisen besteht auch die Möglichkeit, die gleichzeitige Exposition durch mehrere Stoffe in der Ernährung der Bevölkerung in Deutschland zu beschreiben. Dadurch könnten Forschungs- und Bewertungsansätze bspw. für Mehrfachexposition von Stoffen unterstützt werden. Ebenso könnte die Betrachtung von Nutzen und Risiken verschiedener Verzehrgewohnheiten oder für besondere Bevölkerungsgruppen bei der Auswahl der untersuchten Lebensmittel berücksichtigt werden (z.B. vegane Lebensmittel, Lebensmittel für Ernährungsformen von Personen mit Migrationshintergrund). Kooperationspartner greifen bereits heute auf die Infrastruktur der BfR-MEAL-Studie zu (z.B. MRI und BfS).

5

Mit einer verstetigten BfR-MEAL-Studie können auch in Zukunft Veränderungen und Trends bei der Aufnahme von Stoffen über Lebensmittel in Deutschland erkannt werden.

Die kontinuierliche Untersuchung von Stoffen in einer TDS ist in hohem Maße geeignet, um sowohl Änderungen der Verzehrgewohnheiten als auch umweltbedingte Änderungen sowie sich ändernde regulative Bedingungen zu berücksichtigen. Ergänzend zum Lebensmittel-Monitoring kann so beispielsweise der Erfolg von Risikomanagementmaßnahmen oder der Nationalen Reduktions- und Innovationsstrategie für Zucker, Fette und Salz in Fertigprodukten (NRI) dargestellt werden. Auswirkungen von Änderungen regionaler oder globaler Wertschöpfungsketten in Folge sozioökonomischer und klimatischer Faktoren könnten untersucht werden.

Abkürzungsverzeichnis

ADI Acceptable Daily Intake (zulässige tägliche Aufnahmemenge)
AMPA Aminomethylphosphonic Acid (Aminomethylphosphonsäure)

BfS Bundesinstitut für Risikobewertung
BfS Bundesamt für Strahlenschutz

BLE Bundesanstalt für Landwirtschaft und Ernährung
BMEL Bundesministerium für Ernährung und Landwirtschaft

dl-PCBs Dioxin-like Polychlorinated Biphenyls (Dioxinähnliche polychlorierte

Biphenyle)

DMMTA Dimethylated Monothioarsenate (Dimethylmonothioarsenat)

EAN European Article Number

EFSA Europäische Behörde für Lebensmittelsicherheit

ELISA Enzyme-linked Immunosorbant Assay
EsKiMo II Ernährungsstudie als KiGGS-Modul II

ETU Ethylen-Thioharnstoff EU Europäische Union

EURL-SRM EU Reference Laboratory for Single Residue Methods

FAO Food and Agriculture Organization

FNS Food Nutrition Security

GEMS Global Environment Monitoring System

HPLC-HRMS High Pressure Liquid Chromatography High-Resolution Mass Spectrome-

try (Hochleistungsflüssigchromatographie gekoppelt an ein

hochauflösendes Massenspektrometer)

ICP-MS/MS Inductively Coupled Plasma-Mass Spectrometry

IGW Internationale Grüne Woche

KiESEL Kinder-Ernährungsstudie zur Erfassung des Lebensmittelverzehrs

MEAL Mahlzeiten für Expositionsschätzung und Analytik von Lebensmitteln

MOSH Mineral Oil Saturated Hydrocarbons (Gesättigte Mineralölkohlenwasser-

stoffe)

MOAH Mineral Oil Aromatic Hydrocarbons (Aromatische Mineralölkohlenwasser-

stoffe)

MRI Max Rubner-Institut

ndl-PCBs Non-dioxin-like Polychlorinated Biphenyls (Nicht-dioxinähnliche polychlo-

rierte Biphenyle)

NVS II Nationale Verzehrsstudie II

ÖfIP Öffentliche Informationsplattform
PBDE Polybromierte Diphenylether
PCB Polychlorierte Biphenyle

PCDD/F Polychlorierte Dibenzodioxine und -furane

PFAS Perfluorierte Alkylsubstanzen
POP Persistente organische Schadstoffe

PTU Propylen-Thioharnstoff

QS-Proben Qualitätssicherungsproben

QuPPe Methode Quick Polar Pesticides Method

TDS Total-Diet-Studien

TMDI Theoretical Maximum Daily Intake (theoretische maximale tägliche

Aufnahme

VELS Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von Säuglingen

und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch

Rückstände von Pflanzenschutzmitteln

WHO World Health Organization

Tabellenverzeichnis

Tabelle 1: Ubersicht zu den Analysemethoden in der BfR-MEAL-Studie	24
Tabelle 2: Qualitätssichernde Maßnahmen in der BfR-MEAL-Studie ¹	25
Tabelle 3: Stoffliste des Basismoduls	28
Tabelle 4: Probenstruktur Elemente (Fechner et al., 2022) und Nitrat ^{,2}	29
Tabelle 5: Probenstruktur anorganisches Arsen und Arsenspeziationen ¹ (Hackethal et al.,	
2021)	30
Tabelle 6: Probenstruktur Methylquecksilber¹ (Sarvan et al., 2021)	30
Tabelle 7: Probenstruktur Dioxine/Furane, PCBs und PBDEs ¹ (Stadion et al., 2022)	31
Tabelle 8: Probenstruktur organische Zinnverbindungen ¹	32
Tabelle 9: Stoffliste Modul "Perfluoralkylsubstanzen"	32
Tabelle 10: Probenstruktur perfluorierte Alkylsubstanzen ¹	33
Tabelle 11: Stoffliste Modul "Mykotoxine"	34
Tabelle 12: Probenstruktur Mykotoxine – Los 1 ¹	35
Tabelle 13: Probenstruktur Mykotoxine – Los 2 ¹	35
Tabelle 14: Probenstruktur Mykotoxine – Los 3 ¹	36
Tabelle 15: Stoffliste zum Modul "Prozesskontaminanten"	37
Tabelle 16: Probenstruktur Acrylamid ¹	38
Tabelle 17: Probenstruktur polyzyklische aromatische Kohlenwasserstoffe ¹	39
Tabelle 18: Probenstruktur Monochlorpropandiole und deren Fettsäureester sowie Glycie	dyl-
Fettsäureester ¹	40
Tabelle 19: Stoffliste Modul "Nährstoffe"	41
Tabelle 20: Probenstrukturen Vitamin E und Vitamin K ^{1,2}	41
Tabelle 21: Probenstrukturen Vitamin A und beta-Carotin ¹ (Schendel et al., 2022)	42
Tabelle 22: Probenstruktur Folsäure ¹	43
Tabelle 23: Probenstruktur Mengenelemente (exklusive Phosphor) (Schwerbel et al., 202	1)
und Fluorid ¹	43
Tabelle 24: Stoffliste Modul "Aus Lebensmittelkontaktmaterialien migrierende Stoffe"	45
Tabelle 25: Probenstruktur "Weichmacher" ¹	45
Tabelle 26: Probenstruktur Mineralölkohlenwasserstoffe ¹	46
Tabelle 27: Probenstruktur 2,4-Di- <i>tert</i> -butylphenol ¹	48
Tabelle 28: Stoffliste Modul "Pflanzenschutzmittelrückstände"	49
Tabelle 29: Kategorien für Mehrfachziehungen im Modul "Pflanzenschutzmittelrückständ	le"
	49
Tabelle 30: Probenstruktur für Analysen mittels Multimethode und auf Glyphosat/AMPA	¹ 50
Tabelle 31: Probenstruktur Chlorat/Perchlorat ¹	51
Tabelle 32: Probenstruktur Triazol-Metabolite ¹	52
Tabelle 33: Probenstruktur ETU/PTU und Chlormequat ¹	53
Tabelle 34: Stoff-Matrix-Kombinationen im Modul "Pharmakologisch aktive Substanzen"	54
Tabelle 35: Stoffliste Modul "Lebensmittelzusatzstoffe"	56
Tabelle 36: Probenstruktur Lebensmittelzusatzstoffe ¹	57
Tabelle 37: Stichprobe der Erfrischungsgetränke inkl. Anzahl nachgewiesener Süßungsmit	ttel¹
	59
Tabelle 38: Meldungen zu Höchstgehalt- und Rückstandshöchstmengenüberschreitunger	1 63
Tabelle 39: Publikationen zur BfR-MEAL-Studie (Stand 2023)	65

Abbildungsverzeichnis

Abbildung 1: Die BfR-MEAL-Studie in Zahlen (Bildrechte beim BfR)	12
Abbildung 2: Anzahl der Lebensmittel im Basismodul mit und ohne zusätzliche Poolprob	oen
(n)	13
Abbildung 3: Regionen und Samplepoints in der BfR-MEAL-Studie	15
Abbildung 4: Schritte der BfR-MEAL-Studie	19
Abbildung 5: Module in der BfR-MEAL-Studie	28
Abbildung 6: Medien der Kommunikation für die Zielgruppen der BfR-MEAL-Studie	62
Abbildung 7: Zusammenschnitt der Beiträge in der BfR2GO zur BfR-MEAL-Studie	69
Abbildung 8 Kostenstruktur der BfR-MEAL-Studie bis Ende 2022 (%)	70
Abbildung 9: Kostenstruktur der verausgabten Mittel für die Vergabe an Dritte (%)	71

1 Einleitung

Die BfR-MEAL-Studie (Mahlzeiten für die Expositionsschätzung und Analytik von Lebensmitteln) untersuchte zum ersten Mal in Deutschland systematisch und repräsentativ verschiedene Stoffgruppen in haushaltstypisch zubereiteten Lebensmitteln.

Das Studiendesign der BfR-MEAL-Studie ist nach der Methodik einer Total-Diet-Studie (TDS) aufgebaut. Die TDS ist eine international anerkannte und von der Europäischen Behörde für Lebensmittelsicherheit (EFSA) und der Weltgesundheitsorganisation (WHO) sowie der Organisation für Ernährung und Landwirtschaft der Vereinten Nationen (FAO) empfohlene Methode zur Ermittlung durchschnittlicher Konzentrationen von Stoffen in verzehrfertigen Lebensmitteln für die Expositionsschätzung (EFSA, FAO, WHO, 2011). TDS liegen drei Grundprinzipien zugrunde:

- TDS decken einen Großteil der von der Bevölkerung am meisten verzehrten Lebensmittel ab. Da jedoch auch seltener verzehrte, aber hoch belastete Lebensmittel einen wesentlichen Einfluss auf die Gesamtaufnahmemenge von Stoffen haben können, werden auch diese Lebensmittel, die in der Vergangenheit hohe Gehalte aufwiesen, in der BfR-MEAL-Studie untersucht. Zielsetzung ist es, repräsentativ den durchschnittlichen Verzehr der Bevölkerung abzubilden.
- 2. Die ausgewählten Lebensmittel werden so zubereitet und verarbeitet, wie es die Verbraucherinnen und Verbraucher täglich handhaben. Zielsetzung ist es, die Lebensmittel vor dem Verzehr realistisch abzubilden, einschließlich des Einflusses der Verarbeitung und Zubereitung im Haushalt.
- 3. Ähnliche Lebensmittel werden gepoolt und homogenisiert. Da das Ziel einer TDS ist, möglichst die gesamte Lebensmittelpalette auf eine große Anzahl an Stoffen zu untersuchen, werden ähnliche Lebensmittel zusammengefasst (gepoolt), um die Analytik kosteneffizient durchzuführen.

TDS wurden inzwischen in mehr als 50 Ländern weltweit durchgeführt, darunter auch in Frankreich, Portugal und der Tschechischen Republik. Sie gelten als eine kosteneffektive Methode zur Bestimmung von durchschnittlichen Gehalten von erwünschten und unerwünschten Stoffen in Lebensmitteln. In Deutschland wurde dieses Studiendesign erstmalig durchgeführt und ergänzt das Lebensmittel-Monitoring der Landesuntersuchungsämter. (Referenz Anna Kolbaum)

In einem gemeinsamen Dokument von EFSA, FAO und WHO wurden Richtlinien zur Harmonisierung von TDS empfohlen und im europäischen Projekt "TDS-Exposure" weiterentwickelt (Kolbaum et al. 2019). Diese Empfehlungen bildeten die Grundlage für die methodische Ausgestaltung der ersten Deutschen TDS.

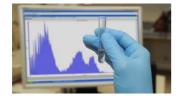
Als ein Partner von "TDS-Exposure" erhob das BfR in einer Pilotstudie für die drei Elemente Kupfer, Mangan und Quecksilber Gehaltsdaten in verzehrfertigen Lebensmitteln (EFSA 2011; Sachse et al. 2019). Die Erkenntnisse dieser Pilotstudie wurden in der konzeptionellen Ausgestaltung der BfR-MEAL-Studie berücksichtigt, jedoch wurde sowohl das Spektrum der Stoffe als auch die Anzahl der Lebensmittel deutlich erhöht. So wurden in der BfR-MEAL-Studie in zwei Feldphasen mehr als 300 Einzelsubstanzen in 356 Lebensmitteln untersucht, für

¹ http://www.tds-exposure.eu/

die je nach Relevanz separate Poolproben für verschiedene Regionen, Saisons und Erzeugungsarten hergestellt wurden. Somit konnten über 90 % der von der Bevölkerung in Deutschland verzehrten Lebensmittel abgedeckt und diese in Ergänzung zu bereits bestehenden Datensätzen auf 110 zusätzliche Stoffe untersucht werden. Auch derzeit noch bestehende Datenlücken für ca. 190 weitere Stoffe konnten, beispielsweise durch die zusätzliche Beprobung weiterer Lebensmittel, reduziert werden.

149.499

Kilometer wurden im Laufe des Einkaufs zurückgelegt.


4

Jahre und 8 Monate verarbeitete das Küchenteam die eingekauften Lebensmittel zu verzehrfertigen Speisen.

75

Einzelzutaten wurden allein für die Zubereitung der verschiedenen Rezepte zum Pool "Rinderrouladen" eingekauft und verarbeitet.

>140.000

Analyseergebnisse hat das Studienteam von den Laboren erhalten.

Abbildung 1: Die BfR-MEAL-Studie in Zahlen (Bildrechte beim BfR)

2 Design der BfR-MEAL-Studie

2.1 Auswahl der Lebensmittelliste für das Basismodul

Die finale Lebensmittelliste der BfR-MEAL-Studie für das Basismodul umfasste 356 Lebensmittel und deckt mehr als 90 % des Lebensmittelverzehrs ab. Im Primärkonzept der BfR-MEAL-Studie aus dem Jahr 2013 wurde der Umfang der Lebensmittelliste auf 350 Lebensmittel geschätzt. Die Grundlage für diese Schätzung basierte aus Erfahrungen der französischen TDS und aus der deutschen Pilotstudie im Projekt "TDS-Exposure". Der Umfang der dort ermittelten Lebensmittellisten wurde um Lebensmittel ergänzt, die vorwiegend von Säuglingen und Kleinkindern verzehrt werden (z. B. Säuglingsmilchnahrung). Um das unterschiedliche Verzehrverhalten von allen beschriebenen Altersgruppen zu berücksichtigen, wurden die Lebensmittel so ausgewählt, dass für alle Altersgruppen (0,4 bis < 1 Jahr; 1 bis < 3 Jahre; 3 bis < 5 Jahre; 14 bis < 18 Jahre, 18 bis < 65 Jahre; > 65 Jahre) jeweils 90 % des

Verzehrs erreicht wurden. Über die Mindestanforderung, 90 % des durchschnittlichen gesamten Verzehrs an Lebensmitteln und Getränken abzubilden, wurde die Lebensmittelauswahl so getroffen, dass auch 90 % in jeder der 19 Lebensmittelhauptgruppen erreicht wurde. Damit wurde vermieden, dass einzelne Hauptgruppen mit geringen Verzehrsmengen mit nur sehr wenigen Pools abgedeckt sind. Als Datenbasis für die Erstellung der Lebensmittelliste dienten die repräsentativen Daten der Nationalen Verzehrsstudie II (Daten der 24 h-Recalls) und Daten der VELS-Studie (MRI 2008, Heseker et al. 2003).

Nach der Auswahl der am häufigsten verzehrten Lebensmittel je Altersgruppe wurde in einem nächsten Schritt die Liste mit Lebensmitteln ergänzt, die zwar weniger verzehrt werden, aber aufgrund höherer Gehalte in der Vergangenheit dennoch expositionsrelevant sein könnten. Darüber hinaus wurden Lebensmittel ergänzt, die aufgrund von Ernährungstrends an Relevanz hinzugewonnen haben (z. B. Chiasamen, Pangasius und Avocado).

In der Lebensmittelliste der BfR-MEAL-Studie sind auch Lebensmittel abgebildet, die bevorzugt von besonderen Bevölkerungsgruppen verzehrt werden, wie z. B. Vegetariern oder Veganern. Beispielsweise sind Fleischersatzprodukte (z. B. Tofu, vegetarische Bratlinge) in der Lebensmittelhauptgruppe "Produkte für spezielle Ernährungsformen und Lebensmittelimitate" berücksichtigt. Aufgrund fehlender repräsentativer Daten zur Lebensmittelaufnahme wurden jedoch für diese speziellen Bevölkerungsgruppen ggf. nicht alle relevanten Lebensmittel untersucht und der abgebildete mittlere Verzehr liegt möglicherweise unter 90 % des Gesamtverzehrs dieser besonderen Bevölkerungsgruppe.

2.2 Regionale, saisonale und produktionsbezogene Faktoren im Basismodul

Region und Saison

Für ausgewählte Lebensmittel wurde untersucht, inwieweit regionale oder saisonale Einflüsse sowie Einflüsse durch die Art der Erzeugung Auswirkungen auf Stoffgehalte haben. Hierfür wurden für ausgesuchte Lebensmittel der Lebensmittelliste separate Poolproben (z. B. für zwei Saisons) hergestellt und analysiert.

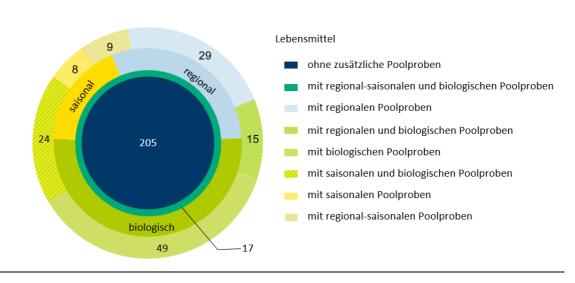


Abbildung 2: Anzahl der Lebensmittel im Basismodul mit und ohne zusätzliche Poolproben (n)

Schätzungen zu der Anzahl der Lebensmittel, für die eine getrennte Beprobung vorgenommen werden sollte, basierten im Primärkonzept auf den Vorschlägen aller betroffener Fachabteilungen des BfR.

Die Anzahl der Poolproben basieren ebenfalls auf den Vorschlägen aller betroffener Fachabteilungen des BfR, der stoffspezifischen Expertengruppen der Module, Empfehlungen von Experten des Max Rubner-Instituts (MRI) und durch die Berücksichtigung von Herkunftsinformationen von Obst und Gemüse von der Bundesanstalt für Landwirtschaft und Ernährung (BLE) (vgl. Abbildung 2).

Im Vergleich zum eingereichten Konzept von 2013 haben sich die Anteile der Lebensmittel mit separater regionaler und/oder saisonaler Beprobung verringert, da Klimadaten und Daten zu Bodenbelastungen nicht die Berücksichtigung von sechs Regionen, wie ursprünglich geplant, unterstützte. Nach Beratungen mit dem internationalen Beirat der BfR-MEAL-Studie wurde eine Unterteilung von Deutschland in vier Regionen vorgenommen. Diese Entscheidung berücksichtigte zudem die geringen regionalen Unterschiede in den Gehalten verschiedener Stoffe, die im Rahmen der zweiten französischen TDS bei acht berücksichtigten Regionen verzeichnet wurden.

In jeder der vier Regionen wurden drei Samplepoints in unterschiedlichen BIK-Gemeindegrößenklassen angefahren: jeweils eine Großstadt (> 100.000 Einwohner ●), eine mittelgroße Stadt (20.000−100.000 Einwohner ●) und ein ländliches Gebiet (< 20.000 Einwohner ●). Die Anzahl der pro Samplepoint eingekauften Teilproben wurde entsprechend dem Bevölkerungsanteil der jeweiligen BIK-Gemeindegrößenklasse an der Gesamtbevölkerung der Region gewichtet. Dementsprechend wurden z. B. in Region Ost für eine regionale Poolprobe bestehend aus 15 Teilproben neun Teilproben in der Großstadt, vier Teilproben in der mittelgroßen Stadt und zwei Teilproben im ländlichen Gebiet eingekauft.

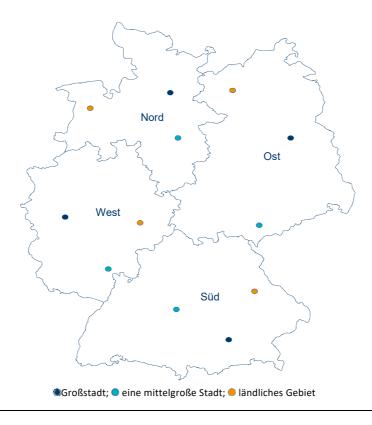


Abbildung 3: Regionen und Samplepoints in der BfR-MEAL-Studie

Um Unterschiede zwischen Lebensmitteln z. B. durch Import und eigenen Anbau oder unterschiedliche Importländer abbilden zu können, wurden Proben zu verschiedenen Zeitpunkten im Jahr gezogen. Die Saisons sind jedoch zwischen Lebensmitteln unterschiedlich lang und zu verschiedenen Zeitpunkten, je nachdem, wann im Jahr Unterschiede in den Gehalten vermutet wurden.

Art der Erzeugung

Die Auswahl der Lebensmittel für eine separate Beprobung nach Art der Erzeugung (biologisch oder konventionell) erfolgte stufenweise. In Stufe 1 wurden Lebensmittel ausgewählt, die eine hohen Anteil biologisch erzeugter Produkte auf dem Markt laut Marktdaten aufzeigen. In Stufe 2 wurden Lebensmittel ausgewählt, für die Unterschiede in den Gehalten von konventionell und biologisch erzeugten Lebensmitteln erwartet wurden. Basis für diese Entscheidungen bildeten Auskünfte von Experten des MRI und der modulbegleitenden Expertengruppen. In Stufe 3 wurde die Auswahl aus Stufe 1 und 2 um vielverzehrte Lebensmittel aus verschiedenen Lebensmittelhauptgruppen ergänzt, wobei der Gesamtanteil der Lebensmittel, für die eine separate Beprobung nach Art der Erzeugung erfolgte, auf 30 % begrenzt wurde. Für die dementsprechend ausgewählten Lebensmittel (n = 105) wurden einerseits Poolproben ausschließlich aus konventionell erzeugten Produkten hergestellt und eine zusätzliche Poolprobe ausschließlich aus Produkten aus biologischer Erzeugung. Sämtliche andere Lebensmittel der Lebensmittelliste sind in Bezug auf die Erzeugungsart als unspezifisch anzusehen, d. h. die Poolproben setzen sich aus Produkten aus konventioneller Erzeugung zusammen und enthalten nur dann anteilig Teilproben aus biologischer Erzeugung, wenn

Marktdaten diesbezüglich vorlagen und diese einen Anteil der Produkte aus biologischer Erzeugung von größer 5 % zeigten.

Für das Basismodul wurden durch die Berücksichtigung mehrerer Poolproben für 151 der 356 Lebensmittel insgesamt 869 Poolproben hergestellt.

2.3 Anzahl Teilproben je Poolprobe im Basismodul

Die Anzahl der Teilproben für Lebensmittel ohne zusätzliche Poolproben für Saison, Region oder Erzeugungsart wurde für das Basismodul auf 20 gesetzt. Damit sollte die Variabilität zwischen den auf dem Markt befindlichen Produkten besser berücksichtigt werden.

Für Lebensmittel mit zusätzlichen Poolproben für verschiedene Saisons, Regionen oder Erzeugungsarten wurde die Anzahl der Teilproben auf 15 reduziert, da ein Großteil der zu erwartenden Variabilität bereits durch die Berücksichtigung mehrerer Poolproben bei diesen Lebensmitteln abgedeckt wurde. Die relative Breite des 95 % Konfidenzintervalls wurde im Primärkonzept für die Anzahl von 15 Teilproben je Poolprobe bei einem Verhältnis von Standardabweichung zu Mittelwert von 1:3 mit ±19 % angegeben; für die Anzahl von 20 Teilproben mit ±16 %.

Je nach Lebensmittel und Stoff bzw. Stoffgruppen wurde in Hinblick auf Saison (z. B. Prozesskontaminante), Region (z. B. Zusatzstoffe) oder Erzeugungsart (z. B. Perfluorierte Alkylsubstanzen) keine Variabilität in den Gehalten erwartet. Kosteneffizient wurden vor der Analyse auf diese Stoffe regionale und/oder saisonale Poolproben aus dem Basismodul anteilig gleich zu einer Schichtungspoolprobe zusammengefasst. Entsprechend besteht eine aus vier Regionen zusammengesetzte Schichtungspoolprobe aus 4 x 15 (insg. 60) Teilproben und eine aus zwei Saisons zusammengesetzte Schichtungspoolprobe aus 2 x 15 (insg. 30) Teilproben. Schichtungspoolproben aus den beiden Erzeugungsarten biologisch und konventionell wurden bei vorliegenden Informationen zum Marktanteil der jeweiligen Erzeugungsarten anteilig geschichtet. Lagen keine Daten zu den Marktanteilen vor, wurden beide Poolproben mit gleichen Anteilen geschichtet. Für die Elementanalyse des Basismoduls wurden demnach 869 Poolproben aus 13.552 Teilproben hergestellt.

Für Module der Feldphase 2 variiert die Anzahl der Teilproben entsprechend den Erfordernissen des jeweiligen Moduls (vgl. Modulabschnitte).

3 Ergänzende Datengrundlagen

Die repräsentative Abbildung des Einkaufs- und Zubereitungsverhaltens der in Deutschland lebenden Bevölkerung erfolgte über die Berücksichtigung von Ergebnissen aus beauftragten Verbraucherstudien und über beschaffte Marktdaten. Die erlangten Informationen wurden zur Spezifizierung der Produkte in den Einkaufslisten (z. B. Angaben zu Marken, Sorten oder Herkunft) und zur Spezifizierung der Einkaufsstätten genutzt sowie bei der Zubereitung der Lebensmittel in der Studienküche berücksichtigt (z. B. für die Auswahl von Küchenutensilien und für die Auswahl von Rezepten). Ziel war es, auf Ebene der Poolproben die verfügbaren Informationen repräsentativ zu berücksichtigen.

3.1 Marktdaten

Die Auswahl und Gewichtung von Teilproben erfolgte über Marktdaten aus einem für die deutsche Bevölkerung repräsentativen Haushaltspanel (GfK, Growth from Knowledge). Das Haushaltspanel erfasst fortlaufend u. a. den Einkauf von Lebensmitteln und Getränken von 30.000 Haushalten. Bei der Marktdatenbeschaffung wurden Informationen zum Anteil von Erzeugungsarten und zu Einkaufsstätten kosteneffizient auf der Ebene von Lebensmittelhauptgruppen abgefragt. Diese Informationen wurden ergänzt mit detaillierteren Abfragen zu ausgesuchten Lebensmitteln der Lebensmittelliste (z. B. Abfragen zu Marken, Sorten, zur Herkunft, Verarbeitung oder Bedienungsform). Die Abfragen erfolgten im Zeitraum 2016–2017 und nutzten als Datenbasis jeweils den Erfassungszeitraum der zurückliegenden zwölf Monate. Ergänzend genutzte Marktdaten für die Warengruppen Mineralwasser, Kartoffeln und Kartoffelprodukte, Bier, Sekt, Cola-Getränke, Tee und Kakao, Zucker/Zuckerprodukte und Honig sowie Fette und Öle lagen für Erfassungszeiträume von 2007–2015 bereits aus vorangegangen Projekten vor.

Die Auswahl von Koch- und Backrezepten für die verbrauchertypische Zubereitung der Speisen erfolgte, entsprechend den Ergebnissen einer beauftragten Verbraucherstudie, zu 77 % über Rezeptbücher. Die innerhalb der Studie genutzten Rezeptbücher (fünf Backbücher, fünf allgemeine bzw. Grundkochbücher, neun Themenkochbücher) wurden aus einer Top-100-Liste ausgewählt. Grundlage der Top-100-Liste bildeten Absatzzahlen eines Handelspanels für die relevanten Warengruppen für den Erfassungszeitraum 2007–2016. Das Handelspanel deckte u. a. die Absatzwege Sortimentsbuchhandel, E-Commerce und Kauf- und Warenhaus ab.

Neben den Marktdaten aus Haushalts- und Handelspanels wurden ergänzend Informationen der Bundesanstalt für Landwirtschaft und Ernährung (BLE) zu Herkunft und Sorten von 29 Obst- und Gemüsearten genutzt. Die Daten aus dem Erhebungszeitraum 2015 stellten Informationen zur monatlichen Angebotsmenge verschiedener Sorten von Obst und Gemüse in Abhängigkeit ihrer Herkunft dar. Erhoben wurden die Daten auf fünf deutschen Großmärkten (Berlin, Frankfurt, Hamburg, Köln, München), wobei die jeweilige Angebotsmenge eine Schätzung im Rahmen der Marktbegehung darstellt.

3.2 Daten über die haushaltstypische Zubereitung

Ziel der Zubereitung der Speisen in der MEAL-Studienküche war es, die Zubereitung der in deutschen Privathaushalten stattfindenden Zubereitung abzubilden. Vor diesem Hintergrund wurden im Vorfeld der beiden Feldphasen drei repräsentative Verbraucherstudien beauftragt, die Datenlücken über die Zubereitung von Lebensmitteln schließen sollten. Dies betrifft insbesondere Informationen zu Zubereitungsvarianten von Speisen (z. B. Zubereitungsarten von Pommes Frites, Mischungsverhältnisse von Frucht- und Weinschorlen oder die Zusammensetzung gemischter Salate), aber auch Aspekte wie präferierter Bräunungsgrad verschiedener Lebensmittel und die Beschaffenheit von verwendeten Küchenutensilien wie Töpfe und Pfannen.

Über eine telefonische Haushaltsbefragung (Computer Assisted Telephone Interview, Stichprobenumfang n = 1.008) einer externen Firma (aproxima Gesellschaft für Markt- und Sozialforschung mbH) wurden Informationen zur Zubereitung von 49 Lebensmitteln aus neun Le-

bensmittelhauptgruppen erhoben (Hackethal et al., 2023). Hierzu zählten beispielsweise Informationen zum Waschen diverser Obst und Gemüse vor der Zubereitung bzw. vor dem Verzehr. Die Informationen wurden in die Zubereitungspläne integriert, die dem Küchenteam während der Zubereitung zur Verfügung standen.

Über eine Online-Befragung (zwei Online-Access-Panels, Stichprobenumfang n = 2.003) wurden Informationen über präferierte Bräunungsgrade exemplarisch für 17 Lebensmittel erhoben (Hackethal et al., 2023; aproxima Gesellschaft für Markt- und Sozialforschung mbH). Die Ergebnisse der Befragung wurden für weitere, jeweils vergleichbare Lebensmittel angewendet und dafür in einem Bildband so aufbereitet, dass für die betreffenden Lebensmittel die verschiedenen Bräunungsgrade visuell dargestellt wurden. Die Bilder wurden durch Angaben zur Anzahl der Teilproben ergänzt, die in dem entsprechenden Bräunungsgrad herzustellen sind, und vom Küchenteam für die Zubereitung der Speisen verwendet.

Über eine telefonische Haushaltsbefragung (Computer Assisted Telephone Interview, Stichprobenumfang n = 1.008) wurden für verschiedene Zubereitungsprozesse in der Küche Informationen zur Art der verwendeten Küchenutensilien und zu deren Material erhoben (u. a. Informationen zu Kochtöpfen, Bratpfannen, Auflaufformen, Schneidebrettern und Küchenmessern) (Hackethal et al., 2023; aproxima Gesellschaft für Markt- und Sozialforschung mbH). Darüber hinaus wurden für konkrete Lebensmittel der Lebensmittelliste Informationen zur Zubereitungsart erhoben (z. B. Zubereitungsarten von Kaffee, Tee und Reis inkl. Informationen zu den verwendeten Geräten und Utensilien). Die Ergebnisse der Befragung wurden in die Zubereitungspläne integriert, sodass für jede herzustellende Teilprobe die Angaben zur Zubereitungsart und zu den auszuwählenden Utensilien hinterlegt wurden.

3.3 Außer-Haus-Verzehr

Mit dem Ziel, die Repräsentativität der Poolproben zu erhöhen, wurden für ausgesuchte Lebensmittel der Lebensmittelliste (n = 37) Informationen über die Häufigkeit des Außer-Haus-Verzehrs und die Bezugswege der außer Haus verzehrten Lebensmittel erhoben (Hackethal et al., 2023). Die Onlinebefragung stellte für die Bezugswege einerseits Angaben zu kategorisierten Zubereitungsorten (z. B. Schnellrestaurant, Bäckerei, Fleischerei oder Imbiss) zur Verfügung. Andererseits wurden ergänzend konkrete Anbieter von Speisen im Außer-Haus-Verzehr erfragt (Schnellrestaurantketten, deutschlandweite Filialbäckereien, Cafés usw.).

Die Datenerhebung erfolgte im Dezember 2016 per Onlinebefragung durch eine Gesellschaft für Markt- und Sozialforschung (aproxima Gesellschaft für Markt- und Sozialforschung mbH). Für die Befragung wurde aus zwei Online-Access-Panels eine Stichprobe von 2.006 Teilnehmenden rekrutiert.

Die Ergebnisse der Onlinebefragung definierten für ausgewählte Lebensmittel in den Einkaufslisten die Anzahl von verzehrfertig gekauften Teilproben und deren Einkaufsstätte.

4 Durchführung

Die Durchführung der BfR-MEAL-Studie umfasste sechs Schritte: die Auswahl der Lebensmittel für die Lebensmittelliste, der repräsentative Einkauf der Lebensmittel, die verbrauchertypische Zubereitung der Lebensmittel, das Poolen und Homogenisieren der Proben, die Analyse der Poolproben sowie die wissenschaftliche Auswertung der erhobenen Daten (Abbildung 4).

Abbildung 4: Schritte der BfR-MEAL-Studie

4.1 Einrichtung der MEAL-Studienküche

Die Methodik einer TDS zeichnet sich dadurch aus, dass die Lebensmittel in dem für die Bevölkerung typischen, verzehrfertigen Zustand analysiert werden. Dies erforderte für einen beachtlichen Teil der zu untersuchenden Lebensmittel eine haushaltstypische Zubereitung.

Für eine effiziente Durchführung der BfR-MEAL-Studie wurde am Standort Berlin Alt-Marienfelde eine Studienküche speziell für die Belange einer TDS eingerichtet. Die MEAL-Studienküche unterteilte sich in die Bereiche: Sozialräume, Warenannahme, Küche, Reinigung, Homogenisierung, Trockenlager, Tiefkühl- und Kühllager.

Der Bereich der Warenannahme war mit einem PC-Arbeitsplatz mit Etikettendrucker (Brother P-touch 9700PC) und Barcodescanner (Inateck BCST-S) sowie einer Fotobox (LIFE of PHOTO LFV-550) ausgestattet, wodurch eine Dokumentation und Kommissionierung der eingehenden Lebensmittel ermöglicht wurde. Zur Zwischenlagerung der eingehenden Lebensmittel verfügte der Bereich zudem über Regale sowie Kühl- und Tiefkühlschränke (Asskühl ELI-WELL ID 974). Als zentrale Dokumentationssoftware wurde FoodCASE (Premotec GmbH) genutzt.

Im Küchenbereich ermöglichten zwei Arbeitsbereiche die parallele Bearbeitung von Proben durch zwei Küchenteams. Die Arbeitsflächen in den Arbeitsbereichen bestanden aus Edelstahl. In den Arbeitsbereichen standen für die Zubereitung Induktionsherde (MKN CVEKOI2), Backöfen (MKN Master of Performance Elektro-Backofen), eine Mikrowelle (Tarrington House MWD5130), ein Kombidämpfer (MKN SpaceCombi MagicPilot) sowie Spülbecken zur Verfügung. Basierend auf den Informationen der Vorstudie zu Nutzung von Küchenutensilien (vgl. Kapitel 3.2) wurde die Studienküche entsprechend mit haushaltsüblichem Kochequipment und Küchenutensilien ausgestattet.

Zur Reinigung von Küchenutensilien, Messermühlenzubehör und Probengefäßen wurde eine gastrotypische Waschstraße mit angegliederter Haubenspülmaschine (Meiko DV 80.2) installiert. Für die weiterführende Reinigung von Arbeitsmitteln aus dem Homogenisierungsbereich stand zusätzlich eine Laborspülmaschine (Miele PG8583 D) für Spülgänge mit vorentsalztem Wasser zur Verfügung.

Der Bereich der Homogenisierung war mit einem Trockenschrank (Heratherm OMS100), einer Reinstwasseranlage (Merck Milli-Q® Integral 5) und einer stationären Anlage zur Sauerstoffmangelüberwachung (Dräger VarioGard) ausgestattet. Um die Sicherheit der Mitarbeitenden im Bereich Homogenisierung während der Homogenisierung mit Flüssigstickstoff zu gewährleisten, wurden zusätzlich mobile Sensoren (Dräger PAC 6500) genutzt, die an der Person getragen wurden. Die Lagerung von Flüssigstickstoff und Trockeneis erfolgte im abschließbaren Unterstand außerhalb der Studienküche in einem 50-Liter-Tank (Apollo 50, Cryotherm). Laptop-Arbeitsplätze mit Etikettendrucker (Brother P-touch 9700PC) und Barcodescanner (Inateck BCST-S) standen für die Kennzeichnung und Dokumentation von Probenmaterial zur Verfügung. Für die Homogenisierung des Probenmaterials wurden zwei Typen von Messermühlen (Retsch GM200, Retsch GM300) mit unterschiedlichen Volumina der Mahlbehälter (0,7 L und 4,5 L) genutzt. Als Zubehör für die Messermühlen standen Mahlbehälter aus Kunststoff (PP), Edelstahl oder beschichtetem Edelstahl (BTC Beschichtungstechnik Titan-Niob-Beschichtung oder Eifeler Carbon X-Beschichtung), Deckel für die Vermahlung mit Flüssigstickstoff und verschiedene Messer (Vollmetallmesser, Edelstahlmesser, titanbeschichtete Edelstahlmesser) zur Verfügung, um je nach untersuchtem Stoff und zu erwartender Migration die Materialien bei der Homogenisierung anzupassen.

Sowohl im Küchenbereich als auch im Bereich der Homogenisierung wurden jeweils zwei Präzisionswaagen (Precisa 321 LT 6200C) genutzt, die über eine Schnittstelle die digitale Übertragung der Daten ermöglichte. Die Zusammensetzung der im Bereich der Studienküche verwendeten Reinigungsmittel wurden dahingehend geprüft, dass es durch die Reinigung zu keiner nachteiligen Beeinträchtigung der Analysen kommt.

4.2 Einkauf der Lebensmittel und Entsorgung der Küchenabfälle

Für die BfR-MEAL-Studie wurden ca. 60.000 Einzellebensmittel eingekauft. Für einen Teil der Lebensmittel wurden regionale Unterschiede in den Gehalten untersucht, indem separate Poolproben für die vier Regionen Nord, Ost, Süd und West hergestellt wurden (vgl. Kapitel 2.2). Für die übrigen Lebensmittel wurde in Absprache mit stoffspezifischen Experten davon ausgegangen, dass es deutschlandweit zwischen den Regionen keine relevanten Unterschiede in den Gehalten gibt. In diesem Fall wurden die Lebensmittel ausschließlich im Raum Berlin eingekauft.

Das Einkaufsteam setzte sich aus drei Personen zusammen, wobei deutschlandweite Einkäufe in der Regel von zwei Personen durchgeführt wurden. Die Regionaleinkäufe fanden in einem vierwöchigen Turnus statt (eine Woche pro Region). Eine am BfR eingerichtete Geldstelle ermöglichte die Bezahlung und Abrechnung der Lebensmittel.

Für den Einkauf wurden nach Einkaufsstätten sortierte Einkaufslisten bereitgestellt, die neben den Einkaufsstätten ggf. weiterführende Informationen zu Produktart, Marke, Typ/Sorte, Erzeugungsart, Herkunftsland und Einkaufsmenge bereithielten. Über die Smart-

phone-Applikation der FoodCASE-Datenbank stand während des Einkaufs eine digitale Version der Einkaufsliste zur Verfügung. Die Applikation ermöglichte darüber hinaus die digitale Erfassung weiterer Produktinformationen, wie z. B. die EAN-Nummer. Abweichungen von den Vorgaben der Einkaufsliste oder ergänzende Informationen, z. B. zur Herkunft des Lebensmittels, wurden in den Einkaufslisten oder in der Datenbank-Applikation dokumentiert. Jedes Lebensmittel wurde unmittelbar nach Einkauf mit einem individuellen MEAL-spezifischen Strichcode-Aufkleber gekennzeichnet.

Die Kalkulation der benötigten Einkaufsmengen berücksichtigte Verluste während der Warenannahme (beschädigte oder verdorbene Lebensmittel), Küchenabfälle, Gewichtsausbeuten bei der Zubereitung von Lebensmitteln, Schwankungen des Nettogewichts vorverpackter Lebensmittel und Verluste beim Homogenisieren. Dementsprechend wurde eine ausreichende Menge an Probenmaterial sichergestellt und gleichzeitig die Menge überschüssiger Lebensmittel reduziert. Die nicht vermeidbaren Lebensmittelabfälle wurden an einen Dienstleister für Speiseresteentsorgung zur Energiegewinnung übergeben.

Aufgrund der vergleichsweise hohen Einkaufsmenge wurden ausgesuchte Lebensmittel, wie Innereien oder ausgesuchte Fischprodukte bei den Einkaufsstätten im Bedarfsfall vorbestellt.

Zusätzlich zu den in Einkaufstätten beprobten Lebensmitteln wurden deutschlandweit Trinkwasserproben gezogen. Hierfür wurde Trinkwasser nach einem standardisierten Verfahren in der MEAL-Studienküche sowie an 29 anderen öffentlich zugänglichen Wasserhähnen entnommen und in mit Reinstwasser gespülten Probengefäßen gefüllt. Die insgesamt 30 Samplepoints waren gleichmäßig auf die Bereiche Großstadt, mittelgroße Stadt und ländliches Gebiet im gesamten Bundesgebiet verteilt (Kategorisierung entsprechend der BIK-Regionstypen).

4.3 Transport der Lebensmittel zur MEAL-Studienküche

Der Transport der Lebensmittel erfolgte mit zwei Transportern, welche mit Regalen, einem Arbeitsplatz und Kühl-/Tiefkühlboxen (EZetil EZC 80 und Dometic CoolFreeze CFX) ausgestattet wurden. Der Transporter für den deutschlandweiten Einkauf wurde darüber hinaus mit einer Außensteckdose und einer Zusatzbatterie ausgerüstet, was eine Kühlung der Lebensmittel in den Kühl-/Tiefkühlboxen über Nacht und während längeren Standzeiten ermöglichte.

In den Regionen Süd, West und Nord wurden die eingekauften Lebensmittel jeweils zweimal pro Einkaufswoche an einen Kurier übergeben, der die Lebensmittel bis zum Morgen des Folgetages zur MEAL-Studienküche transportierte. Damit wurde eine zeitnahe Verarbeitung empfindlicher Lebensmittel, wie z. B. Erdbeeren oder Salate, sichergestellt und gleichzeitig Lagerplatz im Transporter für den erneuten Einkauf von Lebensmitteln in den Regionen geschaffen. Im Rahmen der Kurierfahrten wurde die Kühlung bzw. Tiefkühlung der Lebensmittel mit Datenloggern zur Temperaturüberwachung dokumentiert.

Unverpackte und nicht vollständig verpackte Lebensmittel wurden für den Transport zur Studienküche in HDPE-Plastiktüten verpackt, um Kreuzkontamination durch den Kontakt mit anderen Lebensmittelverpackungen oder den Lagerbehältern zu vermeiden. Die Zwischenlage-

rung der Lebensmittel während des Transports erfolgte in mit Alufolie ausgekleideten Eurobehältern (Auer Packaging EG 43/32, Polypropylen), um einen Eintrag durch die Lagerkisten zu vermeiden.

4.4 Annahme von Lebensmitteln und Lagerung

Im Rahmen der Warenannahme erfolgte für jedes Lebensmittel die Prüfung, ob das korrekte Lebensmittel in der erforderlichen Menge gekauft wurde. Darüber hinaus wurde auf Einhaltung des Mindesthaltbarkeitsdatums bzw. Verbrauchsdatums unter Berücksichtigung der geplanten Zubereitung kontrolliert sowie das Lebensmittel auf Verderbnis oder Beschädigung geprüft. Die Warenannahme beinhaltete ergänzend eine Fotodokumentation und die Registrierung der Lebensmittel über die zentrale Datenbank FoodCASE, sodass auch im Nachgang weitere Informationen der Verpackung verfügbar waren. Ebenfalls wurde der Lagerbestand und -ort entsprechend systemtechnisch nachvollziehbar dokumentiert. Für jedes Lebensmittel wurden, sofern vorhanden, Informationen zu Einkaufstätte, Herkunftsland, Marke, Sorte, Erzeugungsart und EAN-Nummer (falls in Einkauf noch nicht erfasst) dokumentiert. Der EAN-Code ermöglichte eine nachträgliche Ergänzung von Informationen zum Lebensmittel in FoodCASE über eine Schnittstelle zur MINTEL Global New Product Database.

Die Lagerung der eingekauften Lebensmittel bis zur Zubereitung erfolgte in mit Alufolie ausgekleideten Eurobehältern (vgl. Kapitel 4.3) und je nach Anforderung in drei Lagerbereichen mit unterschiedlichen Temperaturen (Trockenlager bei Raumtemperatur, Kühllager (Solltemperatur – 20°C)).

Die Lagerung der homogenisierten Proben erfolgte bis zur Übergabe an die Labore bei –20 °C. Die Temperaturen sowohl beim anschließenden Transport der Proben von der MEAL-Studienküche zum Standort des Labors als auch bis zur Analyse wurden dokumentiert und kontrolliert.

Die Lagerdauer der Poolproben erfolgte je nach Stoffgruppe entsprechend den Empfehlungen aus den modulbegleitenden Expertengruppen. Bei lagerempfindlichen Analyten, wie z. B. bei Vitaminen, wurde die Dauer von Herstellung der Probe bis zur Analyse begrenzt.

Speziell für Vitamin E wurde im Vorfeld der ersten Feldphase eine Studie zur Lagerstabilität in basischen und sauren Lebensmitteln, stellvertretend in Broccoli und Blaubeeren, durchgeführt und die Lagerdauer für alle Vitamine in der Folge auf zehn Tage festgelegt.

4.5 Zubereitung der Lebensmittel

Die haushaltstypische Zubereitung der Lebensmittel erfolgte in der MEAL-Studienküche parallel durch zwei Küchenteams (je ein Koch/eine Köchin und eine Küchenhilfe). Die Küchenteams erhielten für jede Teilprobe einen Zubereitungsplan, der sämtliche Arbeitsanweisungen bzw. Rezeptvorgaben zur Zubereitung enthielt, darunter auch Informationen zur Auswahl des Kochgeschirrs und der Küchenutensilien. Die Verteilung der verschiedenen Arten von Kochgeschirr und Küchenutensilien wurde entsprechend der Ergebnisse der Vorstudien (vgl. Kapitel 3.2) für jede Poolprobe berechnet und vorgegeben. Abweichungen von Vorgaben des Zubereitungsplans, wie beispielsweise geänderte Garzeiten, Temperaturen oder Bräunungsgrade, wurden auf den entsprechenden Zubereitungsplänen dokumentiert.

Rezeptkomponenten mit einem Anteil von weniger als fünf Gewichtsprozent an der Gesamtrezeptmenge wurden als Grundzutaten definiert. Als Grundzutaten wurden die Top-1-Marken entsprechend den vorliegenden Marktdaten (vgl. 3.1) eingekauft und nach den Vorgaben in den Zubereitungsplänen verwendet.

In Feldphase 1 wurden 64 % der Teilproben mit unterschiedlichen Garmethoden in der Studienküche verarbeitet, 10 % der Teilproben nur gewaschen und ggf. zerkleinert und 26 % der Teilproben wurden verzehrfertig eingekauft.

In Feldphase 2 wurden 53 % der Teilproben mit unterschiedlichen Garmethoden in der Studienküche verarbeitet und 12 % der Teilproben ausschließlich gewaschen und ggf. zerkleinert. Die restlichen 35 % wurden als verzehrfertige Lebensmittel eingekauft.

Zur Probenübergabe an die Homogenisierung wurden die Teilproben beschriftet und in mit Glasdeckeln abgedeckten Glasschlüsseln (beide Borosilikatglas) zwischengelagert.

4.6 Homogenisierung zu Poolproben

Die Entnahme der Teilproben aus den Glasschüsseln erfolgte direkt vor dem Einwiegen in die Mahlbehälter bzw. direkt vor der Vorbehandlung mit Trockeneis bzw. Flüssigstickstoff. Vorbereitend wurden für jede Poolprobe Etiketten gedruckt und die Probengefäße etikettiert. Ein Analytikplan stellte die notwendigen Informationen zu Probencode, Labor, Probenmenge und Art des Probengefäßes bereit. Da in Vorversuchen mit Lebensmittelsimulanzien Stoffe aus den Homogenisierungsbehältern und dem -equipment in das Homogenat übergegangen waren, wurden Behälter und Equipment aus verschiedenen Materialien genutzt. Entsprechend der zu analysierenden Analyten wurden die Proben in mehreren Ansätzen aufbereitet und hierfür die zu verwendenden Hilfsmittel und Gerätschaften festgelegt: für Elementanalysen wurden Mahlbehälter aus Kunststoff, titanbeschichtete Messer, Kunststoffschaufeln und Polypropylen-Probengefäße gewählt, wohingegen für Analysen auf lipophile Stoffe Edelstahlbehälter, Edelstahlmesser, Edelstahlschaufeln und Probengefäße aus Braunglas genutzt wurden, um Einträge, Kreuzkontaminationen und Verluste zu minimieren.

Die vorgegebenen Teilprobenmengen wurden mittels Präzisionswaagen eingewogen und neben Informationen zur Reinstwasserzugabe und zur verwendeten Drehzahl der Messermühlen im Homogenisierungsplan dokumentiert (vgl. Kapitel 4.1). Die in Probengefäße abgefüllten Poolproben wurden anschließend im Tiefkühlraum bis zur Übergabe an das Labor zwischengelagert oder ans Langzeitlager übergeben (vgl. Kapitel 10).

Die Reinigung des Messermühlenzubehörs und der verwendeten Hilfsmittel erfolgte mehrstufig in der Reihenfolge: Vorspülen, Reinigung mittels Haubenspülmaschine, Spülgang mit VE-Wasser in einer Laborspülmaschine, Spülen mit Reinstwasser von Hand und Trocknung im Trockenschrank (80 °C).

Lebensmittel, die auf hitzelabile Analyten untersucht wurden, durften während der Homogenisierung nicht erwärmt werden. Ferner musste bei Lebensmitteln, die Enzyme enthalten und diese während der Homogenisierung in Kontakt mit den zu untersuchenden Stoffen kommen und diese verändern können, die Temperatur unter 0 °C bleiben, um die Enzymaktivität zu verhindern. Auch Lebensmittel, die wie z. B. Nüsse schwierig zu homogenisieren sind, wurden vor der Homogenisierung versprödet, um ein gleichmäßiges Homogenat zu erhalten. In allen drei Fällen wurden die Lebensmittel mit Flüssigstickstoff vorbehandelt oder

es wurde während der Vermahlung Trockeneis zugegeben. In diesem Falle wurden folgendes Zubehör und folgende Hilfsmittel genutzt: Edelstahlbehälter (ggf. beschichtet), Vollmetallmesser, Trockeneis-Deckel mit Abgasöffnung, Cryo-Schalen und Edelstahlschaufeln.

Abweichend wurden Teilproben für Poolproben für die Mykotoxinanalyse separat homogenisiert und anschließend die Teilprobenhomogenate eingewogen. Darüber hinaus wurde das Probenmaterial für Analysen auf Lebensmittelkontaktmaterialien ausschließlich in ausgebrannte Probengefäße aus Glas abgefüllt und zwischen Glas und Gefäßdeckel zusätzlich Aluminiumfolie platziert.

5 Analytik

Die Analysen im Rahmen der BfR-MEAL-Studie wurden hauptsächlich von externen Handelslaboren oder Landesuntersuchungsämtern durchgeführt, wobei die Analysen auf Weichmacher im Modul "Aus Lebensmittelkontaktmaterialien migrierende Stoffe" eine Ausnahme bildeten und am BfR erfolgten. Die analytischen Anforderungen (Art der Analysenmethode, Aufteilung in Lose, Nachweis- und Bestimmungsgrenzen, qualitätssichernde Aspekte, Lagerfähigkeit von Poolproben etc.) wurden innerhalb der modulbegleitenden Expertengruppen diskutiert und definiert. Für die Festlegung der Mindestbestimmungsgrenzen wurde für ausgesuchte Substanzen ergänzend geprüft, ob die mittlere Exposition unterhalb des gesundheitsbasierten Grenzwertes ist, wenn 100 % der Gehaltsdaten linkszensiert sind. Dennoch wurden auch höhere Bestimmungsgrenzen akzeptiert, sofern das Schließen bestehender Datenlücken als essenziell angesehen wurde, aber die etablierten analytischen Methoden keine weitere Senkung der Bestimmungsgrenze zuließen.

Die analytischen Dienstleistungen erfolgten innerhalb von Rahmenvereinbarungen nach öffentlicher Ausschreibung über die BLE. Insgesamt wurden Rahmenvereinbarungen mit neun Auftragnehmern abgeschlossen (vgl. Tabelle 1).

Tabelle 1: Übersicht zu den Analysemethoden in der BfR-MEAL-Studie

Anzahl der Methoden		36
Labore		
	intern	1
	Handelslabore	8
	Sonstige Institutionen	2
	Landesuntersuchungsämter	1
Anzahl untersuchte Stoffgruppen		98
Anzahl untersuchte Einzelstoffe		336

6 Qualitätssicherung

Die Qualitätssicherung im Rahmen der BfR-MEAL-Studie erfolgte unter DIN EN ISO 9001 einschließlich interner und externer Audits. Zusätzlich dienten der internationale Beirat der BfR-MEAL-Studie und die modulbegleitenden Expertengruppen dem Austausch mit externen

Expertinnen und Experten zu qualitätssichernden Aspekten, wie z. B. zur Analyse von Qualitätssicherungsproben und zu qualitätssichernden Anforderungen an die dienstleistenden Labore (siehe Kapitel 7). Für die interne Qualitätssicherung wurden sämtliche Arbeitsabläufe in den Bereichen Dokumentation, Einkauf, Lagerung, Zubereitung, Homogenisierung und Reinigung über ein Studienhandbuch standardisiert. Zu Beginn der Tätigkeitsaufname erfolgte eine Einarbeitung des Studienpersonals nach den Inhalten des Studienhandbuchs über Patenschaften. Das Studienhandbuch stand während der Feldphasen sowohl digital als auch als Printversion in der MEAL-Studienküche zur Verfügung.

Tabelle 2: Qualitätssichernde Maßnahmen in der BfR-MEAL-Studie¹

Einkauf - Umfangreiches Second-Best-Konzept für Alternativkäufe - Einkaufskoordination mit Anbindung an wissenschaftliches Personal - Unmittelbare Etikettierung aller Lebensmittel mit Strichcode, MEAL-Code zeichnung zur Nachverfolgbarkeit nach dem Einkauf - Prüfung und Dokumentation der Kühl- und Tiefkühltransporttemperaturer Temperaturdatenloggern (EXTECH SD200) - Prüfung und Dokumentation der eingekauften Lebensmittel in der Warenausperson und Verschen der Einkaufslichen	und Re-
- Dokumentation Abweichungen von Vorgaben der Einkaufslisten	n mittels
- Prüfung und Dokumentation der Kühl- und Tiefkühllagertemperaturen - Auskleidung von Lagerboxen mit Aluminiumfolie - Lagerungsversuche zur Stabilität von Tocopherolen - Rückverfolgbarkeit der Lebensmittel durch individuellen MEAL-Code	
 Zubereitung Wöchentliche Vorbesprechungen zu den herzustellenden Poolproben Dokumentation der Zubereitung auf Zubereitungsplänen Auswahl der Reinigungsmittel unter Berücksichtigung von Stoffen, die die verfahren potenziell beeinträchtigen könnten 	Analyse-
 Auswaschungsversuche zur Prüfung des Übergangs von Elementen aus besten und unbeschichteten Mahlbehältern Arbeitstägliche Prüfung der Arbeitsflächen, Geräte und Arbeitsmittel auf Sach Arbeitstägliche interne Kalibrierung der Laborwaagen und Kontrolle der Aus der Laborwaagen Vorheriges Ausbrennen von Probengefäßen für Proben, die auf Lebensmit taktmaterialien untersucht wurden Temperaturkontrolle bzw. aktive Kühlung mittels Trockeneis/Flüssigsticksterend der Homogenisierung von Poolproben für die Mykotoxin- und Vitamin 	uberkeit richtung ittelkon- off wäh-
- Zusätzliche Analysen von Qualitätssicherungsproben (blind) - Beratung hinsichtlich der Analytik-Parameter und deren Qualitätssicherungstoffspezifische Expertengruppen - Prüfung der Lagerungs- und Transporttemperaturen durch die auftragneh Labore - Akkreditierung der Labore - Nachweise über eine erfolgreiche Teilnahme an Ringversuchen bzw. Lagleichsuntersuchungen - Nachweis über weitreichende Erfahrungen in der Bestimmung der Analyte bensmittelproben - Möglichkeit zur Auditierung der Labore - Bestimmung von Qualitätsparametern (Nachweis- und Bestimmung Messunsicherheit, Arbeitsbereich, Linearität, Präzision, Selektivität des Analytensen von Referenzmaterialien und unabhängigen Standardlösungen	aborver- en in Le- sgrenze, alyten)
Ergebnisse - Plausibilisierungskonzept	

¹ Alle Maßnahmen über ISO 9001 abgedeckt

Alternativkäufe erfolgten standardisiert nach Second-Best-Konzept. Entsprechend dieses Konzeptes wurden in Abhängigkeit der Marktdaten, die zur Spezifizierung des Produktes genutzt wurden, Vorgaben für einen Alternativkauf (z. B. alternative Produkt- oder Eigenmarke, alternative Einkaufsstätte oder alternative Sorte) in der Einkaufsliste hinterlegt.

Qualitätssichernde Anforderungen an die Analytik-Dienstleistungen wurden im Vorfeld der Ausschreibungen in den modulbegleitenden Expertengruppen spezifiziert und dementsprechend in den Ausschreibungsunterlagen aufgeführt (vgl. Tabelle 2). Die analytische Qualität wurde seitens der Labore durch die Kontrolle der Stabilität der Probenvorbereitung, den Einsatz von internen Standards, regelmäßige Blindwertkontrollen, Mehrpunktkalibrierungen, Kontrolle der Kalibrierung in der Messsequenz und durch das Führen von Qualitätsregelkarten abgesichert. Darüber hinaus wurde bei Bedarf ein Labor-Audit durchgeführt und es erfolgten ergänzende Analysen von Qualitätssicherungsproben (QS-Proben). Pro Analyt wurden 5–10 % der Proben als QS-Proben unter einem anderen Probencode (blind) wiederholt vom Labor analysiert. Die Auswahl von QS-Proben berücksichtigte drei Kriterien: (1) Proben aus verschiedenen Lebensmittelhauptgruppen, (2) Proben mit Gehalten kleiner Bestimmungsgrenze und (3) Proben mit quantifizierten Gehalten. Die Ergebnisse der QS-Proben wurden mit dem zuvor ermittelten Gehalt auf Mittelfähigkeit geprüft.

Im Rahmen der Rechnungsprüfung wurden die Lager- und Transporttemperaturen, die analytischen Nachweisgrenzen, die Messunsicherheiten und der Preis auf Vertragskonformität geprüft.

20-30 % der analytisch ermittelten Gehalte jeder Substanz/-gruppe wurden auf Plausibilität geprüft. Das schloss u. a. Ergebnisse ein, zu denen Daten aus dem deutschen Lebensmittel-Monitoring der letzten 10 Jahre vorlagen. Darüber hinaus wurden die zu prüfenden Lebensmittel bzw. Gehalte mittels folgender Kriterien ausgewählt: 10 % der Lebensmittel der Lebensmittelliste mit dem höchsten Verzehr in jeder Lebensmittelhauptgruppe, 10 % der höchsten gemessenen Gehalte und 10 % der niedrigsten Gehalte. Der Abgleich der Gehalte erfolgte neben den Daten des Lebensmittel-Monitorings mit Daten diverser Datenbanken (z. B. WHO GEMS/Food Datenbank), mit Gehaltsdaten aus EFSA-Stellungnahmen oder Gehaltsdaten aus weiterer wissenschaftlicher Fachliteratur. Bei Lebensmitteln mit mehreren Poolproben für Regionen, Saisons oder Erzeugungsarten wurden darüber hinaus die Gehalte der verschiedenen Proben gegenübergestellt. Nach erfolgter Expositionsschätzung wurden zusätzlich die zehn Lebensmittel plausibilisiert, welche bei 10 % der höchstexponierten Kinder beziehungsweise bei 5 % der höchstexponierten Erwachsenen am meisten zur Aufnahme beitragen. Konnten Gehaltsdaten weder anhand der Literatur noch durch die Konsultation der Labore und der Expertinnen und Experten plausibilisiert werden, wurden weitere Plausibilisierungsproben an das gleiche Labor eingeschickt.

7 Internationaler Beirat und Expertengruppen

Eine Begleitung der BfR-MEAL-Studie insbesondere im Hinblick auf methodische Aspekte erfolgte durch einen Beirat, der sich aus nationalen und internationalen Expertinnen und Experten zusammensetzte. Zu Beginn der BfR-MEAL-Studie beschränkten sich methodische und praktische Erfahrungen zu TDS auf nationaler Ebene auf das EU-Projekt "TDS-Exposure". Die Verfügbarkeit einer breiten internationalen Expertise zur Methodik von TDS wurde sichergestellt, indem gezielt Personen als Beiratsmitglieder rekrutiert wurden, die an der

Durchführung von TDS beteiligt waren, z. B. in Kanada, Frankreich, Neuseeland und den USA. Darüber hinaus wurden im Hinblick auf eine internationale Vernetzung Personen der WHO, FAO und der EFSA als Mitglieder angefragt. Auf nationaler Ebene wurden zusätzlich Personen des BMEL, MRI und BVL als wichtige Partner identifiziert und beteiligt sowie weitere Wissenschaftlerinnen und Wissenschaftler von Hochschulen, Bundesforschungsinstituten und Landesuntersuchungsämtern im Hinblick auf deren spezifische Expertise als Mitglieder gewonnen.

Der Beirat der BfR-MEAL-Studie setzte sich aus internationalen Experten auf dem Gebiet der Total-Diet-Studien zusammen und tagte im Verlauf der Studie sechs Mal. Die wissenschaftlichen Diskussionen im Rahmen des Beirats gaben wertvolle Impulse zur Beantwortung methodischer Fragestellungen und bildeten dabei ein wichtiges externes Qualitätsmanagement für die Durchführung der BfR-MEAL-Studie. Auch über die beiden vorerst geplanten Feldphasen hinaus ist das MEAL-Studienzentrum dadurch sehr gut in das internationale TDS-Netzwerk eingebunden.

Für stoff- bzw. stoffgruppenspezifische Fragestellungen wurden den neun Modulen der BfR-MEAL-Studie insgesamt acht Expertengruppen beigestellt, wobei für das "Basismodul" und das Modul "Perfluorierte Alkylverbindungen" eine gemeinsame Expertengruppe gebildet wurde. Die Expertengruppen berieten zu Fragestellungen zur Analytik der jeweiligen Stoffgruppe, zur methodischen Gestaltung der Module, zur Auswahl der Stoffe und berieten zur Qualitätssicherung der Ergebnisse. Die Expertengruppen setzten sich aus bis zu sieben externen nationalen Expertinnen und Experten der jeweiligen Stoffgruppen zusammen, deren Rekrutierung vorzugsweise aus bestehenden BfR-Kommissionen erfolgte. Neben Wissenschaftlerinnen und Wissenschaftlern des MEAL-Studienzentrums entsandten die Fachabteilungen des BfR Vertreterinnen und Vertreter in die Expertengruppen.

Insgesamt tagten die Expertengruppen an zwölf Terminen und nahmen auch an der gemeinsamen Abschlussveranstaltung mit den Beiratsmitgliedern der BfR-MEAL-Studie im Oktober 2022 teil.

8 Module

Methodisch wurde für die BfR-MEAL-Studie ein modulares Design gewählt. Dieser Ansatz wurde vom BfR entwickelt, um Synergien zwischen den Stoffgruppen im Bereichen Einkauf, Probenvorbereitung und Analytik zu ermöglichen und hierdurch kosteneffizient zu arbeiten. In den neun Modulen wurde die Methodik der Total-Diet-Studie jeweils an die Erfordernisse der Stoffgruppe angepasst. Dies umfasste die Aspekte Lebensmittelliste, Einkauf, Zubereitung, Probenvorbereitung und Analytik. Das "Basismodul" nahm eine zentrale Stellung in der ersten Feldphase ein und stellte durch die Ausdifferenzierung von regionalen, saisonalen und biologischen Poolproben die höchste Anzahl an Poolproben (n = 869) zur Verfügung. An das Basismodul angegliederte Module, wie das Nährstoffmodul, nutzten Poolproben des Basismoduls, die teilweise kosteneffizient zusammengefasst wurden (Abbildung 5).

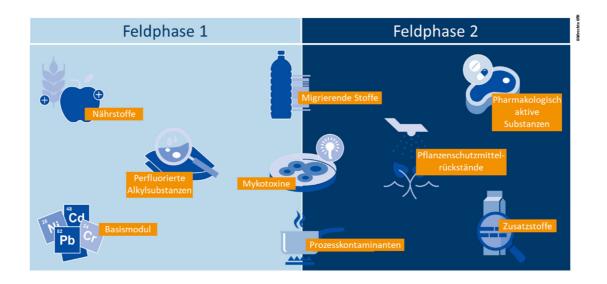


Abbildung 5: Module in der BfR-MEAL-Studie

8.1 Basismodul

Die Stoffe des Basismoduls sind in Tabelle 3 gelistet und umfassen Elemente und Umweltkontaminanten.

Tabelle 3: Stoffliste des Basismoduls

Elemente ¹	Antimon, Aluminium, Arsen (Gesamtarsen, anorganisches Arsen und Arsenspeziationen: Arsenobetain, Dimethylarsinsäure, Monomethylarsonsäure), Barium, Blei, Cadmium, Cobalt, Lithium, Nickel, Quecksilber (zusätzl. Methylquecksilber), Silber, Thallium, Vanadium, Zinn
Umweltkon- taminanten	Dioxine/Furane (PCDD/Fs): 2,3,7,8-TeCDD; 1,2,3,7,8-PeCDD; 1,2,3,4,7,8-HxCDD; 1,2,3,6,7,8-HxCDD; 1,2,3,7,8,9-HxCDD; 1,2,3,4,6,7,8-HpCDD; Octachlordibenzofuran; 2,3,7,8-TeCDF; 1,2,3,7,8-PeCDF; 2,3,4,7,8-PeCDF; 1,2,3,4,7,8-HxCDF; 1,2,3,6,7,8-HxCDF; 2,3,4,6,7,8-HxCDF; 1,2,3,4,7,8,9-HpCDF; Octachlordibenzodioxin
	Dioxinähnliche polychlorierte Biphenyle (dl-PCBs): PCB 77; PCB 81; PCB 126; PCB 169; PCB 105; PCB 114; PCB 118; PCB 123; PCB 156; PCB 157; PCB 167; PCB 189
	Nicht-dioxinähnliche polychlorierte Biphenyle (ndl-PCBs): PCB 28; PCB 52; PCB 101; PCB 138; PCB 153; PCB 180
	Polybromierte Diphenylether (PBDEs): BDE 28 2,4,4'-Tribromdiphenylether; BDE 49 2,2',4,5'-Tetrabromdiphenylether; BDE 47 2,2',4,4'-Tetrabromdiphenylether; BDE 100 2,2',4,4',6-Pentabromdiphenylether; BDE 99 2,2',4,4',5-Pentabromdiphenylether; BDE 154 2,2',4,4',5,6-Hexabromdiphenylether; BDE 153 2,2',4,4',5,5'-Hexabromdiphenylether; BDE 138 2,2',3,4,4',5'-Hexabromdiphenylether; BDE 209 2,2',3,3',4,4',5'-Decabromdiphenylether; BDE 209 2,2',3,3',4,4',5,5',6,6'-Decabromdiphenyle
	Nitrat
	Organische Zinnverbindungen: Tetrabutylzinn, Tributylzinn, Dibutylzinn, Monobutylzinn, Triphenylzinn, Diphenylzinn, Monophenylzinn

 $^{^{1}}$ Mengen und Spurenelemente wurden teilweise gemeinsam mit den Elementen gemessen, jedoch im Nährstoffmodul ausgewertet

Elemente, Arsenspeziationen, Nitrat und Methylquecksilber

Auf Empfehlung der modulbegleitenden Expertengruppe wurden die Elemente Gallium, Germanium, Palladium, Strontium und Tellur nicht mit in die Stoffliste aufgenommen. Als Gründe wurden deren Nutzung als interner Standard, fehlende Referenzmaterialien oder fehlende toxikologische Relevanz angeführt. Aufgrund der gewünschten Vergleichbarkeit zum Lebensmittel-Monitoring wurde das Element Thallium hingegen in der Stoffliste ergänzt.

Alle 356 Lebensmittel der Lebensmittelliste wurden auf die ausgewählten Elemente untersucht. Für sämtliche Lebensmittel wurden die zusätzlichen Poolproben für unterschiedliche Regionen, Saisons und Erzeugungsarten separat analysiert, was in einer Gesamtprobenzahl von 869 resultierte (vgl. Tabelle 4). Abweichend davon wurde die später in die Foodlist aufgenommene Poolprobe "Gemüsechips" aus der Lebensmittelhauptgruppe "Gemüse, Gemüseprodukte und Pilze" nicht auf Nitrat untersucht, weshalb in der Folge 868 statt 869 Poolproben analysiert wurden.

Tabelle 4: Probenstruktur Elemente (Fechner et al., 2022) und Nitrat^{2,2}

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	97	1.540	40
02	Gemüse, Gemüseprodukte und Pilze	152 (151)	2.306 (2.286)	34 (33)
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	26	410	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	24	440	20
05	Obst und Obstprodukte	64	1.010	22
06	Fleisch und Fleischprodukte	101	1.578	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	39	720	30
08	Milch und Milchprodukte	37	640	23
09	Eier und Eierprodukte	10	150	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	18	330	15
11	Tierische und pflanzliche Fette und Öle	13	205	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	12	220	10
13	Wasser und Getränke auf Wasserbasis	41	173	6
14	Kaffee, Kakao, Tee und Aufgüsse	12	210	9
15	Alkoholische Getränke	11	190	8
16	Lebensmittel für Säuglinge und Kleinkinder	15	260	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	8	150	7
18	Speisen und Gerichte	170	2.670	52
19	Würzmittel und Soßen	19	350	16

Nr.	Lebensmittelhauptgruppe		Poolproben	Teilproben	Lebensmittel
			(n)	(n)	(n)
		SUMME	869 (868)	13.552 (13.532)	356 (355)

¹ Angaben in Klammern für Nitrat

Gesamtarsen wurde entsprechend der dargestellten Probenstruktur für Elemente untersucht (vgl. Tabelle 4). Die Untersuchung von anorganischem Arsen und organischen Arsenspeziationen (Arsenobetain, Dimethylarsinsäure und Monomethylarsonsäure) erfolgte in Reis, Reisprodukten, marinen Lebensmitteln und Pilzen/Pilzgerichten zusätzlich zu den Analysen auf Gesamtarsen (vgl. Tabelle 5). Ergänzend zu diesen Lebensmitteln wurden weitere 19 Poolproben analysiert, bei denen zuvor verglichen mit allen untersuchten Lebensmitteln höhere Gesamtarsengehalte nachgewiesen wurden.

Tabelle 5: Probenstruktur anorganisches Arsen und Arsenspeziationen¹ (Hackethal et al., 2021)

Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
	(n)	(n)	(n)
Getreide und Getreideprodukte	8	135	6
Gemüse, Gemüseprodukte und Pilze	9	136	5
Fleisch und Fleischprodukte	2	30	1
Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	39	720	30
Lebensmittel für Säuglinge und Kleinkinder	3	55	3
Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	1	20	1
Speisen und Gerichte	11	315	9
SUMME	73	1.411	55
	Getreide und Getreideprodukte Gemüse, Gemüseprodukte und Pilze Fleisch und Fleischprodukte Fisch, Krusten- und Weichtiere und Erzeugnisse daraus Lebensmittel für Säuglinge und Kleinkinder Produkte für spezielle Ernährungsformen und Lebensmittelimitate Speisen und Gerichte	Getreide und Getreideprodukte Gemüse, Gemüseprodukte und Pilze Fleisch und Fleischprodukte Fisch, Krusten- und Weichtiere und Erzeugnisse daraus Lebensmittel für Säuglinge und Kleinkinder Produkte für spezielle Ernährungsformen und Lebensmittelimitate Speisen und Gerichte 11	Getreide und Getreideprodukte8135Gemüse, Gemüseprodukte und Pilze9136Fleisch und Fleischprodukte230Fisch, Krusten- und Weichtiere und Erzeugnisse daraus39720Lebensmittel für Säuglinge und Kleinkinder355Produkte für spezielle Ernährungsformen und Lebensmittellmitate120Speisen und Gerichte11315

¹ Zahlen ohne Gewähr

Die Bestimmung von Methylquecksilber erfolgte auf Empfehlung der Expertengruppe neben aquatischen Lebensmitteln zusätzlich in Pilzen und Pilzgerichten. Für fünf Lebensmittel wurden jeweils vier regionale Poolproben hergestellt und auf Methylquecksilber analysiert (vgl. Tabelle 6).

Tabelle 6: Probenstruktur Methylquecksilber¹ (Sarvan et al., 2021)

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel	
		(n)	(n)	(n)	
02	Gemüse, Gemüseprodukte und Pilze	6	91	3	
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	39	720	30	
18	Speisen und Gerichte	4	60	1	
	SUMME	49	871	34	
¹ Zahlei	Zahlen ohne Gewähr				

² Zahlen ohne Gewähr

Dioxine/Furane (PCDD/Fs), dl-PCBs, ndl-PCBs und PBDEs

Dioxine/Furane, polychlorierte Biphenyle und polybromierte Diphenylether sind persistente organische Schadstoffe. Für Dioxine/Furane und dl-PCBs wurden insbesondere für zusammengesetzte Lebensmittel und zusätzliche Lebensmittelhauptgruppen die Daten aus den Überwachungsprogrammen von Bund und Ländern ergänzt. Für ndl-PCBs und PBDEs standen aus den Überwachungsprogrammen weniger Daten zur Verfügung, weshalb die BfR-MEAL-Studie für die gesundheitliche Bewertung dieser Stoffgruppen erstmals eine aussagekräftige Datenbasis bereitstellt.

Nach Rücksprache mit dem Nationalen Referenzlabor für Dioxine und PCBs in Lebens- und Futtermitteln wurde aus Gründen der Kosteneffizienz auf die Untersuchung von pflanzlichen und fettarmen Lebensmitteln verzichtet. Davon ausgenommen wurden Kürbisgewächse sowie mehrere mit Fetten zubereitete pflanzliche Lebensmittel. Für diverse Lebensmittel wurden Proben für unterschiedliche Regionen, Saisons und Erzeugungsarten hergestellt und separat untersucht (vgl. Tabelle 7).

Die Liste der zehn analytisch bestimmten PDBEs entspricht der Empfehlung der Europäischen Kommission zur Überwachung bromierter Flammschutzmittel in Lebensmitteln (Europäische Kommission 2014).

Tabelle 7: Probenstruktur Dioxine/Furane, PCBs und PBDEs¹ (Stadion et al., 2022)

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	94	1.490	38
02	Gemüse, Gemüseprodukte und Pilze	58	881	18
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	15	245	7
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	24	440	20
05	Obst und Obstprodukte	10	175	8
06	Fleisch und Fleischprodukte	101	1.578	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	39	720	30
08	Milch und Milchprodukte	37	640	23
09	Eier und Eierprodukte	10	150	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	12	220	10
11	Tierische und pflanzliche Fette und Öle	13	205	8
14	Kaffee, Kakao, Tee und Aufgüsse	9	160	7
15	Alkoholische Getränke	11	190	8
16	Lebensmittel für Säuglinge und Kleinkinder	15	260	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	8	150	7
18	Speisen und Gerichte	170	2.670	52
19	Würzmittel und Soßen	19	350	16
	SUMME	645	10.524	300

¹ Zahlen ohne Gewähr

Organische Zinnverbindungen

Ziel der Untersuchung war die Generierung einer aussagekräftigen Datenbasis für die gesundheitliche Bewertung von sieben organischen Zinnverbindungen (vgl. Tabelle 3). Hierfür wurden ausschließlich Poolproben der Lebensmittelhauptgruppe "Fisch, Krusten- und Weichtiere und Erzeugnisse daraus" untersucht (vgl. Tabelle 8).

Tabelle 8: Probenstruktur organische Zinnverbindungen¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	39	720	30
	SUMME	39	720	30

¹ Zahlen ohne Gewähr

8.2 Modul "Perfluorierte Alkylsubstanzen"

Als ubiquitär verbreitete Stoffe wurden perfluorierte Alkylsubstanzen (PFAS) an das Basismodul angegliedert. Die modulbegleitende Expertengruppe bestätigte die Stoffliste der 16 Perfluorcarbon- und sulfonsäuren, darunter auch Perfluoroctansulfonsäure (PFOS) und Perfluoroctansäure (PFOA) (vgl. Tabelle 9).

Tabelle 9: Stoffliste Modul "Perfluoralkylsubstanzen"

Perfluorsulfonsäuren	Perfluorbutansulfonat (PFBS), Perfluorhexansulfonat (PFHxS), Perfluorheptansulfonsäure (PFHpS), Perfluoroctansulfonat (PFOS), Perfluordecansulfonat (PFDS)
Perfluorcarbonsäuren	Perfluorbutansäure (PFBA), Perfluorpentansäure (PFPeA), Perfluorhexansäure (PFHxA), Perfluorheptansäure (PFHpA), Perfluoroctansäure (PFOA), Perfluornonansäure (PFNA), Perfluordecansäure (PFDeA), Perfluorundekansäure (PFUnA), Perfluordodekansäure (PFDoA), Perfluortridecansäure (PFTrA), Perfluortetradekansäure (PFTA)

Für 75 Lebensmittel der Lebensmittelliste wurden jeweils vier Poolproben in unterschiedlichen Regionen gezogen und separat analysiert. Wurden im Rahmen des Basismoduls für Lebensmittel zwei saisonale Poolproben hergestellt, wurden diese beiden Poolproben vor der Analyse auf PFAS anteilig gleich zu einer Poolprobe zusammengefasst. Lagen für nicht regional, jedoch biologisch beprobte Lebensmittel der Lebensmittelliste Marktdaten zum Anteil biologisch erzeugter Produkte vor und überstieg der jeweilige Marktanteil biologisch erzeugter Produkte die Schwelle von 5 %, wurden die Poolprobe aus konventionellen Produkten und die Poolprobe aus biologisch erzeugten Produkten entsprechend dieses Marktanteils zu einer Poolprobe zusammengefasst. Lagen keine Informationen zum Marktanteil vor oder unterschritt der Marktanteil biologisch erzeugter Produkte die Schwelle von 5 %, entfiel die Schichtung und es wurde ausschließlich die konventionelle Poolprobe dieses Lebensmittels analysiert. Für Lebensmittel der Lebensmittelhauptgruppen "Fleisch und Fleischprodukte" und "Eier und Eierprodukte" wurden zusätzlich separate Poolproben für Produkte

aus Freilandhaltung hergestellt und diese separat analysiert. Dementsprechend stehen nach Abschluss der Analysen Gehaltsdaten von 613 Poolproben zur Verfügung (vgl. Tabelle 10).

Tabelle 10: Probenstruktur perfluorierte Alkylsubstanzen¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	82	1.420	40
02	Gemüse, Gemüseprodukte und Pilze	90	2.106	33
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	11	350	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	20	380	20
05	Obst und Obstprodukte	40	890	22
06	Fleisch und Fleischprodukte	81	1.668	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	39	720	30
08	Milch und Milchprodukte	23	580	23
09	Eier und Eierprodukte	4	60	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	15	300	15
11	Tierische und pflanzliche Fette und Öle	8	135	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	10	190	10
13	Wasser und Getränke auf Wasserbasis	41	173	6
14	Kaffee, Kakao, Tee und Aufgüsse	9	165	9
15	Alkoholische Getränke	8	145	8
16	Lebensmittel für Säuglinge und Kleinkinder	11	215	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	7	150	7
18	Speisen und Gerichte	98	2.175	52
19	Würzmittel und Soßen	16	350	16
	SUMME	613	12.172	355

¹ Zahlen ohne Gewähr

8.3 Modul "Mykotoxine"

Entsprechend der Empfehlung der modulbegleitenden Expertengruppe wurden Beauvericin und Citrinin, weitere Analyten aus der Gruppe der Trichothecene sowie Enniatine und Alternaria-Toxine in der Stoffliste des Primärkonzeptes ergänzt. Insgesamt wurden dementsprechend 37 Analyten im Modul berücksichtigt (Tabelle 11). Die berücksichtigten Mykotoxine verteilten sich auf drei Lose, wobei Los 1 alle Analyten einschließt, mit Ausnahme der Alternaria-Toxine (Los 2) und Ergotalkaloide (Los 3).

Tabelle 11: Stoffliste Modul "Mykotoxine"

Beauvericin	
Citrinin	
Ochratoxin A	
Patulin	
Zearalenon	
Aflatoxine	Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2, Aflatoxin M1
Typ A Trichothecene	HT-2 Toxin, T-2 Toxin, Diacetoxyscirpenol
Typ B Trichothecene	Deoxynivalenol (Vomitoxin), Nivalenol, 15-Acetyldeoxynivalenol, 3-Acetyldeoxynivalenol
Enniatine	Enniatin A, Enniatin A1, Enniatin B, Enniatin B1
Fumonisine	Fumonisin B1, Fumonisin B2
Alternaria-Toxine ³	Alternariol, Alternariol-Monomethylether
Ergotalkaloide ²	(alpha + beta)-Ergocryptin, (alpha + beta)-Ergocryptinin, Ergocornin, Ergocorninin, Ergocristin, Ergometrin, Ergometrinin, Ergosinin, Ergosinin, Ergotamin, Ergotaminin

Aufgrund der potenziell inhomogenen Verteilung von Mykotoxinen innerhalb von Lebensmittelchargen wurde ein adaptiertes amtliches Probenahmeverfahren angewandt, in dem pro Teilprobe mindestens drei Verpackungseinheiten sowie eine Mindestmenge von 1,5 kg Lebensmittel eingekauft wurden⁴. Um einen möglichen Einfluss von Importwaren auf die Gehalte von Mykotoxinen zu berücksichtigen, wurde in einem als konservativ einzuschätzenden Vorgehen jeweils vorzugsweise die Saison mit einem höheren Importanteil beprobt.

Die Beprobung der Lebensmittel wurde zugunsten der Praktikabilität ausschließlich im Raum Berlin durchgeführt. Wenn für Lebensmittel Marktdaten zum Anteil biologisch erzeugter Produkte vorlagen, wurden die Poolproben entsprechend der Marktanteile aus biologisch und konventionell erzeugten Produkten geschichtet.

Im ersten Jahr der Probenahme wurden insgesamt 180 Lebensmittel der Lebensmitteliste des Basismoduls für die Analyse auf Mykotoxine ausgewählt (vgl. Tabelle 12). Ein Screening auf bislang unbekannte Stoff-Matrix-Kombinationen erfolgte über einen erweiterten TDS-Like-Ansatz, indem sämtliche Stoffe eines Analytik-Loses in einer Poolprobe bestimmt wurden, sofern ein Mykotoxin des Loses als relevant für dieses Lebensmittel angesehen wurde.

Aufgrund eines möglichen Einflusses von Klimafaktoren auf Mykotoxingehalte erfolgte eine Fortsetzung der Probennahme für zwei weitere Jahre, jedoch ausschließlich für eine reduzierte Anzahl an Lebensmitteln: unter Berücksichtigung der ermittelten Gehalte aus dem ersten Jahr der Probennahme wurden für die beiden weiteren Jahre nur die beiden mit Blick auf die Exposition relevantesten Lebensmittelhauptgruppen "Getreide und Getreideprodukte" und "Leguminosen, Nüsse, Ölsaaten und Gewürze" berücksichtigt. Darüber hinaus wurden von Poolproben aus der Lebensmittelhauptgruppe "Leguminosen, Nüsse, Ölsaaten und Gewürze" und bei Pseudogetreide (z. B. Buchweizen, Hirse), welche in Jahr zwei oder

³ Separates Analytik-Los

⁴ In Einzelfällen wurde aus Gründen der Umsetzbarkeit davon abgewichen

Jahr drei Gehalte oberhalb der Bestimmungsgrenze aufwiesen, alle Teilproben nochmals separat auf die entsprechenden Mykotoxine untersucht. Dieses Vorgehen stellt Informationen zur Variabilität innerhalb der Poolproben zur Verfügung. Entsprechend diesem Vorgehen wurden im zweiten und dritten Jahr der Probennahme Aflatoxin M1 und Patulin nicht untersucht, da diese Mykotoxine für keine der ausgewählten Lebensmittelhauptgruppen relevant waren. Weiterhin wurde die Gruppe der Ergotalkaloide nur in Lebensmitteln der Lebensmittelhauptgruppe "Getreide und Getreideprodukte" untersucht.

Tabelle 12: Probenstruktur Mykotoxine – Los 11

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	127	2.210	44
02	Gemüse, Gemüseprodukte und Pilze	12	205	12
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	1	15	1
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	45	845	17
05	Obst und Obstprodukte	11	195	11
06	Fleisch und Fleischprodukte	15	270	15
08	Milch und Milchprodukte	10	190	10
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	8	155	8
11	Tierische und pflanzliche Fette und Öle	5	80	5
12	Gemüsesäfte, Fruchtsäfte und -nektare	11	220	11
13	Wasser und Getränke auf Wasserbasis	2	40	2
14	Kaffee, Kakao, Tee und Aufgüsse	7	130	7
15	Alkoholische Getränke	5	95	5
16	Lebensmittel für Säuglinge und Kleinkinder	10	180	10
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	4	75	4
18	Speisen und Gerichte	13	230	13
19	Würzmittel und Soßen	5	90	5
	SUMME	291	5.225	180

¹ Zahlen ohne Gewähr

Tabelle 13: Probenstruktur Mykotoxine – Los 21

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	112	1.925	39
02	Gemüse, Gemüseprodukte und Pilze	6	100	6
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	15	260	5

Nr.	Lebensmittelhauptgruppe	P	oolproben	Teilproben	Lebensmittel
		(1	n)	(n)	(n)
05	Obst und Obstprodukte		12	210	12
11	Tierische und pflanzliche Fette und Öle		2	35	2
12	Gemüsesäfte, Fruchtsäfte und -nektare		12	235	12
14	Kaffee, Kakao, Tee und Aufgüsse		1	20	1
15	Alkoholische Getränke		5	95	5
16	Lebensmittel für Säuglinge und Kleinkinder		7	130	7
18	Speisen und Gerichte	· · · · · · · · · · · · · · · · · · ·	10	175	10
19	Würzmittel und Soßen	· · · · · · · · · · · · · · · · · · ·	3	50	3
		SUMME	185	3.235	102

¹ Zahlen ohne Gewähr

Tabelle 14: Probenstruktur Mykotoxine – Los 3¹

Nr.	Lebensmittelhauptgruppe		Poolproben	Teilproben	Lebensmittel
			(n)	(n)	(n)
01	Getreide und Getreideprodukte		112	1.925	39
14	Kaffee, Kakao, Tee und Aufgüsse		1	20	1
15	Alkoholische Getränke		3	60	3
16	Lebensmittel für Säuglinge und Kleinkinder		4	75	4
18	Speisen und Gerichte		8	145	8
		SUMME	128	2.225	55

¹ Zahlen ohne Gewähr

8.4 Modul "Prozesskontaminanten"

Im Modul "Prozesskontaminanten" wurden in der Stoffliste polyzyklische aromatische Kohlenwasserstoffe (PAK), Acrylamid, Verbindungen aus der Monochlorpropandiol (MCPD)-Gruppe und Glycidyl-Fettsäureester berücksichtigt. Die Liste der im Primärkonzept genannten vier Verbindungen aus der Gruppe der PAK wurde auf Empfehlung der modulbegleitenden Expertengruppe um 13 weitere Verbindungen auf insgesamt 17 Verbindungen ergänzt (Tabelle 15). Die Datenlage zu den in der Stoffliste des Primärkonzeptes aufgeführten *N*-Nitrosaminen wurden zum damaligen Zeitpunkt von der modulbegleitenden Expertengruppe als ausreichend angesehen und *N*-Nitrosamine entsprechend nicht in der Stoffliste des Moduls berücksichtigt.

Tabelle 15: Stoffliste zum Modul "Prozesskontaminanten"

Polyzyklische aroma- tische Kohlenwasser- stoffe	Benzo[c]fluoren, Cyclopenta[c,d]pyren, Benzo[a]anthracen, Chrysen, 5-Methylchrysen, Benzo[b]fluoranthen, Benzo[k]fluoranthen, Benzo[a]pyren, Benzo[e]pyren, Indeno[1,2,3-cd]pyren, Dibenz[a,h]anthracen, Benzo[g,h,i]perylen, Dibenzo[a,l]pyren, Dibenzo[a,e]pyren, Dibenzo[a,i]pyren, Dibenzo[a,h]pyren
Acrylamid	
Monochlorpropandiol (MCPD)-Gruppe	3-Monochlorpropandiol, 2-Monochlorpropandiol, 3-Monochlorpropandiol-Ester, 2-Monochlorpropandiol-Ester
Glycidol-Ester	

Der Einfluss von Erhitzungsprozessen bei der Zubereitung von Speisen wurde untersucht, indem standardisierte Poolproben für verschiedene Bräunungsgrade hergestellt wurden. Die Präferenzen bei Bräunungsgraden für unterschiedliche Lebensmittel wurden im Vorfeld durch eine repräsentative Online-Befragung erhoben (vgl. Kapitel 3.2). Untersucht wurden die Bräunungsgrade, die von mehr als 2,5 % der Befragten ausgewählt wurden, sowie jeweils der geringste Bräunungsgrad. Im Vorfeld der Online-Befragung wurden für Lebensmittel wie Toastbrot, Fischstäbchen oder Pommes Frites je fünf verschiedene Bräunungsgrade festgelegt und sowohl Zubereitungstemperaturen als auch Zubereitungsdauer bestimmt. Diese Informationen dienten dem Küchenteam bei der Zubereitung der Teilproben als Richtlinien. Letztlich ausschlaggebend für die Fertigstellung der Teilproben in der Studienküche war deren Bräunungsgrad. Dieser wurde für alle Teilproben nach der Zubereitung fotodokumentiert und zusätzlich mit dem vorgegebenen Bräunungsgrad abgeglichen, um sicherzustellen, dass die Bräunungsgrade entsprechend den Vorgaben umgesetzt worden waren.

Darüber hinaus wurden Proben für verschiedene Zubereitungsarten hergestellt und vergleichend untersucht. Dies beinhaltete einerseits verschiedene Zubereitungsmethoden wie Grillen, Backen und Braten, aber auch verschiedene Zubereitungsverfahren wie Grillen mit Holzkohle, elektrisches Grillen oder Grillen mit Gasgrill. Die Auswahl der Zubereitungsmethoden und -verfahren erfolgte auf Basis der Ergebnisse der beauftragten Verbraucherstudien (vgl. Kapitel 3.2) (Hackethal et al., 2023). Demnach wurden für Holzkohlegrill, Elektrogrill und Gasgrill relevante Nutzungsanteile identifiziert, ein "Smoker" wurde aufgrund der untergeordneten Rolle jedoch nicht als Zubereitungsverfahren in der BfR-MEAL-Studie berücksichtigt. Die untersuchten Poolproben setzten sich jeweils aus fünf Teilproben zusammen, wobei für vergleichend hergestellte Poolproben identische Rezepte und die gleichen Fleischstücke ausgewählt wurden.

Acrylamid

Für die Untersuchungen auf Acrylamid wurden die folgenden drei übergeordneten Ziele formuliert:

- 1. Schaffung einer fundierten Datengrundlage zur Hintergrundbelastung von Acrylamid über Lebensmittel. Hierfür wurden sämtliche Lebensmittel der Lebensmittelliste untersucht, die erhitzt wurden.
- 2. Vergleichende Untersuchung von ausgewählten, in Privathaushalten durchgeführten Garmethoden (Frittieren, Braten, Grillen, Backen), da über den Einfluss der Zubereitung

im Haushalt auf die Acrylamid-Bildung im Vergleich zu industriellen Verfahren weniger bekannt war. Hierfür wurde nach Möglichkeit das nicht-zubereitete Lebensmittel dem jeweiligen zubereiteten Lebensmittel gegenübergestellt, z. B. Vergleich von gekauften Pommes Frites aus der Tiefkühltheke mit den mittels Heißluftfritteuse zubereiteten Pommes Frites.

3. Die Messung von Acrylamid-Gehalten bei verschiedenen Bräunungsgraden mit jeweils fünf Teilproben je Probe.

Somit wurden insgesamt 394 Poolproben auf Acrylamid untersucht (vgl. Tabelle 16).

Für vergleichend hergestellte Poolproben wurden die Zubereitungsprozesse (u. a. Temperatur, Dauer, Fett/Öl) in den Zubereitungsplänen exakt festgelegt und auf vergleichbares Ausgangsmaterial zurückgegriffen. Entsprechend wurden für Poolproben für unterschiedliche Garmethoden bei gleichem Bräunungsgrad z. B. Kartoffeln und Kartoffelprodukte aus der gleichen Charge genutzt, um Unterschiede aufgrund des Wassergehaltes, der Lagerzeit oder des Asparaginsäuregehaltes zu minimieren.

Um einen nachträglichen Abbau von Acrylamid während der Homogenisierung zu unterbinden, wurden die Lebensmittel vor der Homogenisierung mit flüssigem Stickstoff behandelt. Dadurch verblieben diese während des gesamten Homogenisierungsprozesses im gefrorenen Zustand.

Tabelle 16: Probenstruktur Acrylamid¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	86	795	36
02	Gemüse, Gemüseprodukte und Pilze	24	405	24
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	33	255	10
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	25	380	18
05	Obst und Obstprodukte	5	90	5
06	Fleisch und Fleischprodukte	48	533	28
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	32	445	21
08	Milch und Milchprodukte	4	80	4
09	Eier und Eierprodukte	2	40	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	7	140	7
14	Kaffee, Kakao, Tee und Aufgüsse	9	80	4
16	Lebensmittel für Säuglinge und Kleinkinder	9	180	9
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	16	90	4
18	Speisen und Gerichte	84	1.045	49
19	Würzmittel und Soßen	10	200	5
	SUMME	394	4.758	226

¹ Zahlen ohne Gewähr

Polyzyklische aromatische Kohlenwasserstoffe

Dem Eintrag von PAK in Lebensmittel im Sinne einer Umweltkontaminante wurde Rechnung getragen, indem, angegliedert an das Basismodul, alle 356 Lebensmittel der Lebensmittelliste auf PAK untersucht wurden (vgl. Tabelle 17). Zusätzlich wurden Lebensmittel beprobt, die explizit für die Stoffgruppe der Prozesskontaminanten gezogen wurden, wie Grillgemüse, Gemüsechips und Grillkäse. Für regional und/oder saisonal beprobte Lebensmittel wurden die vier regionalen Poolproben und/oder die beiden saisonalen Poolproben zu einer repräsentativen Poolprobe für jedes Lebensmittel zusammengefasst. Wurden für Lebensmittel des Basismoduls separate Poolproben für die biologische Erzeugung hergestellt, wurden die beiden Poolproben für die unterschiedlichen Erzeugzeugungsarten auch auf PAK separat analysiert.

Der Eintrag von PAK im Sinne einer Prozesskontaminante aus Erhitzungsprozessen wurde in 25 ausgewählten Lebensmitteln in Feldphase 2 untersucht. Hierbei wurden unter anderem verschiedene Zubereitungsverfahren für Grillgut vergleichend gegenübergestellt: Gasgrill, Elektrogrill, Holzkohlegrill, Kugelgrill und Grill mit vertikal geschichteter Holzkohle. Von der stoffspezifischen Expertengruppe wurde berichtet, dass insbesondere ölbasierte Marinaden in der Vergangenheit einen Einfluss auf die Gehalte an PAK in Grillgut gezeigt haben. Daher wurden verschiedene Marinaden-Rezepte repräsentativ in den Poolproben abgebildet und für verschiedene Bräunungsgrade standardisiert, d. h. die Rezepte und Zutaten der verschiedenen Bräunungsgrade waren identisch. Über Rezepturen wurde auch ein möglicher primärer Eintrag von PAK aus Paprikapulver berücksichtigt. Da PAK-Gehalte in gegrilltem Fleisch mit dem Fettgehalt der Fleischstücke korrelieren und die prozentualen Fettgehalte in den Fleischstücken sich unterscheiden, wurden die laut Daten am häufigsten gegrillten Fleischstücke (bei Schweinefleisch: Rippchen, Steak, Koteletts) pro Poolprobe anteilig gleich gewichtet.

Neben Fleisch wurden ergänzend Poolproben aus geräuchertem Fisch hergestellt. Hierfür wurde von der modulbegleitenden Expertengruppe empfohlen, Räucherfisch vergleichend nach verschiedenen Vermarktungsschienen (kleine Räuchereien, abgepackter Räucherfisch) zu untersuchen. Darüber hinaus wurde in der MEAL-Versuchsküche Fisch vergleichend im Topf mit Buchenspänen geräuchert.

Tabelle 17: Probenstruktur polyzyklische aromatische Kohlenwasserstoffe¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	57	1.570	40
02	Gemüse, Gemüseprodukte und Pilze	68	2.431	35
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	14	410	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	24	440	20
05	Obst und Obstprodukte	39	1.100	22
06	Fleisch und Fleischprodukte	84	1.763	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	57	855	30
08	Milch und Milchprodukte	43	705	25
09	Eier und Eierprodukte	4	150	2

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	18	330	15
11	Tierische und pflanzliche Fette und Öle	12	210	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	12	220	10
13	Wasser und Getränke auf Wasserbasis	9	144	6
14	Kaffee, Kakao, Tee und Aufgüsse	12	210	9
15	Alkoholische Getränke	11	190	8
16	Lebensmittel für Säuglinge und Kleinkinder	15	260	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	8	150	7
18	Speisen und Gerichte	82	2.745	52
19	Würzmittel und Soßen	16	350	16
	SUMME	585	14.233	359

¹ Zahlen ohne Gewähr

Monochlorpropandiole und deren Fettsäureester sowie Glycidyl-Fettsäureester

Im Rahmen eines Entscheidungshilfebedarfsvorhabens wurden bereits im Jahr 2016 verschiedene Lebensmittel auf 2-Monochlorpropandiol (2-MCPD), 3-Monochlorpropandiol (3-MCPD) und deren Fettsäureester untersucht. Ergänzend hierzu sollten in der BfR-MEAL-Studie schwerpunktmäßig erhitzte Lebensmittel analysiert werden, die in der Untersuchung in 2016 nicht berücksichtigt worden waren (vgl. Tabelle 18). Die Lebensmittelliste des Moduls schloss u. a. frittierte Lebensmittel (z. B. Pommes Frites), geräucherte Lebensmittel (z. B. geräucherter Fisch), gebackene Lebensmittel (z. B. Kekse), konservierte Lebensmittel (Fischkonserven), gebratene Lebensmittel (Fischstäbchen, Schweineschnitzel paniert) und getrocknete Lebensmittel (Instant-Nudeln) ein. Bei der Zubereitung von zu frittierenden Teilproben (z. B. Pommes Frites, Süßkartoffel-Frites) wurde bei jeder Teilprobe das Frittieröl ausgetauscht.

Tabelle 18: Probenstruktur Monochlorpropandiole und deren Fettsäureester sowie Glycidyl-Fettsäureester 1

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben (n)	Lebensmittel
		(n)		(n)
01	Getreide und Getreideprodukte	16	165	8
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	24	165	5
06	Fleisch und Fleischprodukte	14	70	2
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	23	265	12
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	2	40	2
18	Speisen und Gerichte	3	60	3
19	Würzmittel und Soßen	1	20	1
	SUMME	83	785	33

¹ Zahlen ohne Gewähr

8.5 Modul "Nährstoffe"

Im Modul wurden insgesamt 20 Nährstoffe berücksichtigt, darunter fünf Vitamine, ein Provitamin, sechs Mengenelemente und acht Spurenelemente (Tabelle 19).

Tabelle 19: Stoffliste Modul "Nährstoffe"

Vitamine und Provitamine	Vitamin A (Retinol), β-Carotin
	Vitamin E (α -, β -, γ -, δ -Tocopherol, Tocopherolpalmitat und -acetat 5)
	Vitamin K1, Vitamin K2
	Folsäure
Mengenelemente	Calcium, Chlorid, Kalium, Magnesium, Natrium, Phosphor
Spurenelemente	Chrom, Fluorid, Jod, Kupfer, Mangan, Molybdän, Selen, Zink

Die Probenziehung für die Vitaminanalysen erfolgte aufgrund der eingeschränkten Lagerstabilität der Poolproben ausschließlich im Raum Berlin. Für Lebensmittel, die im Rahmen des Basismoduls in zwei unterschiedlichen Saisons gezogen wurden oder für die eine zusätzliche Poolprobe aus biologisch erzeugten Lebensmitteln hergestellt wurde, wurden sowohl die beiden saisonalen Poolproben als auch die biologischen Poolproben separat auf Vitamine analysiert (Tabelle 20, Tabelle 21).

Tabelle 20: Probenstrukturen Vitamin E und Vitamin K^{1,2}

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	58	970	40
02	Gemüse, Gemüseprodukte und Pilze	67	1.063	33
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	20	320	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	24	440	20
05	Obst und Obstprodukte	40	650	22
06	Fleisch und Fleischprodukte	59	1.022	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	30	585	30
08	Milch und Milchprodukte	37 (38)	640 (660)	23
09	Eier und Eierprodukte	4	60	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	18	330	15
11	Tierische und pflanzliche Fette und Öle	13	210	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	12	220	10
14	Kaffee, Kakao, Tee und Aufgüsse	4 (3)	70 (50)	3
16	Lebensmittel für Säuglinge und Kleinkinder	15	260	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	8	150	7

 $^{^{\}scriptscriptstyle 5}$ ausgewiesen als $\alpha\text{-}Tocopherol$

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
18	Speisen und Gerichte	101	1.655	52
19	Würzmittel und Soßen		330	15
	Si	JMME 528	8.975	334

¹ Angaben zu Vitamin K in Klammern

Tabelle 21: Probenstrukturen Vitamin A und beta-Carotin¹ (Schendel et al., 2022)

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	58 (57)	970 (950)	40
02	Gemüse, Gemüseprodukte und Pilze	67 (66)	1.063 (1.018)	33
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	20 (19)	320 (305)	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	24	440	20
05	Obst und Obstprodukte	40	650	22
06	Fleisch und Fleischprodukte	59 (19)	1.022 (330)	35 (13)
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	30 (5)	585 (100)	30 (5)
08	Milch und Milchprodukte	38 (37)	660 (640)	24 (23)
09	Eier und Eierprodukte	4	60	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	18 (1)	330 (20)	15 (1)
11	Tierische und pflanzliche Fette und Öle	13	210	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	12	220	10
14	Kaffee, Kakao, Tee und Aufgüsse	3 (4)	50 (70)	2 (3)
16	Lebensmittel für Säuglinge und Kleinkinder	15	260	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	8	150	7
18	Speisen und Gerichte	101 (97)	1.655 (1.570)	52
19	Würzmittel und Soßen	18 (17)	330 (310)	15 (14)
	SUMME	528 (438)	8.975 (7.303)	334 (272)

¹ Angaben zu beta-Carotin in Klammern

Zur Verbesserung der Datenlage für die Bewertung von Folsäureanreicherungen in Lebensmitteln wurden Informationen zur Variabilität von Folsäuregehalten in Produkten und deren Abhängigkeit vom Produktalter bereitgestellt (Tabelle 22). Darüber hinaus wurden Informationen zum Übergang von Folsäure aus angereichertem Salz während verbrauchertypischer Garprozesse erhoben. Die Zusammenstellung repräsentativer Poolproben erfolgte dabei

² Zahlen ohne Gewähr

² Zahlen ohne Gewähr

ausschließlich aus angereicherten Lebensmitteln. Die Bestimmung von Folsäurekonzentrationen in Markenprodukten mit der höchsten Anreicherung innerhalb einer Produktgruppe erfolgte sowohl zu Beginn des Mindesthaltbarkeitsdatums als auch kurz vor Ablauf des Mindesthaltbarkeitsdatums.

Tabelle 22: Probenstruktur Folsäure¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	27	27	6
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	3	3	0
06	Fleisch und Fleischprodukte	6	6	1
08	Milch und Milchprodukte	6	6	1
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	12	12	2
14	Kaffee, Kakao, Tee und Aufgüsse	6	6	1
16	Lebensmittel für Säuglinge und Kleinkinder	12	12	2
18	Speisen und Gerichte	6	6	2
19	Würzmittel und Soßen	6	6	1
	SUMME	84	84	17

¹ Zahlen ohne Gewähr

Für die Mengenelemente und die beiden Spurenelemente lod und Fluorid standen Poolproben aus regionaler und saisonaler Probenziehung zur Verfügung. Da Regionalität und Saisonalität im Hinblick auf Mengenelemente nicht als relevante Fragestellungen erachtet wurden, wurden für Mengenelemente für jedes Lebensmittel die vier regionalen Poolproben und/oder die beiden saisonalen Poolproben zu einer repräsentativen Poolprobe zusammengefasst und anschließend analysiert (Tabelle 23). Dementgegen sind die regionalen und saisonalen Poolproben für lod separat analysiert worden, da ein Einfluss des Bodens auf den lod-Gehalt in Pflanzen bekannt ist und je nach Saison die Lebensmittel aus unterschiedlichen Regionen stammen können. Die zusätzlichen Poolproben aus Lebensmitteln aus biologischer Erzeugung wurden bei den Mengenelementen und lod separat analysiert. Somit entsprach die Probennahme für lod der des Basismoduls (Tabelle 4).

Tabelle 23: Probenstruktur Mengenelemente (exklusive Phosphor) (Schwerbel et al., 2021) und Fluorid¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	55	1.540	40
02	Gemüse, Gemüseprodukte und Pilze	47	2.306	34
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	12	410	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	24	440	20

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
05	Obst und Obstprodukte	29	1.010	22
06	Fleisch und Fleischprodukte	47	1.578	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	30	720	30
08	Milch und Milchprodukte	30	640	23
09	Eier und Eierprodukte	4	150	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	18	330	15
11	Tierische und pflanzliche Fette und Öle	12	205	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	12	220	10
13	Wasser und Getränke auf Wasserbasis	38	173	6
14	Kaffee, Kakao, Tee und Aufgüsse	12	210	9
15	Alkoholische Getränke	11	190	8
16	Lebensmittel für Säuglinge und Kleinkinder	15	260	11
17	Produkte für spezielle Ernährungsformen und Lebens- mittelimitate	8	150	7
18	Speisen und Gerichte	73	2.670	52
19	Würzmittel und Soßen	16	350	16
	SUMME	493	13.552	356

¹ Zahlen ohne Gewähr

Für die Spurenelemente Chrom, Kupfer, Mangan, Molybdän, Selen und Zink sowie für Phosphor erfolgten die Analysen nach dem Vorgehen im Basismodul, d. h. für alle Lebensmittel der Lebensmittelliste wurden regionale Poolproben, saisonale Poolproben und Poolproben ausschließlich aus biologisch erzeugten Lebensmitteln separat analysiert. Die Probenstruktur für Spurenelemente entspricht der im Basismodul untersuchten Elemente (vgl. Tabelle 4).

8.6 Modul "Aus Lebensmittelkontaktmaterialien migrierende Stoffe"

Für das Modul "Aus Lebensmittelkontaktmaterialien migrierende Stoffe" wurden von der modulbegleitenden Expertengruppe die Stoffgruppen der Weichmacher, Mineralölkohlenwasserstoffe und 2,4-Di-tert-Butylphenol für die Stoffliste bestätigt. Bereits in der ersten Feldphase wurden die Fraktionen der gesättigten Mineralölkohlenwasserstoffe (MOSH) und die Fraktionen der aromatischen Mineralölkohlenwasserstoffe (MOAH) im Sinne einer Umweltkontaminante in 355 Lebensmitteln des Basismoduls untersucht.

Mit Blick auf Antimon sah die modulbegleitende Expertengruppe keine Notwendigkeit für Analysen von Getränken aus PET-Flaschen. Zur Abschätzung der Hintergrundbelastung von Antimon in Lebensmitteln empfahl hingegen die Expertengruppe des Basismoduls die Bestimmung von Antimon in einer breiten Lebensmittelpalette. Antimon wird entsprechend in der Stoffliste des Basismoduls geführt, auch wenn für Proben, die auf Antimon untersucht wurden, teilweise eine Unterscheidung nach Art der Verpackung vorgenommen wurde.

Tabelle 24: Stoffliste Modul "Aus Lebensmittelkontaktmaterialien migrierende Stoffe"

Weichmacher	Triethyl-2-acetylcitrat, Butylbenzylphthalat, Benzophenon, Diallylphthalat, Di(butoxyethyl)phthalat, Dibutylsebacat, Dicyclohexylphthalat, Diethoxyethylphthalat, Bis(2-ethylhexyl)adipat, Diethylhexylphthalate, Bis(2-ethylhexyl)sebacat, Bis(2-ethylhexyl)terephthalat, Diethylphthalat, Diethylsuccinat, Dihexylphthalat, Diisobutyladipat, Diisobutylphthalat, Diisoheptylphthalat, Diisopentylphthalat, Diisopropylphthalat, Bis(4-methyl-2-pentyl)phthalat, Bis(2-methoxyethyl)phthalat, Dimethylphthalat, Bis(4-methylpentyl)phthalat, Diisohexylphthalat, Di-n-butylphthalat, Di-n-decylphthalat, Di-n-heptylphthalat, Di-n-nonylphthalat, Di-n-octylphthalat, Di-n-pentylphthalat, Bis(2-ethylhexyl)isophthalat, Di(2-ethylhexyl)maleat, Dioctylmaleat, Di-n-octylsebacat, Bis(2-ethylhexyl)azelat, Diethoxyethylphthalat, Diphenylphthalat, Dipropylheptylphthalat, Dipropylphthalat, N-Ethyl-4/2-methylbenzolsulfonamid, N-Ethyl-4/2-methylbenzolsulfonamid, N-Pentylisopentylphthalat, Tributyl-2-acetylcitrat, tert-Butylphenyldiphenylphosphat, Tris(2-butoxyethyl)phosphat, Tributylphosphat, Tris-2-ethylhexylphosphat, Trisobutylphosphat, Tris(2-ethylhexyl)trimellitat, Glyceroltriacetat, 2,2,4-Trimethyl-1,3-pentanediol-diisobutyrat, Erucamid, Oleamid, N-Oleoylethanolamid, Diisodecyladipat, Bis(7-methyloctyl)cyclohexane-1,2-dicarboxylat, Diisodecylphthalat, Diisodecylazelat, Diisononyl-adipat, Diisootylazelat, Diisononylphthalat, Di-n-nonylphthalat
Mineralölkohlenwasser- stoffe	$\begin{split} &\text{MOSH:} \geqslant \text{C10 bis} \leqslant \text{C16, } > \text{C16 bis} \leqslant \text{C20; } > \text{C20 bis} \leqslant \text{C25, } > \text{C25 bis} \leqslant \text{C35, } > \text{C35 bis} \leqslant \text{C50, } > \text{C20 bis} \leqslant \text{C40} \\ &\text{MOAH:} > \text{C10 bis} \leqslant \text{C35, } > \text{C16 bis} \leqslant \text{C25, } > \text{C25 bis} \leqslant \text{C35, } > \text{C35 bis} \leqslant \text{C50} \end{split}$
2,4-Di- <i>tert</i> -butylphenol	4-Ethylphenol, <i>p-tert</i> -Butylphenol, 2,6-Di- <i>tert</i> -butyl- <i>p</i> -benzochinon, 3,5-Di- <i>tert</i> -butyl-4-hydroxybenzaldehyd, 3,5-Di- <i>tert</i> -butyl-4-hydroxyacetophenon, 7,9-Di- <i>tert</i> -butyl-1-oxaspiro[4.5]-deca-6,9-dien-2,8-dion, 3-(3,5-Di- <i>tert</i> -butyl-4-hydroxyphenyl)-methylpropionat, 3-(3,5-Di- <i>tert</i> -butyl-4-hydroxyphenyl)propionsäure

Weichmacher

Das am BfR ansässige "Nationale Referenzlabor für Stoffe, die dazu bestimmt sind mit Lebensmitteln in Berührung zu kommen" analysierte die Proben der BfR-MEAL-Studie mit einer eigens etablierten Methode zur Bestimmung von 59 Stoffen aus der Gruppe der Weichmacher in verzehrfertigen Lebensmitteln.

Für die Analysen wurden insgesamt 165 Lebensmittel aus allen Lebensmittelhauptgruppen untersucht. Ausgenommen wurden u. a. Wasser und wasserbasierte (Heiß-)Getränke wie beispielsweise Kaffee, Tee und andere Aufgüsse. Die Herstellung der Proben erfolgte getrennt für verschiedene Verpackungsmaterialien (Folienverpackung, Verpackungen mit Twist-off-Deckeln, Papier/Karton und lose/unverpackt). Darüber hinaus wurden separate Proben für verschiedene Arten der Erzeugung und Proben speziell für den Außer-Haus-Verzehr gebildet. Insgesamt wurden 223 Proben auf die 59 Weichmacher analysiert (Tabelle 25).

Tabelle 25: Probenstruktur "Weichmacher"1

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	37	600	22
02	Gemüse, Gemüseprodukte und Pilze	11	170	7
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	6	110	5

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	14	235	10
05	Obst und Obstprodukte	7	115	7
06	Fleisch und Fleischprodukte	20	365	18
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	19	370	18
08	Milch und Milchprodukte	17	295	14
09	Eier und Eierprodukte	1	15	1
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	8	150	7
11	Tierische und pflanzliche Fette und Öle	10	155	6
12	Gemüsesäfte, Fruchtsäfte und -nektare	6	90	5
15	Alkoholische Getränke	8	120	4
16	Lebensmittel für Säuglinge und Kleinkinder	7	105	3
17	Produkte für spezielle Ernährungsformen und Lebens- mittelimitate	11	165	5
18	Speisen und Gerichte	33	595	27
19	Würzmittel und Soßen	8	130	6
	SUMME	223	3.785	165

Mineralölkohlenwasserstoffe

In Feldphase 1 wurden verschiedene Fraktionen von Mineralölkohlenwasserstoffen in 355 Lebensmitteln des Basismoduls bestimmt. Dabei wurden verschiedene Fraktionen von gesättigten und aromatischen Mineralölkohlenwasserstoffen ausgewertet. Entsprechend der Empfehlung der EFSA erfolgte für ausgewählte Poolproben eine zusätzliche qualitative Verifizierung der quantitativen Analyse. Dadurch ließen sich Substanzklassen identifizieren, die gemeinsam mit den Fraktionen eluieren, jedoch nicht dieser Stoffgruppe zuzurechnen sind.

Die im Rahmen des Basismoduls hergestellten regionalen und saisonalen Poolproben von Lebensmitteln wurden nicht separat analysiert, sondern zu einer geschichteten Poolprobe pro Lebensmittel zusammengefasst. Nach Art der Erzeugung getrennt hergestellte Poolproben eines Lebensmittels wurden entsprechend der Informationen von Marktdaten zum Anteil biologisch erzeugter Produkte geschichtet. Lagen keine Marktdaten für den Anteil biologisch erzeugter Produkte vor, wurde jeweils nur die konventionelle Poolprobe untersucht.

Tabelle 26: Probenstruktur Mineralölkohlenwasserstoffe¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	40	1.420	40
02	Gemüse, Gemüseprodukte und Pilze	33	2.136	33

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	8	380	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	20	380	20
05	Obst und Obstprodukte	22	890	22
06	Fleisch und Fleischprodukte	35	1.338	35
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	30	720	30
08	Milch und Milchprodukte	24	600	24
09	Eier und Eierprodukte	2	150	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	15	300	15
11	Tierische und pflanzliche Fette und Öle	8	135	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	10	190	10
13	Wasser und Getränke auf Wasserbasis	5	140	5
14	Kaffee, Kakao, Tee und Aufgüsse	9	165	9
15	Alkoholische Getränke	8	145	8
16	Lebensmittel für Säuglinge und Kleinkinder	11	215	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	7	150	7
18	Speisen und Gerichte	52	2.160	52
19	Würzmittel und Soßen	16	350	16
	SUMME	355	11.964	355

¹ Zahlen ohne Gewähr

2,4-Di-tert-butylphenol (2,4-DTBP)

2,4-DTBP wurde als Vertreter für herstellungsbedingte Reaktions- bzw. Abbauprodukte (NIAS, engl. non-intentionally added substances) aus Antioxidantien untersucht. Die toxikologische Relevanz von 2,4-DTBP ist nicht gesichert, jedoch wird 2,4-DTBP exemplarisch als Marker für Verbindungen aus Antioxidantien bestimmt.

In Zusammenarbeit mit dem "Nationalen Referenzlabor für Stoffe, die dazu bestimmt sind mit Lebensmitteln in Berührung zu kommen" wurden aus der Lebensmittelliste des Basismoduls 176 Lebensmittel aus allen Lebensmittelhauptgruppen ausgewählt. Davon ausgenommen wurden fast sämtliche Gemüse und Gemüseprodukte, da matrixbedingt keine Übergänge auf die Lebensmittel erwartet wurden. Die Poolproben wurden getrennt für verschiedene Verpackungsmaterialien (Kunststoff, Konservendosen, Karton/Papier, lose/unverpackt) hergestellt und analysiert. Für ausgesuchte Lebensmittel wurden darüber hinaus separate Poolproben für Speisen aus dem Außer-Haus-Verzehr gebildet. In der Summe wurden 211 Proben auf 2,4-DTBP untersucht (Tabelle 27).

Tabelle 27: Probenstruktur 2,4-Di-tert-butylphenol¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	31	515	21
02	Gemüse, Gemüseprodukte und Pilze	2	30	2
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	6	110	5
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	15	245	10
05	Obst und Obstprodukte	13	210	8
06	Fleisch und Fleischprodukte	14	260	13
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	12	235	12
08	Milch und Milchprodukte	19	330	14
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	8	150	7
11	Tierische und pflanzliche Fette und Öle	8	130	6
12	Gemüsesäfte, Fruchtsäfte und -nektare	11	165	6
13	Wasser und Getränke auf Wasserbasis	8	130	5
14	Kaffee, Kakao, Tee und Aufgüsse	4	70	4
15	Alkoholische Getränke	12	180	6
16	Lebensmittel für Säuglinge und Kleinkinder	3	60	3
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	6	105	5
18	Speisen und Gerichte	28	510	23
19	Würzmittel und Soßen	11	180	8
	SUMME	211	3.615	158

¹ Zahlen ohne Gewähr

8.7 Modul "Pflanzenschutzmittelrückstände"

Für Pflanzenschutzmittelrückstände liegen aus der Lebensmittelüberwachung bereits umfangreiche Daten vor, sodass eine Priorisierung der in der BfR-MEAL-Studie zu untersuchenden Stoffe entsprechend bestehender Datenlücken oder Unsicherheiten in bestehenden Bewertungen erfolgte. Dementsprechend wurden für dieses Modul Stoffe ausgewählt, bei denen die theoretische maximale tägliche Aufnahme (TMDI) 80 % der zulässigen täglichen Aufnahmemenge (ADI) in der Vergangenheit ausgeschöpft haben und die eine Befundrate von mindestens 1 % im Lebensmittel-Monitoring aufwiesen. Weiterführend wurde die Relevanz von Stoffen beurteilt, welche (1) keine etablierten toxikologischen Grenzwerte haben, (2) toxikologisch relevante Metabolite während der Verarbeitung bilden, (3) toxikologisch relevante Metabolite bilden, die nicht spezifisch für einen einzelnen Wirkstoff sind oder (4) ein hohes politisches und gesellschaftliches Interesse aufweisen. Demensprechend wurden mehr als 30 Einzelverbindungen im Modul berücksichtigt (Tabelle 28).

Tabelle 28: Stoffliste Modul "Pflanzenschutzmittelrückstände"

Boscalid, Captan, Captan (Summe), Chlorpyrifos, Cyantraniliprol, Cypermethrin (Summe der Isomeren), Cyprodinil, Deltamethrin (*cis*-Deltamethrin), Difenoconazol, Dimethoat, Fluopyram, Hexachlorbenzol, Hexythiazox, Imazalil, Indoxacarb (Summe der *S*- und *R*-Isomeren), Iprodion, Lambda-Cyhalothrin, Myclobutanil, Omethoat, Pirimicarb, Pirimicarbdesmethyl, Pyraclostrobin, Pyrimethanil, Spinosad, Tetrahydrophthalimid, Thiabendazol, Thiacloprid, Trifumuron⁶

Glyphosat, AMPA

Chlorat/Perchlorat

Ethylen-Thioharnstoff (ETU), Propylen-Thioharnstoff (PTU) und Chlormequat

Triazol-Metabolite (1,2,4-Triazol, Triazol-Alanin, Triazol-Essigsäure, Triazol-Milchsäure)

Im Vorfeld wurde die Anzahl an Mehrfachziehungen bestimmt, um die Verbraucherexposition ausreichend bewerten zu können. Hierzu wurden die Lebensmittel in Kategorien eingeteilt, welche sich einerseits an den bisherigen Befundhäufigkeiten im Lebensmittel-Monitoring orientieren als auch die Beschaffenheit der Lebensmittel und ihre Signifikanz in der Ernährung berücksichtigen (vgl. Tabelle 29).

Tabelle 29: Kategorien für Mehrfachziehungen im Modul "Pflanzenschutzmittelrückstände"

Lebensmittelkategorie	Erläuterung	Anzahl Mehrfach	ziehungen
		Multimethode, Glyphosat / AMPA	Chlorat / Perchlorat
Unvermischte pflanzliche Le- bensmittel (z. B. rohes Obst/Ge- müse)	 höchste Rückstände für Pflanzenschutzmittel zu erwarten hohe Marktvariabilität 	2	3 – 4
Vermischte pflanzliche Lebensmittel (z. B. Wein, Tee, Säfte, Brot)	 industriell hergestellt, vermischt und großflächig vertrieben deutlich verringerte Variabilität der Rückstände 	2	3
Unvermischte tierische Lebensmittel (z. B. Fleisch, Käse, Milch, Honig)	 Rückstandssituation allgemein geringer als in pflanzlichen Lebensmitteln hohe Verzehrmengen 	2	3
Fisch	 Befunde an Organo-Chlorverbindungen in bisherigen Untersuchungsprogrammen geringe Variabilität 	1	1
Zusammengesetzte/komplexe Lebensmittel (z. B. Pizza, Back- waren)	 heterogene Zusammensetzung, starke Durchmischung diverser Zutaten hoher Verdünnungseffekt, für Pflanzenschutzmittel geringe Rückstände erwartet 	1	1
Spezielle Lebensmittel mit ho- hen Verzehrmengen	- Zucker - Leitungswasser	1	-

Es wurden für das Modul ausschließlich konventionell erzeugte Lebensmittel beprobt, um eine Senkung der durchschnittlichen Gehalte von Pflanzenschutzmittelrückständen inner-

⁶ Analyten werden über eine Multimethode bestimmt

halb der Poolproben durch biologisch erzeugte Lebensmittel ohne Pflanzenschutzmittelrückstände zu vermeiden. Eine Ausnahme bildeten Lebensmittel, für die nur sehr wenige oder gar keine konventionellen Produkte erhältlich waren (z. B. Getreidebreie und Nussmus). Aufgrund der komplexen Warenketten war eine regionale Ausrichtung der Lebensmittelproben laut Expertengruppe nicht erforderlich.

Stoffe der Multimethode, Glyphosat und Aminomethylphosphonsäure (AMPA)

Die Analysen auf Stoffe der Multimethode sowie Glyphosat und AMPA erfolgten in allen Lebensmitteln der Lebensmittelliste des Basismoduls, mit Ausnahme der Lebensmittel Spirituosen, Hackfleisch und Mineralwasser (Tabelle 30).

Tabelle 30: Probenstruktur für Analysen mittels Multimethode und auf Glyphosat/AMPA¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n)	(n)	(n)
01	Getreide und Getreideprodukte	49	900	40
02	Gemüse, Gemüseprodukte und Pilze	63	945	32
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	14	225	8
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	40	610	20
05	Obst und Obstprodukte	41	621	22
06	Fleisch und Fleischprodukte	39	669	33
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	30	600	30
08	Milch und Milchprodukte	35	580	24
09	Eier und Eierprodukte	4	80	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	16	310	15
11	Tierische und pflanzliche Fette und Öle	16	240	8
12	Gemüsesäfte, Fruchtsäfte und -nektare	19	285	10
13	Wasser und Getränke auf Wasserbasis	5	76	5
14	Kaffee, Kakao, Tee und Aufgüsse	15	230	8
15	Alkoholische Getränke	8	140	6
16	Lebensmittel für Säuglinge und Kleinkinder	11	220	11
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	11	175	7
18	Speisen und Gerichte	52	1.035	52
19	Würzmittel und Soßen	16	320	16
	SUMME	484	8.261	349

¹ Zahlen ohne Gewähr

Chlorat/Perchlorat

Die Datengrundlage aus dem Lebensmittel-Monitoring für die Gehalte von Chlorat und Perchlorat für ein breites Spektrum an pflanzlichen Lebensmitteln ist sehr umfangreich. Jedoch liegen Daten für Lebensmittel tierischer Herkunft in Deutschland nur vereinzelt vor, weshalb der Fokus auf die Beprobung tierischer Lebensmittel gelegt wurde. Dementsprechend wurden neben Honig die Lebensmittel aus den folgenden Lebensmittelhauptgruppen untersucht: "Fleisch und Fleischprodukte", "Fisch, Fischprodukte und Meeresfrüchte", "Milch und Milchprodukte", "Eier und Eierprodukte", "Tierische und pflanzliche Fette und Öle" (Tabelle 31). Darüber hinaus wurden zusammengesetzte Lebensmittel mit komplexer Matrix berücksichtigt und bei den ausgewählten Lebensmitteln bis zu drei Mehrfachziehungen durchgeführt.

Tabelle 31: Probenstruktur Chlorat/Perchlorat¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben (n)	Lebensmittel
		(n)		(n)
01	Getreide und Getreideprodukte	16	310	13
02	Gemüse, Gemüseprodukte und Pilze	2	30	1
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	9	145	3
06	Fleisch und Fleischprodukte	66	1.090	33
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	32	640	30
08	Milch und Milchprodukte	60	975	23
09	Eier und Eierprodukte	6	120	2
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	8	145	6
11	Tierische und pflanzliche Fette und Öle	6	90	2
12	Gemüsesäfte, Fruchtsäfte und -nektare	2	30	1
13	Wasser und Getränke auf Wasserbasis	2	30	1
16	Lebensmittel für Säuglinge und Kleinkinder	7	140	6
18	Speisen und Gerichte	38	750	37
19	Würzmittel und Soßen	8	160	8
	SUMME	262	4.655	166

¹ Zahlen ohne Gewähr

Triazole

Aufgrund der unterschiedlichen Eintragspfade und des breiten Vorkommens der Triazole in Lebensmitteln sowie der begrenzten Datengrundlage zum Vorkommen in zubereiteten Lebensmitteln wurden Triazol-Metabolite im Modul berücksichtigt. Die Analysen erfolgten in 207 Poolproben ohne Mehrfachziehungen und ausschließlich in Lebensmitteln aus konventioneller Erzeugung (vgl. Tabelle 32). Es wurden ausschließlich Lebensmittel der Kategorien "Unvermischte pflanzliche Lebensmittel" und "Vermischte pflanzliche Lebensmittel" einbe-

zogen. Da für saure Lebensmittelmatrizes keine Daten zur Lagerstabilität der Triazol-Metabolite vorliegen, wurde auf eine Analyse dieser Lebensmittel (Säfte, Beerenmischungen etc.) verzichtet. Da die Vergabe der Analytik für die Triazole erst in einer zweiten Ausschreibungsrunde erfolgen konnte, war die Ziehung der Proben bei Vertragsvergabe bereits gestartet. Aufgrund der eingeschränkten Lagerstabilität von 1,2,4-Triazol, konnten einige Proben aus der bereits begonnenen Feldphase 2 bei Vertragsvergabe nicht mehr auf diesen Stoff untersucht werden und somit erfolgte die Analyse in einem reduzierten Probenumfang von 50 Poolproben (vgl. Tabelle 32).

Tabelle 32: Probenstruktur Triazol-Metabolite¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel
		(n ⁷ /n ⁸)	(n ⁶ /n ⁷)	(n ⁶ /n ⁷)
01	Getreide und Getreideprodukte	37/16	695/285	37/16
02	Gemüse, Gemüseprodukte und Pilze	28/4	420/60	28/4
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	7/1	120/20	7/1
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	17/10	260/150	17/10
05	Obst und Obstprodukte	21/3	335/50	21/3
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	13/0	260/0	13/0
11	Tierische und pflanzliche Fette und Öle	6/6	90/90	6/6
13	Wasser und Getränke auf Wasserbasis	1/0	1/0	1/0
14	Kaffee, Kakao, Tee und Aufgüsse	8/0	125/0	8/0
15	Alkoholische Getränke	3/0	60/0	3/0
16	Lebensmittel für Säuglinge und Kleinkinder	10/0	200/0	10/0
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	7/0	115/0	7/0
18	Speisen und Gerichte	40/8	795/160	40/8
19	Würzmittel und Soßen	9/2	180/40	9/2
	SUMME	207/50	3.656/855	207/50

¹ Zahlen ohne Gewähr

Ethylen-Thioharnstoff (ETU), Propylen-Thioharnstoff (PTU) und Chlormequat

ETU und PTU sind Reaktionsprodukte, die aus Wirkstoffen der Dithiocarbamat-Gruppe durch thermische Behandlung entstehen können und im Vergleich zu den Ausgangsverbindungen meist eine höhere Toxizität aufweisen. Da wenig repräsentative Daten zu Gehalten von ETU/PTU in Lebensmitteln vorliegen, die Analyse bei der Ausschreibung jedoch nicht an

⁷ Triazol-Alanin, Triazol-Essigsäure, Triazol-Milchsäure

^{8 1,2,4-}Triazol

Dritte vergeben werden konnte, wurden die Daten im Rahmen eines Sonderforschungsprojektes am BfR erhoben und dafür die im Europäischen Referenzlabor für Einzelmethoden (EURL-SRM) entwickelte QuPPe-Methode am BfR etabliert.

Da die Ausschreibung der Analytik von ETU/PTU und Chlormequat erfolglos blieb, und somit erst zu einem späteren Zeitpunkt am BfR durchgeführt wurde, erfolgte die Untersuchung in bereits gezogenen Rückstellproben, welche sich im Langzeitlager befanden. Da für die Probe "Laugengebäck" kein Probenmaterial mehr vorrätig war, erfolgte die Untersuchung in 348 Lebensmittelproben (Tabelle 33). Es wurden keine Poolproben aus Mehrfachziehungen analysiert.

Tabelle 33: Probenstruktur ETU/PTU und Chlormequat¹

Nr.	Lebensmittelhauptgruppe	Poolproben	Teilproben	Lebensmittel	
		(n)	(n)	(n)	
01	Getreide und Getreideprodukte	39	740	39	
02	Gemüse, Gemüseprodukte und Pilze	32	480	32	
03	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	8	135	8	
04	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	20	305	20	
05	Obst und Obstprodukte	23	351	22	
06	Fleisch und Fleischprodukte	33	586	33	
07	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	30	600	30	
08	Milch und Milchprodukte	24	410	24	
09	Eier und Eierprodukte	2	40	2	
10	Zucker, Süßwaren und süße Desserts auf Wasserbasis	15	295	15	
11	Tierische und pflanzliche Fette und Öle	8	120	8	
12	Gemüsesäfte, Fruchtsäfte und -nektare	10	150	10	
13	Wasser und Getränke auf Wasserbasis	5	76	5	
14	Kaffee, Kakao, Tee und Aufgüsse	8	125	8	
15	Alkoholische Getränke	6	110	6	
16	Lebensmittel für Säuglinge und Kleinkinder	11	220	11	
17	Produkte für spezielle Ernährungsformen und Lebensmit- telimitate	7	115	7	
18	Speisen und Gerichte	52	1.035	52	
19	Würzmittel und Soßen	16	320	16	
	SUMME	349	6.213	348	

¹ Zahlen ohne Gewähr

8.8 Modul "Pharmakologisch aktive Subtanzen"

Eine Untersuchung zur "Erfassung von Antibiotikarückständen in ausgewählten Lebensmitteln tierischer Herkunft" des Bayerischen Landesamtes für Gesundheit und Lebensmittelsicherheit (Hausmann et Holtmannspötter, 2013) liefert Daten zu Häufigkeiten und zur Variabilität von Antibiotikarückständen in verschiedenen tierischen Lebensmitteln. Diese Ergebnisse legen nahe, dass mit hoher Wahrscheinlichkeit durch die Methodik des Poolens und der damit verbundenen Verdünnungseffekte in Poolproben der BfR-MEAL-Studie keine Antibiotikagehalte über der Bestimmungsgrenze nachgewiesen werden könnten. Darüber hinaus erfolgt für die Teilproben der Studie eine küchentechnische Verarbeitung, was ggf. zu einem Abbau enthaltener Antibiotikarückstände führen kann. Entsprechend wurden diese Proben abweichend vom klassischen TDS-Design an die Umstände wie folgt angepasst.

Es wurden Schweinefleisch und Pute in die Untersuchung einbezogen, da beide Lebensmittel in vorangegangenen Untersuchungen am häufigsten Antibiotikarückstände zeigten. Als dritte tierische Matrix wurde Forelle ergänzt, welche ebenfalls Rückstände erwarten lässt (Tolmien, 2011). Es wurden pharmakologisch aktive Substanzen ausgewählt, für die am häufigsten Rückstände in den drei berücksichtigten Matrizes nachgewiesen werden konnten, hierbei wurden neun Gruppen von Antibiotika mit insgesamt 36 pharmakologisch aktiven Einzelsubstanzen einbezogen (Tabelle 34).

Tabelle 34: Stoff-Matrix-Kombinationen im Modul "Pharmakologisch aktive Substanzen"

Substanzgruppe	Matrix		
Analyt	Schweinefleisch	Putenfleisch	Forelle
Amphenicole			
Florfenicol			×
Chinolone			
Danofloxacin	×	×	×
Enrofloxacin	×	×	×
Ciprofloxacin	×	×	×
Marbofloxacin	×	×	×
Diamino-Pyrimidin-Derivate			
Trimethoprim			×
Makrolide			
Tylosin			×
Tilmicosin			×
Tulathromycin			×
Tildipirosin			×
Gamithromycin			×
Erythromycin			×
Penicillin			
Amoxicillin	×		
Benzylpenicillin	×		

Substanzgruppe	Matrix		
Analyt	Schweinefleisch	Putenfleisch	Forelle
Sulfonamide			
Sulfathiazol	×	×	×
Sulfadimidin	×	×	×
Sulfadiazin	×	×	×
Sulfadoxin	×	×	×
Sulfadimethoxin	×	×	×
Tetracycline			
Chlortetracyclin	×	×	×
Tetracyclin	×	×	×
Oxytetracyclin	×	×	×
Epi-Chlortetracyclin	×	×	×
Epi-Tetracyclin	×	×	×
Epi-Oxytetracyclin	×	×	×
Doxycyclin	×	×	×
Aminoglycoside			
Streptomycin	×		
Dihydrostreptomycin	×		
Spectinomycin	×		
Gentamycin	×		
Neomycin	×		
Kokzidiostatika			
Dinitrocarbanilide		×	
Monensin		×	
Lasalocid		×	
Narasin		×	 .
Maduramycin		×	

Die Teilproben wurden als Einzelproben untersucht und nicht zu Poolproben, wie sonst bei TDS üblich, zusammengefasst. Die Probenanzahl wurde auf 60 Proben pro Matrix festgesetzt, wobei der repräsentative Einkauf und die Zubereitung der Teilproben dem Vorgehen im Basismodul entsprachen. Darüber hinaus wurden Daten zum möglichen Abbau von Antibiotikarückständen infolge von Erhitzung kosteneffizient untersucht, indem die haushaltstypisch zubereitete Einzelprobe nur dann auf die entsprechende Antibiotikagruppe untersucht wurde, wenn in der korrespondierenden rohen Einzelprobe ein Gehalt oberhalb der Nachweisgrenze in der Wirkstoffgruppe bestimmt wurde.

8.9 Modul "Lebensmittelzusatzstoffe"

Im Primärkonzept der BfR-MEAL-Studie erfolgte die Stoffauswahl für das Modul "Lebensmittelzusatzstoffe" auf der Basis eines Berichtes der EU-Kommission aus dem Jahr 2001 über die Aufnahme von Lebensmittelzusatzstoffen (CEC 2001). Die EFSA veröffentlicht seit 2010 im Rahmen des Programms zur Re-Evaluierung von Lebensmittelzusatzstoffen (EC 2010) kontinuierlich neue Bewertungen. Vor diesem Hintergrund wurde zur Aktualisierung der Auswahl der Lebensmittelzusatzstoffe für die BfR-MEAL-Studie ein schrittweises Vorgehen mit der modulbegleitenden Expertengruppe abgestimmt:

- Erstellung einer Datengrundlage für die Vorauswahl von Zusatzstoffen auf Basis der EFSA-Neubewertungen von Lebensmittelzusatzstoffen aus den Jahren 2012–2018 (86 Zusatzstoffe/Zusatzstoffgruppen identifiziert).
- 2. Vorauswahl von relevanten Stoffen auf Basis von in den EFSA-Stellungnahmen reklamierten Datenlücken, Unsicherheiten in der Bewertung oder eines nicht auszuschließenden Risikos (44 Stoffe vorausgewählt). Bei Vorliegen von Überschreitungen von HBGVs (Health Based Guidance Values) in EFSA-Neubewertungen wurden Expositionsschätzungen auf Basis der deutschen "Datenbank zum Vorkommen von Zusatzstoffen" bei der Vorauswahl mitberücksichtigt (Diouf et al., 2014).
- 3. Priorisierung von Lebensmittelzusatzstoffen auf Basis der Vorauswahl durch die Mitglieder der Expertengruppe und durch Personen der EFSA.
- 4. Zusammenstellung von Informationen zur Verfügbarkeit von Methoden zur analytischen Quantifizierung für die priorisierten Lebensmittelzusatzstoffe.
- 5. Finale Auswahl von Lebensmittelzusatzstoffen unter Berücksichtigung der Verfügbarkeit analytischer Methoden und der verfügbaren Kapazitäten in Feldphase 2.

Die Vergabe der Analytikdienstleistung zur Bestimmung der acht priorisierten Stoffe oder Stoffgruppen erfolgte über eine öffentliche Ausschreibung. Der Zuschlag konnte für vier Lebensmittelzusatzstoffgruppen erteilt werden (Tabelle 35). Im Rahmen des Basismoduls der BfR-MEAL-Studie wurden darüberhinausgehend Phosphor, Nitrat und Aluminium in allen 356 Lebensmitteln der Lebensmittelliste bestimmt, da diese unabhängig vom Einsatz als Lebensmittelzusatzstoff in Lebensmitteln vorkommen können. Demzufolge wich das Design der Probenziehung im Basismodul von dem des Zusatzstoffmoduls dahingehend ab, dass die Poolproben für Phosphor, Nitrat und Aluminium ungeachtet einer Verwendung in spezifischen Verwendungskategorien des Anhangs II der VO (EG) Nr. 1333/2008 und ungeachtet einer deklarierten Zusatzstoffverwendung hergestellt wurden.

Tabelle 35: Stoffliste Modul "Lebensmittelzusatzstoffe"

Zusatzstoffgruppe	Lebensmittelzusatzstoff
Benzoate (E210–E213)§	Benzoesäure, Calciumbenzoat, Kaliumbenzoat, Natriumbenzoat
Nitrite (E249, E250)\$	Kaliumnitrit, Natriumnitrit
Sorbate (E200, E202)*	Kaliumsorbat, Sorbinsäure
Sulfite (E220–E228)#	Calciumhydrogensulfit, Calciumsulfit, Kaliumhydrogensulfit, Kaliummetabisulfit, Natriumhydrogensulfit, Natriummetabisulfit, Natriumsulfit, Schwefeldioxid

[§] berichtet als Benzoesäure, ^{\$} berichtet als NO₂, * berichtet als Sorbinsäure, [#] berichtet als SO²⁻

Für die Erstellung der modulspezifischen Lebensmittelliste wurden vier Einzelhandelsketten ausgewählt und deren Sortimente durch Marktbegehung geprüft. Hierbei wurde über die Nennung des Zusatzstoffes im Zutatenverzeichnis eine Verwendung des Stoffes im Produkt identifiziert und das Produkt fotodokumentiert. Anhand der Fotodokumentation erfolgte für Produkte mit Zusatzstoffverwendung eine Zuordnung zu den Lebensmittelkategorien des Anhangs II der VO (EG) Nr. 1333/2008. Poolproben wurden für jede Zusatzstoffgruppe separat und für alle Lebensmittelkategorien des Anhangs II der VO (EG) Nr. 1333/2008 gebildet, für die Produkte mit Zusatzstoffverwendung identifiziert wurden. Entsprechend wurden nicht für alle Lebensmittelkategorien mit zugelassener Verwendung eines Zusatzstoffes Poolproben hergestellt, sondern nur für die Kategorien, für die entsprechende Produkte mit Zusatzstoffverwendung in den Einkaufsstätten identifiziert wurden. Bei Lebensmitteln mit unterschiedlichen Höchstmengen wurden mehrere Poolproben unter der Maßgabe hergestellt, dass für die Lebensmittel einer Poolprobe die gleiche Höchstmenge definiert ist. Sind regulatorisch für zwei Lebensmittelzusatzstoffgruppen einzelne und kombinierte Höchstmengen festgelegt (z. B. für Sorbate und Benzoate), wurden drei getrennte Poolproben hergestellt, jeweils für die alleinige Verwendung einer der beiden Zusatzstoffe und für die kombinierte Verwendung beider Zusatzstoffe. Weiterhin wurden für eine Lebensmittelkategorie des Anhangs II der VO (EG) Nr. 1333/2008 mit nur einer numerischen Höchstmenge mehrere Poolproben erzeugt, wenn die Lebensmittelliste des Basismoduls mehrere Lebensmittel für diese Kategorie enthält (z. B. mehrere Poolproben für diverse Wurstwaren in der Kategorie 08.3.2 "Wärmebehandelte Fleischerzeugnisse").

Die Anzahl von Teilproben entspricht der jeweiligen Anzahl der in den Einkaufsstätten identifizierten Produkte und schwankte zwischen einem und 29 Produkten (Median: 15), wobei unterschiedliche Produkte in einer Poolprobe gleich gewichtet wurden. Bei einer üblichen Verwendung einer Lebensmittelzusatzstoffgruppe in Lebensmitteln (z. B. Nitrite in Wurstwaren, Sulfite in Wein) wurde die Anzahl der Teilproben auf 15 bzw. 20 Teilproben begrenzt und die Teilproben entsprechend vorhandener Marktdaten gewichtet.

Insgesamt wurden 146 Poolproben aus 1.026 Teilproben hergestellt. Diese Proben liefern Gehaltsdaten für Sorbate (n = 61), Benzoate (n = 26), Sulfite (n = 35) und Nitrite (n = 24) für insgesamt 39 Lebensmittelkategorien des Anhangs II der VO (EG) Nr. 1333/2008 (Tabelle 36).

Darüber hinaus wurden weitere Poolproben auf Nitrite (n = 67) und Benzoate (n = 18) untersucht, zur Berücksichtigung von Quellen außerhalb von Zusatzstoffverwendungen. Die Poolproben setzten sich jeweils aus 15–20 Teilproben (n = 1.416) zusammen, die repräsentativ nach Marktdaten ausgewählt und gewichtet wurden.

Tabelle 36: Probenstruktur Lebensmittelzusatzstoffe¹

Kategorie	Lebensmittelkategorie	Benzoatea	Sorbatea	Sulfitea	Nitritea
01.7.1	Ungereifter Käse		1 (14)		
01.7.2	Gereifter Käse		1 (4)		
02.2.2	Andere Fett- und Ölemulsionen, einschließlich Streichfetten		2 (19)		
04.1.1	Ganzes frisches Obst und Gemüse			4 (60)	
04.2.1	Obst und Gemüse, getrocknet		1 (7)	4 (12)	

Kategorie	Lebensmittelkategorie	Benzoate ^a	Sorbate ^a	Sulfitea	Nitritea
04.2.2	Obst und Gemüse in Essig, Öl oder Lake	3 (15)	3 (13)	2 (16)	
04.2.4.1	Zubereitungen aus Obst und Gemüse		3 (8)	2 (30)	
04.2.5.1	Konfitüre extra und Gelee extra		1 (5)		
04.2.5.2	Konfitüren, Gelees, Marmeladen und Maronenkrem		1 (9)		
04.2.5.3	Sonstige ähnliche Brotaufstriche aus Obst oder Gemüse		1 (12)		
04.2.6	Verarbeitete Kartoffelprodukte		2 (15)	3 (30)	
05.2	Sonstige Süßwaren, auch der Atemerfrischung die- nende Kleinstsüßwaren		1 (2)	2 (2)	
05.4	Verzierungen, Überzüge und Füllungen		3 (23)		
06.4.4	Kartoffelgnocchi		1 (1)		
06.4.5	Füllungen für Teigwaren		1 (1)		
06.7	Vorgekochte oder verarbeitete Getreidekost		1 (2)		
07.1	Brot und Brötchen		2 (12)		
07.2	Feine Backwaren		8 (35)		
08.3.1	Nicht wärmebehandeltes verarbeitetes Fleisch				3 (45)
08.3.2	Wärmebehandeltes verarbeitetes Fleisch	1 (1)	1 (1)		20 (273)
08.3.4	Auf traditionelle Weise gepökelte Fleischprodukte				1 (15)
09.1.2	Weich- und Krebstiere, nicht verarbeitet			1 (3)	
09.2	Fisch und Fischereiprodukte, einschl. Weich- und Krebstiere, verarbeitet	3 (6)	3 (5)	1 (1)	
09.3	Fischrogen	1 (1)	1 (1)		
12.3	Speiseessig			1 (20)	
12.4	Senf			2 (9)	
12.6	Soßen	3 (11)	4 (32)		
12.7	Salate und würzige Brotaufstriche	10 (36)	12 (47)		
14.1.4	Aromatisierte Getränke	5 (21)	6 (42)	1 (1)	
14.2.2	Wein		1 (2)	3 (51)	
14.2.3	Apfelwein und Birnenwein			1 (13)	
14.2.4	Fruchtwein			1 (1)	
14.2.5	Met			1 (1)	
14.2.6	Spirituosen			1 (1)	
14.2.7.1	Aromatisierte Weine			1 (6)	
14.2.7.2	Aromatisierte weinhaltige Getränke			1 (16)	
14.2.7.3	Aromatisierte weinhaltige Cocktails			1 (10)	-
14.2.8	Sonstige alkoholische Getränke			1 (3)	
15.1	Knabbereien auf Kartoffel-, Getreide-, Mehl- oder Stär- kebasis			1 (4)	

^a Anzahl Proben (Anzahl Teilproben)

¹ Zahlen ohne Gewähr

Zusätzlich stellt eine Erweiterung des Moduls "Lebensmittelzusatzstoffe" Gehalte von Süßungsmitteln in gesüßten Erfrischungsgetränken bereit. Diese Erweiterung wurde auf Nachfrage des BMEL vor dem Hintergrund der Nationalen Reduktions- und Innovationsstrategie und der leichten Zunahme des Anteils von ausschließlich mit Süßungsmitteln gesüßten Erfrischungsgetränken durchgeführt und die Ergebnisse sind in Stellungnahme Nr. 006/2023 zusammengefasst

Die Stichprobe umfasste marktrelevante Erfrischungsgetränke. Die Produktauswahl erfolgte auf Basis des Produktmonitorings des MRI aus dem Jahr 2019, welches 271 gesüßte Erfrischungsgetränke als marktrelevant einstufte (Demuth et al., 2020). Die Verwendung von Süßungsmitteln wurde für 95 Produkte dokumentiert. Aufgrund von Änderungen in der Verfügbarkeit der Produkte wurden insgesamt 92 energiereduzierte Erfrischungsgetränke bzw. Erfrischungsgetränke ohne Zuckerzusatz aus sieben Produktgruppen (Tabelle 37) untersucht.

Der Einkauf der Erfrischungsgetränke erfolgte vorwiegend im Lebensmitteleinzelhandel im Raum Berlin, aber auch über das Internet sowie in der Region Nord, wenn Erfrischungsgetränke im lokalen Einzelhandel nicht verfügbar waren. Für Erfrischungsgetränke wurde angenommen, dass sich die Süßungsmittel-Gehalte eines Markenproduktes deutschlandweit nicht unterscheiden. Mittels Multimethode wurden neun Süßungsmittel (Acesulfam K, Aspartam, Cyclamat, Neohesperidin-DC, Neotam, Saccharin, Sucralose, Steviolglykoside [Steviosid, Rebaudiosid A] und Advantam) in den Proben bestimmt.

Tabelle 37: Stichprobe der Erfrischungsgetränke inkl. Anzahl nachgewiesener Süßungsmittel¹

Produktgruppen	energi	ergiereduziert		ohne Zuckerzusatz		Gesamt	
	n	Anzahl	n	Anzahl	n	Anzahl	
		Süßungsmittel Median (Min–Max)		Süßungsmittel Median (Min–Max)		Süßungsmittel Median (Min–Max)	
Cola/Cola-Mischgetränke	1	2	37	3 (2-4)	38	3 (2-4)	
Energy Drinks	0	-	2	2 (2-2)	2	2 (2–2)	
Fruchtsaftgetränke	0	-	4	3 (2–3)	4	3 (2–3)	
Isotonische Getränke	4	2 (2–2)	0	-	4	2 (2–2)	
Limonaden	4	3 (2-4)	30	3 (2–5)	34	3 (2–5)	
Teekaltgetränke	5	1 (1–1)	3	2 (2-3)	8	1 (1-3)	
Wasser mit Aromen	2	3 (3–3)	0	-	2	3 (3–3)	
SUMME	16		76		92		

9 Satellitenstudien

Die Infrastruktur der BfR-MEAL-Studie konnte von externen Kooperationspartnern im Rahmen von Satellitenstudien genutzt werden. Hierfür wurde im Rahmen der BfR-MEAL-Studie Probenmaterial für die Satellitenstudien hergestellt und zur Beantwortung zusätzlicher Fragestellungen auf Kosten des externen Partners untersucht. Insgesamt konnten fünf Satellitenstudien als Kooperationen an die BfR-MEAL-Studie angegliedert werden.

9.1 Messung von Radionukliden

Das Bundesamt für Strahlenschutz (BfS) untersuchte verschiedene natürliche Radionuklide in repräsentativen Poolproben der BfR-MEAL-Studie. Von den 356 Lebensmitteln der Lebensmittelliste des Basismoduls wurden seitens BfS 210 Poolproben ausgewählt. Lebensmittelhauptgruppen wie Fertiggerichte und Süßigkeiten blieben unbeachtet, da aus den Messwerten der Ausgangprodukte auf Fertigprodukte geschlossen werden kann. Ebenso wurden Getränke, die zum größten Teil aus Wasser bestehen, nicht analysiert, da eine Messung natürlicher Radionuklide bereits anderweitig durchgeführt wurde. In der ersten Feldphase wurden für die Analysen auf Radionuklide pro Poolprobe ca. 2 kg Probenmaterial zur Verfügung gestellt. Die Probenaufarbeitung sowie die Messung der fünf Radionuklide (Uran [234U, 238U], Radium [226Ra, 228Ra] und Blei [210Pb]) wurden am BfS durchgeführt. Dabei wurde das Probenmaterial nach Übergabe getrocknet, verascht und per Mikrowellenaufschluss für die radiochemische Weiterverarbeitung und Analyse der Radionuklide vorbereitet. Die Analysen wurden 2022 abgeschlossen. In einer Zusammenarbeit zwischen BfS und BfR erfolgt weiterführend eine Schätzung der Exposition gegenüber diesen Radionukliden für deutsche Bevölkerungsgruppen.

9.2 Messung eines erweiterten Nährstoffspektrums

In der Kooperation mit dem Institut für Ernährungsverhalten des Max Rubner-Instituts (MRI) wurden Nährstoffgehalte von Lebensmitteln für eine Integration in die Nährstoffdatenbank "Bundeslebensmittelschlüssel" in 130 Poolproben erhoben. Die Poolproben wurden auf die in der BfR-MEAL-Studie berücksichtigten Nährstoffe sowie auf zusätzliche Nährstoffe, die vom MRI separat in Auftrag gegeben wurden, untersucht und schlossen u. a. diverse wasserund fettlösliche Vitamine, Aminosäuren, weitere Elemente und Cholesterol ein.

9.3 PFAS-Vorläufersubstanzen

Eine unabhängig von der BfR-MEAL-Studie bereits bestehende Kooperation mit dem Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME wurde um eine Satellitenstudie erweitert, in der 38 Vorläufersubstanzen von perfluorierten Alkylsubstanzen (z. B. F 53B, PAP, diPAP) in Poolproben der BfR-MEAL-Studie untersucht wurden. Die Analysen erfolgten in der Abteilung "Spurenanalytik und Umweltmonitoring" des Fraunhofer-Instituts und ergänzten die Analysen auf 16 perfluorierte Alkylsubstanzen, die im Rahmen der BfR-MEAL-Studie durchgeführt wurden. Im Rahmen der Satellitenstudie wurde die Analysemethode zur Bestimmung von PFAS und PFAS-Vorläufersubstanzen angepasst und validiert. Die Analysen erfolgten in den Matrizes Kuhmilch, Säuglingsmilchnahrung, Kartoffeln und Mineralwasser mittels Hochleistungsflüssigchromatographie gekoppelt an ein hochauflösendes Massenspektrometer (HPLC-HRMS) (Bihlmeier, 2021).

9.4 Mykotoxin-Schnelltest

In der Kooperation mit dem Institut für Tierärztliche Nahrungsmittelkunde (Fachbereich Veterinärmedizin) der Justus-Liebig-Universität Gießen und dem Institut für Lebensmittelqualität und -sicherheit der Stiftung Tierärztliche Hochschule Hannover wurden Proben der BfR-

MEAL-Studie zur Validierung eines ELISA-basierten Schnelltests für die Bestimmung von Mykotoxinen genutzt. Hierfür wurden sowohl 20 Poolproben als auch Teilproben der BfR-MEAL-Studie aus der Lebensmittelhauptgruppe "Getreide und Getreideprodukte" auf die Mykotoxine Alternariol und Altenuen mittels Enzyme-linked Immunosorbent Assay (ELISA) untersucht (Bauer et al., 2016). Im Rahmen der BfR-MEAL-Studie erfolgte bereits die Analyse dieser Lebensmittel auf Alternariol mittels HPLC-MS/MS. Die mittels ELISA erzielten Ergebnisse sollten durch den Vergleich mit den Ergebnissen der BfR-MEAL-Studie bestätigt und damit der Schnelltest validiert werden.

9.5 Arsen-Speziationen

Bereits im Rahmen der BfR-MEAL-Studie wurden ausgesuchte Poolproben auf Gesamtarsen, anorganisches Arsen, Arsenobetain, Dimethylarsinsäure und Monomethylarsonsäure/Methylarsonsäure untersucht. Ergänzend zu diesen Ergebnissen werden in einer Satellitenstudie 115 Poolproben der BfR-MEAL-Studie weiterführend von der Arbeitsgruppe "Umweltgeochemie" der Universität Bayreuth auf Dimethylmonothioarsenat (DMMTA) mittels ICP-MS/MS untersucht (Hackethal et al., 2023).

10 Langzeitlagerung von Proben

Zur Beantwortung zukünftiger weiterführender Fragestellungen wurde Probenmaterial langfristig bei –20 °C bei einem externen Dienstleister eingelagert. Für die Langzeitlagerung wurde während der beiden Feldphasen Probenmaterial in Probengefäße aus Glas sowie aus Polypropylen eingelagert. Eine am BfR eingerichtete Arbeitsgruppe entscheidet über interne und externe Forschungsanträge, die Probenmaterial für die Messung von lagerstabilen Substanzen benötigen.

Für verschiedene Triazole und ETU/PTU im Rahmen des Moduls "Pflanzenschutzmittelrückstände" (vgl. Kapitel 8.7) standen zu Beginn der Feldphase 2 keine Dienstleister für die Analytik zur Verfügung. Durch die Nutzung von Rückstellproben und die Bemühungen des BMEL, unentgeltlich interne Standards zur Verfügung zu stellen, konnten diese beiden Fragestellungen zu einem späteren Zeitpunkt noch erfolgreich in die Studie integriert werden.

Darüber hinaus werden weitere Fragestellungen mithilfe von Probenmaterial aus der Langzeitlagerung untersucht:

- 1. Das NRL für Futterzusatzstoffe untersuchte im Rahmen der Methodenetablierung zur Bestimmung von Chinolizidin-Alkaloiden diverse Poolproben der Lebensmittelhauptgruppe "Milch und Milchprodukte".
- Poolproben der Lebensmittelhauptgruppe "Fisch, Krusten- und Weichtiere und Erzeugnisse daraus" werden auf halogenierte persistente organische Schadstoffe (POP) untersucht.
- 3. Für die geplante Bestimmung von Bisphenolen in Lebensmitteln wird Probenmaterial bereitgestellt.

Auch in Zukunft gibt es die Möglichkeit, andere Fragestellungen mit den eingelagerten Proben der BfR-MEAL-Studie zu beantworten. Eigenfinanzierte Projektskizzen können gerne an das BfR herangetragen werden.

11 Nutzung der Daten

Die BfR-MEAL-Studie hat als primäres Ziel die Generierung von Gehaltsdaten für Expositionsschätzungen des BfR im Rahmen von Risikobewertungen. Darüber hinaus werden publizierte Gehaltsdaten der BfR-MEAL-Studie auch anderen Organisationen, wie z. B. der Europäischen Behörde für Lebensmittelsicherheit (EFSA) und der Ernährungs- und Landwirtschaftsorganisation der Vereinten Nationen (FAO), für Bewertungszwecke zur Verfügung gestellt. Ergänzend werden sämtliche Gehaltsdaten als Ergebnisse der Studie sukzessive als Public Use File der fachwissenschaftlichen Öffentlichkeit kostenlos zur Verfügung gestellt.

Ferner begleitete das BfR die Studie mit einer konsistenten und zielgruppenspezifischen Kommunikation (siehe Abbildung 6). Definierte Zielgruppen der Kommunikation sind Regierungsinstitutionen, Verbände, das internationale und nationale Fachpublikum sowie Medien und interessierte Laien. Dabei werden primär zwei Ziele verfolgt: die Kommunikation der Vorgehensweise und Zielsetzung der Studie sowie die Kommunikation konkreter Ergebnisse.

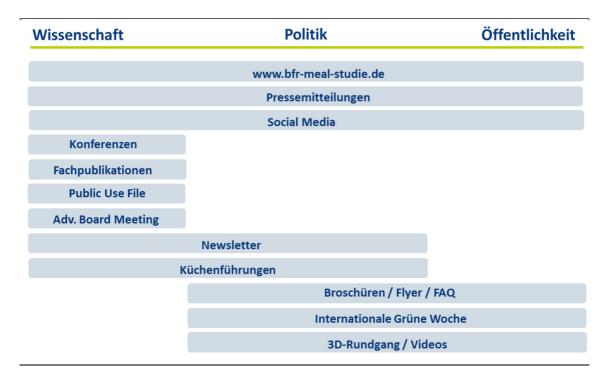


Abbildung 6: Medien der Kommunikation für die Zielgruppen der BfR-MEAL-Studie

11.1 Erlasse und Bewertungen

Entsprechend des Hauptzieles der Studie, werden die Daten der BfR-MEAL-Studie für Erlassbeantwortungen des BMEL oder BMUV bzw. des BVL verwendet. Beispielsweise gingen die Daten der BfR-MEAL-Studie in folgende Stellungnahmen des BfR ein:

Im Jahr 2018 wurden erstmalig vorläufige Ergebnisse der BfR-MEAL-Studie zur weiteren Einordnung erhöhter nachgewiesener Gehalte an nicht-dioxinähnlichen polychlorierten Biphenylen (ndl-PCB) in Futtermitteln herangezogen. Sie belegten eine weitaus geringere ndl-PCB-Konzentration in Eiern, Puten- und Hähnchenfleisch im Vergleich zu den einzelnen, im Zusammenhang mit dem Ereignisfall nachgewiesenen Höchstgehaltsüberschreitungen. Dies legte nahe, dass es sich bei dem ndl-PCB-Ereignisfall um ein zeitlich und örtlich begrenztes Geschehen handelte (Mitteilung Nr. 037/2018).

Im Februar 2021 und März 2022 wurde anhand von Modellrechnungen eingeschätzt, ob eine Erhöhung der gesetzlichen Höchstmenge von Jod in Speisesalz das Risiko einer unzureichenden Jodaufnahme verringern kann, ohne gleichzeitig zu einer Überschreitung der tolerierbaren täglichen maximalen Aufnahme zu führen. Auf Basis der Gehaltsdaten zu Jod aus der BfR-MEAL-Studie zeigte sich, dass die Jodaufnahme der deutschen Bevölkerung nicht ausreichend ist, um eine adäquate Jodversorgung zu gewährleisten. Das BfR empfiehlt dementsprechend, den Verwendungsgrad von Jodsalz in Haushalten und in industriell und handwerklich hergestellten Lebensmitteln zu steigern (Stellungnahmen Nr. 005/2021 und Nr. 026/2022).

Im Rahmen der Nationalen Reduktions- und Innovationsstrategie für Zucker, Fette und Salz in Fertigprodukten sollen u. a. Zuckergehalte in Getränken reduziert werden. Wie aus dem Produktmonitoring des MRI hervorgeht, ist der Zuckergehalt in Erfrischungsgetränken zwischen den Jahren 2018 und 2019 geringfügig zurückgegangen, während der Anteil ausschließlich mit Süßungsmitteln gesüßter Erfrischungsgetränke leicht zugenommen hat. Durch eine Erweiterung des Moduls "Lebensmittelzusatzstoffe" der BfR-MEAL-Studie wurden in marktrelevanten Erfrischungsgetränken die Verwendungsmengen von Süßungsmitteln bestimmt. Im Rahmen der Modulerweiterung wurden insgesamt neun Süßungsmittel (Acesulfam K, Aspartam, Cyclamat, Neohesperidin-DC, Neotam, Saccharin, Sucralose, Steviolglykoside, Advantam) in 92 marktrelevanten Erfrischungsgetränken untersucht. Hierbei konnte die Spannbreite der Gehalte aufgezeigt werden sowie der Einsatz von nur einem oder mehreren Süßungsmitteln beschrieben werden (Stellungnahme Nr. 006/2023).

11.2 Überschreitungen von Höchstmengen

Mögliche Überschreitungen von EU-weit geltenden Höchstgehalten von Proben wurden im Verlauf der Studie an das BMEL zur weiteren Veranlassung gemeldet (Tabelle 38). Die BfR-MEAL-Studie ist aufgrund der Methodik des Poolens (Ausnahme Süßstoffe in Erfrischungsgetränken) nur bedingt geeignet, Überschreitungen von Höchstgehalten anzuzeigen, kann jedoch unter Berücksichtigung der analytischen Messunsicherheit einen Hinweis auf mögliche Problemfelder geben, die im Anschluss detaillierter untersucht werden sollten.

Neben den möglichen Höchstgehaltsüberschreitungen wurden bei den Süßungsmitteln auch nicht-deklarierte Gehalte von Cyclamat und Saccharin in Erfrischungsgetränken festgestellt.

Tabelle 38: Meldungen zu Höchstgehalt- und Rückstandshöchstmengenüberschreitungen

Modul	Stoff	Matrix	Gehalt	Höchstgehalt / Rück- standshöchstmenge
	Sulfite	Krabbenfleisch	125 mg/kg	50 mg/kg

Modul	Stoff	Matrix	Gehalt	Höchstgehalt / Rück- standshöchstmenge
Lebensmit-	Acesulfam K	Erfrischungsgetränk	365 mg/L	350 mg/L
telzusatzstoffe	Cyclamat	Erfrischungsgetränk	263 mg/L	250 mg/L
	Cyclamat	Erfrischungsgetränk	259 mg/L	250 mg/L
	Benzoate	Erfrischungsgetränk	154 mg/L	150 mg/L
	Benzoate	Fischprodukte	2227 mg/kg	2000 mg/kg
Basismodul	NdI-PCB (ICES- 6)	Dornhai	190 ng/g	200 ng/g
	Kupfer	Chiasamen	16,5 mg/kg	10 mg/kg
		Rinderleber	66,4-119 mg/kg	30 mg/kg
		Schafsleber	68,1-77,6 mg/kg	30 mg/kg
		Hirsch/Reh	2,35 mg/kg	0,01 mg/kg
		Wildschwein	2,03 mg/kg	0,01 mg/kg
		Honig	0,265-0,355 mg/kg	0,01 mg/kg
Mykotoxine	Aflatoxine B1	Buchweizen	2,66 μg/kg	2 μg/kg
		Chiasamen	4,22 μg/kg	2 μg/kg
		Pistazien	7,53 μg/kg	8 μg/kg
	Ochratoxin-A	Buchweizen	5,86 μg/kg	3 μg/kg
Pflanzenschutz-	Chlorat	Leberwurst	105 μg/kg	10 μg/kg
mittelrückstände		Brühwurst	77 μg/kg	
		Salatsoßen	51 μg/kg	
		Rohe Pökelfleischerzeug-	38 μg/kg	
		nisse	31 μg/kg	
		Käsekuchen	30 μg/kg	
		Gemüsemischung	28 μg/kg	
		Burger	24 μg/kg	
		Creme- und Sahnetorten	23 μg/kg	
		Brühwurst fein zerkleinert,	20 μg/kg	
		Geflügel	19 μg/kg	
		Milchreis	19 μg/kg	
		Brühwurst fein zerkleinert Butter		
	Chlorpyrifos	Datteln	22 μg/kg	10 μg/kg
Pharmakologisch aktive Substan- zen	Trimethoprim	Forelle	100 μg/kg	50 μg/kg

11.3 Wissenschaftliche Publikationen

Die in der BfR-MEAL-Studie ermittelten Gehalte von Stoffen sind für die Öffentlichkeit von Interesse: Einerseits für Personen aus Wissenschaft und Forschung mit einem Interesse an Methodenentwicklung, Analytik oder der Risikobewertung dieser Stoffe, aber auch für spezifische Bevölkerungsgruppen, die Gehalte von Stoffen in Lebensmitteln im Kontext von Ernährungstherapien suchen, z. B. im Hinblick auf eine Ernährung mit Lebensmitteln mit niedrigen Kalium- und Phosphorgehalten bei eingeschränkter Nierenfunktion.

Die ermittelten Gehalte werden mit einer wissenschaftlichen Beschreibung in Fachzeitschriften veröffentlicht (Tabelle 39), um diese der wissenschaftlichen Gemeinschaft und der Öffentlichkeit zur Verfügung zu stellen. Dies ermöglicht die Einordnung der Gehalte im Vergleich mit national oder international gemessenen Werten aus anderen Datenquellen.

Um für die Politikberatung und den wissenschaftlichen Diskurs besonders relevante Stoffe bevorzugt zu veröffentlichen, wurde eine Arbeitsgruppe mit Vertreterinnen und Vertretern aus den Fachabteilungen und der Öffentlichkeitsarbeit des BfR einberufen. Hier konnten in regelmäßigen Abständen Priorisierungen der bereits vollständig vorliegenden Datensätze vorgenommen werden. Nach anschließender Plausibilisierung der Gehalte, wurde von den Fachabteilungen festgelegt, in welchem Umfang die Daten veröffentlicht werden sollen: als Gehaltsdaten, mit zusätzlicher Expositionsschätzung oder als vollständige Risikobewertung. Gleichzeitig wurde auch die Form der Veröffentlichung als Stellungnahme, Mitteilung oder Artikel in einer wissenschaftlichen Zeitschrift in diesem Gremium festgelegt.

Um für den wissenschaftlichen Diskurs relevante Stoffe bevorzugt zu veröffentlichen, wurde eine Arbeitsgemeinschaft mit Vertreterinnen und Vertretern aus den Fachabteilungen des BfR einberufen. Hier konnten in regelmäßigen Abständen Priorisierungen der bereits vorliegenden Datensätze vorgenommen werden. Nach anschließender Plausibilisierung der Gehalte mit Literatur wurde von den Fachabteilungen festgelegt, in welcher Form die Daten veröffentlicht werden sollen: als Gehaltsdatenpaper mit zusätzlicher Expositionsschätzung oder als vollständige Bewertung.

Tabelle 39: Publikationen zur BfR-MEAL-Studie (Stand 2023)

Publikationen von Gehaltsdaten

Stadion, M. et al. (2023): Corrigendum to "The first German total diet study (BfR MEAL Study) confirms highest levels of dioxins and dioxin-like polychlorinated biphenyls in foods of animal origin title of article". Food Chemistry X, 16, 100459.

Schendel, S. et al. (2022): Results of the BfR MEAL Study: Highest levels of retinol found in animal livers and of β -carotene in yellow-orange and green leafy vegetables. *Food Chemistry* X, 16, 100458.

Stadion, M. et al. (2022): The first German total diet study (BfR MEAL Study) confirms highest levels of dioxins and dioxin-like polychlorinated biphenyls in foods of animal origin. *Food Chemistry* X, 16, 100459.

Fechner, C. et al. (2022): Results of the BfR MEAL Study: In Germany, mercury is mostly contained in fish and seafood while cadmium, lead, and nickel are present in a broad spectrum of foods. *Food Chemistry X*, 14, 100326.

Schwerbel, K. et al. (2022): Results of the BfR MEAL Study: The food type has a stronger impact on calcium, potassium and phosphorus levels than factors such as seasonality, regionality and type of production. *Food Chemistry* X, 13.

Hackethal, C. et al. (2021): Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study). *Food Chemistry* 346.

Ptok, S. et al. (2020): Cadmium und Blei in Lebensmitteln expositionsrelevanter Lebensmittelgruppen – Ergebnisse der BfR-MEAL-Studie. *14. DGE-Ernährungsbericht* 142–179.

Publikationen von auf BfR-MEAL-Daten basierenden Expositionsschätzungen

Kolbaum, A. E. et al. (2023). Long-term dietary exposure to copper in the population in Germany – Results from the BfR MEAL study. *Food and Chemical Toxicology* 176, 113759.

Hackethal, C. et al. (2023): Chronic dietary exposure to total arsenic, inorganic arsenic and water-soluble organic arsenic species based on results of the first German total diet study. Science of the Total Environment 859, 160261.

Sarvan, I. et al. (2021): Exposure Assessment of methylmercury in samples of the BfR MEAL Study. Food and Chemical Toxicology 149.

Publikationen zur Methodik der Studie

Hackethal, C. et al. (2023): Filling data gaps to refine exposure assessments by consideration of specific consumer behaviour. *Deutsche Lebensmittel-Rundschau*, ZKZ9982:227-288.

Kolbaum, A. E. et al. (2023): Reusability of Germany's total diet study food list upon availability of new food consumption data – comparison of three update strategies. *Journal of Exposure Science & Environmental Epidemiology*.

Kolbaum, A. E. et al. (2022): Collection of occurrence data in foods – The value of the BfR MEAL study in addition to the national monitoring for dietary exposure assessment. *Food Chemistry* X, 13, 100240.

Stehfest, S., Sarvan, I., Greiner, M. (2021): Die BfR-MEAL-Studie. Lebensmittelchemie 2/2021, 59-62.

Bürgelt, M., Ptok, S., Greiner, M., & Lindtner, O. (2019). Die BfR-MEAL-Studie: Was im Essen steckt. *pädiatrische praxis* 91, 359–367.

Bürgelt, M., Ptok, S., Greiner, M., & Lindtner, O. (2018). Die BfR-MEAL-Studie: Was im Essen steckt. *tägliche praxis* 61, 171-179.

Bürgelt, M., Ptok, S., Greiner, M., & Lindtner, O. (2018). Die BfR-MEAL-Studie: Was im Essen steckt. *internistische praxis* 60, 1–9.

Sarvan, I., Bürgelt, M., Lindtner, O., & Greiner, M. (2017). Expositionsschätzung von Stoffen in Lebensmitteln: Die BfR-MEAL-Studie – die erste Total-Diet-Studie in Deutschland. *Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz* 60, 689–696.

Bürgelt, M., Sarvan, I., Greiner, M., & Lindtner, O. (2016). Was im Essen steckt – die MEAL-Studie des Bundesinstituts für Risikobewertung. *UMID: Umwelt und Mensch – Informationsdienst* 2, 38–43.

Bürgelt, M., Sarvan, I., Greiner, M., & Lindtner, O. (2016). Was im Essen steckt – die BfR-MEAL-Studie. DGEInfo 10, 146–150

Veröffentlichte BfR-Stellungnahmen und BfR-Mitteilungen

BfR (2022): Nickel: Schätzung der langfristigen Aufnahme über Lebensmittel auf Grundlage der BfR-MEAL-Studie. Mitteilung Nr. 033/2022 des BfR vom 22.11.2022

BfR (2023): Alternativen zu Zucker: Wie viel Süßungsmittel steckt in Erfrischungsgetränken? Stellungnahme Nr. 006/2023 des BfR vom 07.02 2023.

BfR (2022): Exposition gegenüber ndl-PCB und dl-PCB über Lebensmittel aus der BfR-MEAL-Studie. Erlass des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV).

BfR (2022): Rückläufige Jodzufuhr in der Bevölkerung: Modellszenarien zur Verbesserung der Jodaufnahme bei Kindern und Jugendlichen. Stellungnahme Nr. 026/2022 des BfR vom 17. Oktober 2022.

BfR (2021): Rückläufige Jodzufuhr in der Bevölkerung: Modellszenarien zur Verbesserung der Jodaufnahme. Stellungnahme Nr. 005/2021 des BfR vom 9. Februar 2021.

BfR (2018): Nicht-dioxinähnliche PCB sind in Lebens- und Futtermitteln unerwünscht. Mitteilung des BfR vom 3. Dezember 2018.

Sonstige Publikationen

BfR (2022): Kochen für die Wissenschaft. BfR2GO 01/2022, 12

BMEL (2021): Wissenschaft für den gesundheitlichen Verbraucherschutz. Forschungsfelder 01/2016, 20–21.1

BMEL (2021): Schwer verdaulich. Forschungsfelder 02/2021, 25.[1]

BfR (2020): Spuren von Jod. BfR2GO 02/2020, 4

BfR (2019): Das BfR als Topfgucker. BfR2GO 01/2019, 28

BMEL (2019): Innere Werte. Forschungsfelder 03/2019, 16-17.1

Bürgelt, M., & Kaiser, A. (2017). An die Töpfe, fertig, los! In *BfR MAGAZIN – Die Mitarbeiterzeitschrift des BfR* 1, 4–5 (online nicht verfügbar)

BfR (2017): BfR-MEAL-Studie. BfR2GO 01/2017, 4-5

11.4 Bereitstellung der Daten und Public Use File

Neben wissenschaftlichen Publikationen werden die Ergebnisse der BfR-MEAL-Studie sukzessive als Public Use File unentgeltlich bereitgestellt. Der Download über die Website des BfR stellt die Daten im Tabellenformat zur Verfügung (https://www.bfr-meal-stu-die.de/de/public-use-file.html). Die Daten enthalten neben Informationen zu den Gehalten auch ergänzende Informationen zur Datenstruktur.

Die Kommunikation und Publikation von TDS-Daten ist angesichts der Komplexität der Meta-Daten einerseits und den allgemeinen Anforderungen laut FAIR-Kriterien andererseits eine besondere Herausforderung. Das BfR entwickelt im Rahmen einer internationalen Kooperation zeitgemäße Lösungen zur Erschließung und Bereitstellung von TDS-Ergebnissen (FNS-Cloud Projekt 863059; FoPro+: BfR-EXPO-08-60-0103-01.P540). Durch die Ausrichtung dieser Systeme an die BfR-MEAL-Studie werden hierbei international Maßstäbe gesetzt.

11.5 Veranstaltungen

Im Januar 2023 wurden mit einem Stand auf der Internationalen Grünen Woche den Besucherinnen und Besuchern anhand zahlreicher Attraktionen die verschiedenen Schritte, Ziele und Ergebnisse der BfR-MEAL-Studie nahegebracht. Im Rahmen einer Live-Kochshow mit TV-Koch Tino Schmidt gaben für die BfR-MEAL-Studie tätige Wissenschaftlerinnen und Wissenschaftler ausgewählte Ergebnisse der Studie als alltagstaugliche Hinweise für Verbraucherinnen und Verbraucher weiter.

Bereits in den Jahren zuvor wurden auf der Internationalen Grünen Woche Stakeholder über verschiedene Formate erreicht:

- Interview aus der Studienküche im Rahmen der ersten digitalen IGW (2021)
- Live-Schaltung in die Studienküche im Rahmen des BMEL-Bühnenprogramms (2020)
- Satellitenstand zur BfR-MEAL-Studie (2017)
- BfR-Forum im Rahmen der Internationalen Grünen Woche (2016)

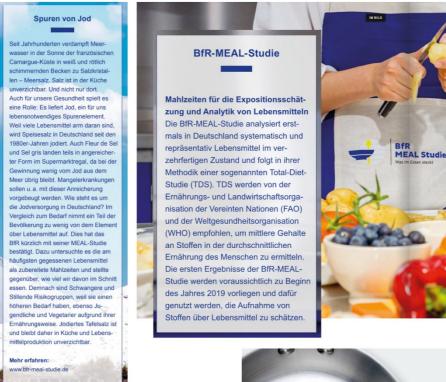
Im Oktober 2022 fanden eine Konferenz (6th International Workshop on Total Diet Studies) und ein Tutorial zu TDS statt, die gemeinsam mit der WHO organisiert und durchgeführt wurden. Im Rahmen der Konferenz wurden aktuelle Entwicklungen und Ergebnisse verschiedener TDS vorgestellt und diskutiert. Dem Event vorausgegangen war ein von WHO und BfR organisiertes, viertägiges Online-Tutorial zur Planung und Durchführung von TDS. 20 Vertreterinnen und Vertreter von Ländern, die künftig eigene nationale TDS durchführen wollen, nahmen daran teil und konnten detaillierte Kenntnisse zur Durchführung von TDS erlangen.

Nach der Einrichtung der MEAL-Studienküche erfolgte im Herbst 2016 die offizielle Kücheneröffnung unter Anwesenheit der parlamentarischen Staatssekretärin, Mitgliedern des Bundestages und einer Reihe weiterer Gäste. Unter dem Motto "An die Töpfe, fertig, los" wurde damit die Feldphase der BfR-MEAL-Studie eingeläutet und die Studie mit dem Ziel der breiten Information der Fachöffentlichkeit insbesondere in Bezug auf potenzielle Kooperationen vorgestellt.

Im Herbst 2015 fand auf Einladung des BfR eine erste Öffentliche Informationsplattform (Ö-fIP) statt, während der interessierte Stakeholder der BfR-MEAL-Studie in Dialog traten und sich über Kooperationsmöglichkeiten informieren und austauschen konnten.

11.6 Online-Kommunikation

Informationen zur BfR-MEAL-Studie sind über eine eigene Webseite verfügbar. Unter der Domain "www.bfr-meal-studie.de" können zielgruppenspezifische Informationen zur Studie für ein wissenschaftliches Publikum, für Regierungsorganisationen und Verbände, Presse und die breite Öffentlichkeit abgerufen werden. Während der beiden Feldphasen informierte ein Newsletter Interessierte ergänzend zu aktuellen Entwicklungen, Veranstaltungen und Studienergebnissen.


Über die Studien-Webseite erfolgt auch der kostenfreie und öffentlich zugängliche Zugriff auf eine Datenbank mit den Gehaltsdaten der Studie (Public Use File).

Aktuelle Informationen zur BfR-MEAL-Studie veröffentlicht das BfR zudem regelmäßig in den sozialen Medien. Um eine hohe Reichweite zu erreichen, werden dafür die jeweiligen BfR-Accounts, z. B. auf Twitter, Instagram, Mastodon und LinkedIn, genutzt.

Das BfR hat zur BfR-MEAL-Studie einen virtuellen Rundgang erstellt. In einer 360-Grad-Tour haben Interessierte die Möglichkeit, sich individuell und intuitiv am PC, Tablet oder Smartphone in den Studienräumen umzuschauen. In kurzen Videos, Infografiken, Texten und Bildern werden Ziele, die Studienmethodik und der Ablauf der Studie erläutert. Der virtuelle Rundgang ist auf der Studien-Webseite abrufbar.

11.7 Print- und Multi-Media-Kommunikation

Das BfR begleitet die Studie mit regelmäßiger Pressearbeit in Form von Presseinformationen, Mitteilungen und FAQs. Darüber hinaus dienen Artikel im BfR-Wissenschaftsmagazin BfR2GO (vergl. Abbildung 7) sowie eigene Publikationen wie Flyer, Broschüren und Infografiken politischen Akteuren, Verbänden und der interessierten Öffentlichkeit als zielgruppenspezifische Kommunikationsformate beziehungsweise Einstiegsinformation. Eine Auswahl dieser Print-Formate steht im Pressebereich der Studien-Webseite zur Verfügung.

Kochen für die Wissenschaft

Die Identifizierung und Charakterisierung stofflicher Risiken sind Teil der Bewertungsarbeit des BfR. Zentral ist die Frage, inwiefern wir potenziell gesundheitsschädlichen Stoffen ausgesetzt sind. In welchen Mengen nehmen wir im Durchschnitt unerwünschte, aber auch erwünschte Stoffe über unsere Nahrung auf? Sind bestimmte Lebensmittel ie nach Saison, Anbauweise oder Region unterschiedlich stark belastet? Welche gesundheitlichen Auswirkungen hat die Art der Zubereitung auf die Lebensmittel? Antworten liefert die im Jahr 2015 gestartete BfR-MEAL-Studie (Mahlzeiten für die Expositionsschätzung und Analytik von Lebensmitteln) – die erste Total-Diet-Studie Deutschlands. Mithilfe dieser wissenschaftlichen Methode wird ermittelt, in welchen Konzentrationen Stoffe durchschnittlich in verzehrfertigen Lebensmitteln vorhanden sind. Ziel ist, für das deutsche Ernährungsverhalten repräsentative Gehaltsdaten zu erhalten und Lebensmittelrisiken besser zu erkennen und zu quantifizieren. Das Studienteam kaufte dafür im Laufe der Studie rund 60.000 Lebensmittel ein, bereitete sie zu und analysiert sie auf knapp 300 Stoffe, darunter Mykotoxine, Pflanzenschutzmittel-Rückstände und Nährstoffe. Damit ist die BfR-MEAL-Studie eine im weltweiten Vergleich sehr umfangreiche Total-Diet-Studie.

Mehr erfahren: www.bfr-meal-studie.de



Abbildung 7: Zusammenschnitt der Beiträge in der BfR2GO zur BfR-MEAL-Studie

12 Budget und Kosten

Das bis Ende 2022 dem BfR zur Verfügung gestellte Gesamtbudget für die Durchführung der Studie beläuft sich auf 13.157.000 €. Bis Ende 2022 wurden von diesem Budget Mittel in Höhe von 10.785.000 € abgerufen. Für die Jahre 2023 und 2024 wurden weitere Mittel in Höhe von 452.000 € und 445.000 € genehmigt bzw. beantragt, um weiterführend bereits erhobene Daten zu plausibilisieren und diese wissenschaftlich zu publizieren. Somit werden bis Ende 2024 voraussichtlich Mittel in Höhe von 11.682.000 € verausgabt werden.

Von den bis einschließlich 2022 abgeflossenen Mitteln wurden 55 % für Personal (einschließlich Reisekosten) verwendet. Weitere 33 % der bis einschließlich 2022 abgeflossenen Mittel wurden für die Analysen der Proben genutzt (Abbildung 8). Für den Einkauf der Lebensmittel wurden 5 % verwendet und weitere 3 % für die Beschaffung von zwei Fahrzeugen und deren Ausstattung. Weitere 3 % der bis Ende 2022 abgeflossenen Mittel wurden für die Öffentlichkeitsarbeit ausgegeben; für IT-Dienstleistungen, insbesondere für Anpassungen der Dokumentationssoftware FoodCASE, wurden 1 % der Mittel verwendet.

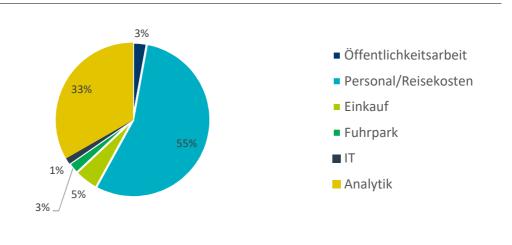


Abbildung 8: Kostenstruktur der BfR-MEAL-Studie bis Ende 2022 (%)

Insgesamt wurden 36 % der bis Ende 2022 genutzten Mittel an Dritte vergeben. Dies schließt vor allem die Analysen der Lebensmittelproben in externen Handelslaboren und Landesuntersuchungsämtern ein (71 % der Mittel für die Vergabe an Dritte) (Abbildung 9). Darüber hinaus wurde ca. ein Fünftel der Drittmittel für die Beschaffung von Marktdaten, die Nutzung von kommerziellen Produktdatenbanken und für die Beauftragung von Verbraucherstudien genutzt. Der Kostenpunkt "Sonstiges" schließt u. a. Kosten für die Wartung und Reparatur von Geräten und Fahrzeugen, Kosten für Kurierfahrten während des deutschlandweiten Einkaufs sowie Kosten für eine längerfristige externe Lagerung von Proben der Studie ein.

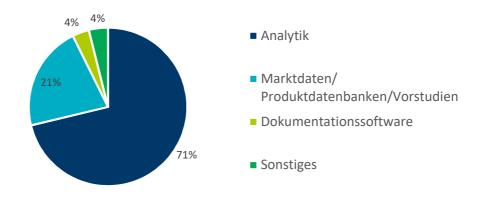


Abbildung 9: Kostenstruktur der verausgabten Mittel für die Vergabe an Dritte (%)

Für die Beschaffung von Marktdaten (ca. 5 %), die Nutzung einer Produktdatenbank (ca. 1 %) und die ergänzenden Verbraucherstudien (ca. 1 %) wurden insgesamt 8 % der Gesamtkosten aufgewendet.

13 Ausblick

Wie bereits im TDS-Exposure-Projekt aufgezeigt und in anderen Ländern umgesetzt (z. B. Korea, USA, Neuseeland, Frankreich), sind TDS von ihrer Methodik her geeignet, Veränderungen und Trends in den Gehalten von Stoffen in Lebensmitteln abzubilden, indem Lebensmittel in verschiedenen Zeiträumen eingekauft und daraus Proben hergestellt und untersucht werden.

Darüber hinaus können veränderte Verzehrgewohnheiten für zukünftige Expositionsschätzungen eine Ergänzung der Lebensmittelliste notwendig machen (vgl. Kolbaum et al., 2023). Mit der KiESEL-Studie des BfR und mit EsKiMo II liegen für Kinder und Jugendliche bereits aktualisierte Verzehrdaten vor, die perspektivisch auch durch aktuelle Daten für die erwachsene Bevölkerung ergänzt werden können. Somit könnte zukünftig in Deutschland (in Analogie zur französischen "Infant TDS") eine Erweiterung der BfR-MEAL-Studie durch eine Kinder-MEAL-Studie oder ähnliche ergänzende Module erfolgen, um veränderte Verzehrgewohnheiten bestimmter Altersgruppen zu berücksichtigen.

Kontinuierlich gelangen neue Stoffe in den Fokus der Risikobewertung und der Öffentlichkeit, die über die Erweiterung des Stoffspektrums in einer TDS berücksichtigt werden können.

Mit dem TDS-Ansatz können Gehaltsdaten effizient ergänzend zu Untersuchungen der Lebensmittelüberwachung bereitgestellt werden (vgl. Kolbaum et al., 2022). Insbesondere können Lebensmittel untersucht werden, die nicht im Lebensmittel-Monitoring berücksichtigt sind, sowie Stoffe, die bei der Zubereitung von Speisen entstehen.

⁹ https://www.anses.fr/en/content/infant-total-diet-study-itds

Besondere Bevölkerungsgruppen

Neben den bereits berücksichtigten Alters- und Geschlechtsgruppen können weiterführend Kombinationen von Stoffen und Lebensmitteln untersucht werden, die für besondere Risikogruppen oder ein besonderes Verzehrverhalten ausschlaggebend sind. Mögliche zu untersuchende Lebensmittel könnten sich beispielsweise auf folgende Bevölkerungsgruppen beziehen:

- Menschen mit vegetarischen oder veganer Ernährung (z. B. Fleischersatzprodukte) in Verknüpfung mit Verzehrerhebungen in COPLANT
- Menschen mit Migrationshintergrund
- Menschen mit Lebensmittelunverträglichkeiten oder -intoleranzen
- Berufsgruppen oder Menschen mit einem höheren Verzehr ausgesuchter Lebensmittel (z. B. Jäger und Angler)
- Menschen, die häufig Mahlzeiten aus der Gemeinschaftsverpflegung einnehmen (z. B. Senioren und Kinder)

Veränderung von Gehalten während der Verarbeitung im Haushalt

Die Gewichtsausbeute bei der küchentechnischen Verarbeitung und Zubereitung von Speisen kann durch Verarbeitungs- und Prozessfaktoren beschrieben werden.

Diese Faktoren können wichtige Datenlücken bei der Risikobewertung von Stoffen schließen. Ebenso könnten in MEAL abgeleitete Faktoren in Datenbanken des BfR oder der EFSA zur Umrechnung von verzehrfertigen in unverarbeitete Lebensmittel genutzt werden oder Nährstoffberechnungen im Bundeslebensmittelschlüssel des MRI aktualisieren.

Internationale Zusammenarbeit

Mit dem Design der BfR-MEAL-Studie wurde die Methodik von TDS weiter an die Bedürfnisse der Risikobewertung angepasst. Hierzu gehört eine verbesserte, repräsentative Darstellung des Verbraucherverhaltens während der Zubereitung, die Fokussierung auf bewertungsrelevante Stoffe sowie die Optimierung von logistischen Abläufen in Hinblick auf prioritäre Bewertungsfragen. Das BfR genießt durch den Aufbau einer zukunftsweisenden TDS internationale Anerkennung. Das MEAL-Studienzentrum ist daher für die Wahrnehmung der Aufgaben eines internationalen Kompetenzzentrums für TDS prädestiniert. Das Studienzentrum steht dabei im engen Austausch mit der WHO und EFSA, fördert die bereits im EU-Projekt "TDS-Exposure" ausgearbeiteten Strategien zur methodischen Harmonisierung und Weiterentwicklung von TDS und steht weltweit im Austausch mit interessierten Wissenschaftlerinnen und Wissenschaftlern.

14 Literatur

Aproxima, https://www.aproxima.de/, zuletzt besucht am 12.07.2023

Bauer, J.I., Gross, M., Gottschalk, C., Usleber, E. (2016). Investigations on the occurrence of mycotoxins in beer. *Food Control* 63, 135–139.

Bihlmeier, A. (2021). Optimierung von Analysemethoden zur Bestimmung der Gehalte von Per- und Polyfluoralkylsubstanzen in Proben der BfR-MEAL-Studie, Masterarbeit, Institut für Lebensmittelchemie und Lebensmittelbiotechnologie, Justus-Liebig-Universität Gießen.

Bürgelt, M., Ptok, S., Greiner, M., & Lindtner, O. (2019). Die BfR-MEAL-Studie: Was im Essen steckt. *Pädiatrische Praxis* 91, 359–367.

Bürgelt, M., Ptok, S., Greiner, M., & Lindtner, O. (2018). Die BfR-MEAL-Studie: Was im Essen steckt. *Tägliche Praxis* 61, 171–179.

Bürgelt, M., Ptok, S., Greiner, M., & Lindtner, O. (2018). Die BfR-MEAL-Studie: Was im Essen steckt. *Internistische Praxis* 60, 1–9.

Bürgelt, M., Sarvan, I., Greiner, M., & Lindtner, O. (2016). Was im Essen steckt – die MEAL-Studie des Bundesinstituts für Risikobewertung. *UMID: Umwelt und Mensch – Informations-dienst* 2, 38–43.

Bürgelt, M., Sarvan, I., Greiner, M., & Lindtner, O. (2016). Was im Essen steckt – die BfR-MEAL-Studie. *DGEInfo* 10, 146–150.

CEC (2001): Commission of the European Community. Report from the Commission on dietary food additive intake in the European Union. COM 542 final. Brussels (Belgium).

Demuth, I., Busl, L., Ehnle-Lossos, M., Elflein, A., Goos-Balling, E., Werner, R., Hoffmann, I. (2020). Ergebnisbericht Produktmonitoring 2019. Karlsruhe: Max Rubner-Institut.

Diouf, F., Berg, K., Ptok, S., Lindtner, O., Heinemeyer, G., & Heseker, H. (2014). German database on the occurrence of food additives: application for intake estimation of five food colours for toddlers and children. *Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment* 31(2), 197–206.

EFSA, European Food Safety Authority, FAO, Food and Agriculture Organization of the United Nations, & WHO, World Health Organization. (2011). Towards a harmonised Total Diet Study approach: A guidance document. *EFSA Journal* 9(11), 2450.

Europäische Kommission. (2014). EMPFEHLUNG DER KOMMISSION vom 3. März 2014 zur Überwachung auf Spuren bromierter Flammschutzmittel in Lebensmitteln. https://eurlex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L .2014.065.01.0039.01.ENG.

EU-Kommission (2010): Verordnung (EU) Nr. 257/2010 der Kommission vom 25. März 2010 zur Aufstellung eines Programms zur Neubewertung zugelassener Lebensmittelzusatzstoffe gemäß der Verordnung (EG) Nr. 1333/2008 des Europäischen Parlaments und des Rates über Lebensmittelzusatzstoffe. http://data.europa.eu/eli/reg/2010/257/oj.

GfK, https://www.gfk.com/de/home, zuletzt besucht am 12.07.2023

Fechner, C., Hackethal, C., Höpfner, T., Dietrich, J., Bloch, D., Lindtner, O., Sarvan, I. (2022): Results of the BfR MEAL Study: In Germany, mercury is mostly contained in fish and seafood

while cadmium, lead, and nickel are present in a broad spectrum of foods. *Food Chemistry* X 14, 100326.

Hackethal, C., Kirsch, F., Schwerbel, K., Kolbaum, A. E., Götte, S., Schwerdtle, T., Lindtner, O., Sarvan, I. (2023): Filling data gaps to refine exposure assessments by consideration of specific consumer behaviour. *Deutsche Lebensmittel-Rundschau*, ZKZ9982: 277-288.

Hackethal, C., Pabel, U., Jung, C., Schwerdtle, T., Lindtner, O. (2023): Chronic dietary exposure to total arsenic, inorganic arsenic and water-soluble organic arsenic species based on results of the first German total diet study. *Science of the Total Environment* 859, 160261.

Hackethal, C., Kopp, J.F., Sarvan, I., Schwerdtle, T., Lindtner, O. (2021): Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study). *Food Chemistry* 346.

Hausmann, B., Holtmannspötter, H. (2013). Erfassung von Antibiotikarückständen in ausgewählten Lebensmitteln tierischer Herkunft. In Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) (Ed.), Schriftenreihe Lebensmittelsicherheit in Bayern. Erlangen.

Heseker, H., Oepping, A., Vohmann, C. (2003). Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln (VELS). Paderborn DE: Universität Paderborn.

Kolbaum, A. E., Sarvan, I., Bakhiya, N., Spolders, M., Pieper, R., Schubert, J., Jung, C., Hackethal, C., Sieke, C., Grünewald, K.-H., Lindtner, O. (2023). Long-term dietary exposure to copper in the population in Germany – Results from the BfR MEAL study. *Food and Chemical Toxicology* 176, 113759.

Kolbaum, A. E., Ptok, S., Jung, C., Libuda, L., Lindtner, O. (2023). Reusability of Germany's total diet study food list upon availability of new food consumption data – Comparison of three update strategies. *Journal of Exposure Science & Environmental Epidemiology*.

Kolbaum, A. E., Jaeger, A., Ptok, S., Sarvan, I., Greiner, M., Lindtner, O. (2022). Collection of occurrence data in foods – The value of the BfR MEAL study in addition to the national monitoring for dietary exposure assessment. *Food Chemistry* X, 13, 100240.

Kolbaum AE, Berg K, Müller F, Kappenstein O, Lindtner O. (2019) Dietary exposure to elements from the German pilot total diet study (TDS). *Food Additives & Contaminants Part A*. 36(12):1822-1836.

Mitteilung Nr. 037/2018 des BfR vom 3. Dezember 2018 https://www.bfr.bund.de/cm/343/nicht-dioxinaehnliche-pcb-sind-in-lebens-und-futtermitteln-unerwuenscht.pdf

MRI. (2008). Nationale Verzehrsstudie II. Ergebnisbericht Teil 1. Die bundesweite Befragung zur Ernährung von Jugendlichen und Erwachsenen. Karlsruhe.

Ptok, S., Lindtner, O., Pabel, U., Hackethal, C., Berg, T., Greiner, M. (2020): Cadmium und Blei in Lebensmitteln expositionsrelevanter Lebensmittelgruppen – Ergebnisse der BfR-MEAL-Studie. *14. DGE-Ernährungsbericht* 142–179.

Sachse, B., Kolbaum, A. E., Ziegenhagen, R., Andres, S., Berg, K., Dusemund, B., Hirsch-Ernst, K. I., Kappenstein, O., Müller, F., Röhl, C., Lindtner, O., Lampen, A. (2019) Dietary Manganese Exposure in the Adult Population in Germany—What Does it Mean in Relation to Health Risks? *Molecular Nutrition and Food Research* 63, 16, 1900065.

Sarvan, I., Kolbaum, A. E., Pabel, U., Buhrke, T., Greiner, M., Lindtner, O. (2021): Exposure Assessment of methylmercury in samples of the BfR MEAL Study. *Food and Chemical Toxicology* 149.

Sarvan, I., Bürgelt, M., Lindtner, O., Greiner, M. (2017). Expositionsschätzung von Stoffen in Lebensmitteln: Die BfR-MEAL-Studie – die erste Total-Diet-Studie in Deutschland. *Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz* 60, 689–696.

Schendel, S., Berg, T., Scherfling, M., Drößer, C., Ptok, S., Weißenborn, A., Lindtner, O., Sarvan, I. (2022): Results of the BfR MEAL Study: Highest levels of retinol found in animal livers and of β -carotene in yellow-orange and green leafy vegetables. *Food Chemistry* X, 16, 100458.

Schwerbel, K., Tüngerthal, M, Nagl, B., Niemann, B., Drößer, C., Bergelt, S., Uhlig, K., Höpfner, T., Greiner M., Lindtner, O., Sarvan, I. (2022): Results of the BfR MEAL Study: The food type has a stronger impact on calcium, potassium and phosphorus levels than factors such as seasonality, regionality and type of production. *Food Chemistry* X, 13.

Stadion, M., Hackethal, C., Blume, K., Wobst, B., Abraham, K., Fechner, C., Lindtner, C., Sarvan, I. (2023): Corrigendum to "The first German total diet study (BfR MEAL Study) confirms highest levels of dioxins and dioxin-like polychlorinated biphenyls in foods of animal origin title of article". *Food Chemistry* X, 16, 100459.

Stadion, M., Hackethal, C., Blume, K., Wobst, B., Abraham, K., Fechner, C., Lindtner, C., Sarvan, I. (2022): The first German total diet study (BfR MEAL Study) confirms highest levels of dioxins and dioxin-like polychlorinated biphenyls in foods of animal origin. *Food Chemistry* X, 16, 100459.

Stehfest, S., Sarvan, I., Greiner, M. (2021): Die BfR-MEAL-Studie. *Lebensmittelchemie* 2/2021, 59–62.

Stellungnahme Nr. 006/2023 des BfR vom 07.02 2023: Alternativen zu Zucker: Wie viel Süßungsmittel steckt in Erfrischungsgetränken? https://doi.org/10.17590/20230207-072340

Stellungnahme Nr. 026/2022 des BfR vom 17. Oktober 2022: Rückläufige Jodzufuhr in der Bevölkerung: Modellszenarien zur Verbesserung der Jodaufnahme bei Kindern und Jugendlichen. https://doi.org/10.17590/20221017-144528

Stellungnahme Nr. 005/2021 des BfR vom 9. Februar 2021: Rückläufige Jodzufuhr in der Bevölkerung: Modellszenarien zur Verbesserung der Jodaufnahme bei Erwachsenen und Jugendlichen. https://www.bfr.bund.de/cm/343/ruecklaeufige-jodzufuhr-in-der-bevoelkerung-modellszenarien-zur-verbesserung-der-jodaufnahme.pdf

Tolmien, I. (2011): Validierung eines Multiuntersuchungsverfahrens zum Nachweis von Antibiotika in Fischen und Krebstieren, sowie Untersuchungen zur Rückstandssituation bei Fischen und Krebstieren in Aquakulturen. Dissertation, TiHo Hannover. DVG-Verlag, ISBN 978-3-86345-024-3.

Danksagung

Das BfR dankt allen Mitgliedern des internationalen Beirats für deren herausragendes Engagement in den Beiratstreffen und die wertvollen Empfehlungen, allen Mitgliedern der modulbegleitenden Expertengruppen für die Einbringung ihrer stoffspezifischen Expertise, der BLE für die Unterstützung bei der Vergabe an Dritte, dem BMEL für die Ermöglichung der Studie durch die Finanzierung sowie dem Studienteam der BfR-MEAL-Studie für ihr außerordentliches Engagement.

Anhang

A1 Stoffliste für die BfR-MEAL-Studie (Stand 2023)

		Elemente: Aluminium, Antimon, Arsen, Barium, Blei, Cadmium, Cobalt, Lithium, Methylquecksilber, Nickel, Nitrat, Quecksilber, Silber, Thallium, Vanadium, Zinn
°Cd.	Basismodul	Arsen-Spezies: anorganisches Arsen, Arsenobetain (AsB), Dimethylarsinsäure (DMA), Monomethylarsonsäure (MMA)
Pb Cr	(Elemente und Umweltkontaminanten)	Organische Zinnverbindungen: Tetrabutylzinn (TTBT), Tributylzinn (TBT), Dibutylzinn (DBT), Monobutylzinn (MBT), Triphenylzinn (TPT), Diphenylzinn (DPT), Monophenylzinn (MPT)
		Dioxine/Furane, dioxinähnliche polychlorierte Biphenyle (dl-PCB), nicht-dioxinähnliche polychlorierte Biphenyle (ndl-PCB)
		Polybromierte Diphenylether (PBDE)
	Perfluorierte Alkylsubstanzen (PFAS)	Perfluorsulfonsäuren, Perfluorcarbonsäuren
3	Mykotoxine	Aflatoxine, Alternaria-Toxine, Beauvericin, Citrinin, Enniatine, Ergotalkaloide, Fumonisine, Ochratoxin A, Patulin, Typ A Trichothecene, Typ B Trichothecene, Zearalenon
<u>*</u>	Prozesskontaminanten	Acrylamid, Glycidol, Polyzyklische aromatische Kohlenwasserstoffe (PAK), 2- und 3-MCPD-Gruppe
_		Benzoate: Benzoesäure, Calciumbenzoat, Kaliumbenzoat, Natriumbenzoat
	1.1	Nitrite: Kaliumnitrit, Natriumnitrit
(==)	Lebensmittel- zusatzstoffe	Sorbate: Kaliumsorbat, Sorbinsäure
		Sulfite: Calciumhydrogensulfit, Calciumsulfit, Kaliumhydrogensulfit, Kaliummetabisulfit, Natriumhydrogensulfit, Natriummetabisulfit, Natriumsulfit, Schwefeldioxid
4,0		Vitamine: Vitamin A (Retinol), Vitamin E (Tocopherole), Vitamin K1, Vitamin K2, β-Carotin, Folsäure
O	Nährstoffe	Mengenelemente: Calcium, Chlorid, Kalium, Magnesium, Natrium, Phosphor
		Spurenelemente: Chrom, Fluorid, Jod, Kupfer, Mangan, Molybdän, Selen, Zink
	Pflanzenschutz- mittelrückstände	Boscalid, Captan/Tetrahydrophthalimid, Chlorat, Chlormequat, Chlorpyrifos, Cyantraniliprol, Cypermethrin, Cyprodinil, Deltamethrin, Difenoconazol, Dimethoat, Fluopyram, Glyphosat/Aminomethyl phosphonsäure (AMPA), Hexachlorbenzol, Hexythiazox, Imazalii, Indoxacarb, Iprodion, Lambda-Cyhalothrin, Myclobutanil, Omethoat, Perchlorat, Pirimicarb, Pirimicarb-desmethyl, Pyraclostrobin, Pyrimethanil, Spinosad, Thiabendazol, Thiacloprid, Thioharnstoffe (ETU/PTU), Triazole, Triflumuron
		Aminoglycoside: Dihydrostreptomycin, Gentamycin, Neomycin, Spectinomycin, Streptomycin
		Amphenicole: Florfenicol
		Chinolone: Ciprofloxacin, Danofloxacin, Enrofloxacin, Marbofloxacin
		Diamino-Pyrimidin-Derivate: Trimethoprim
D	Pharmakologisch	Kokzidiostatika: Dinitrocarbanilide, Lasalocid, Maduramycin, Monensin, Narasin
	aktive Substanzen	Makrolide: Erythromycin, Gamithromycin, Tildipirosin, Tilmicosin, Tulathromycin, Tylosin
		Penicilline: Amoxicillin, Benzylpenicillin
		Sulfonamide: Sulfadiazin, Sulfadimethoxin, Sulfadimidin, Sulfadoxin, Sulfathiazol
		Tetracycline: Chlortetracyclin, Doxycyclin, Epi-Chlortetracyclin, Epi-Tetracyclin, Epi-Oxytetracyclin, Oxytetracyclin, Tetracyclin
		Constitute Microsoft Hobbinson and the Microsoft Hobbinson Anna (MOCI)
<u> </u>		Gesattigte Mineraloikonienwasserstolle (MOSH), aromatische Mineraloikonienwasserstolle (MOSH)
	Aus Lebensmittel- kontaktmaterialien migrierende Stoffe	Gesättigte Mineralölkohlenwasserstoffe (MOSH), aromatische Mineralölkohlenwasserstoffe (MOAH) Weichmacher

A2 Übersicht zu verwendeten Analysemethoden

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
MOSH >C10-≤C16	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOSH >C16-≤C20	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOSH >C20-≤C25	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOSH >C25-≤C35	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOSH >C20-≤C35	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOSH >C20-≤C40	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOSH >C35-≤C50	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	Bicyclohexyl	Handels- labor
MOAH >C16-≤C25	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	ТВВ	Handels- labor
MOAH >C25-≤C35	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	ТВВ	Handels- labor
MOAH >C10-≤C35	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	ТВВ	Handels- labor
MOAH >C35-≤C50	MOSH/ MOAH	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-GC-FID	22	ТВВ	Handels- labor
Di-propyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BP-D5	intern
Di-n-butyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Di-iso-butyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Bis(2-methoxyethyl) phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEEP-D4	intern
Di-n-pentyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHP-D4	intern
N-pentyl-isopentylph- thalat	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Butylbenzyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BBP-D4	intern
Di-cyclohexyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DCHP-D4	intern
Di-hexyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHP-D4	intern
Bis(4-methylpen- tyl)phthalate [Di-iso-]hexyl phthalate]	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BBP-D4	intern
Di-iso-heptyl Phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHP-D4	intern

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
Di-n-heptyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BBP-D4	intern
Bis(2-ethylhexyl) terephthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS; LC- MS/MS	36	IS DEHA-D8	intern
Di-n-octyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNNP-D4	intern
Di(butoxyethyl) phtha- late	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BBP-D4	intern
Tris(2-butoxyethyl) phosphate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEEP-D4	intern
Di-n-decyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNDP-D4	intern
Di-phenyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DCHP-D4	intern
Diethyl succinate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DES-D4	intern
Glycerol triacetate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS TRIACETIN-D5	intern
Diisobutyl adipate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
2,2,4-Trimethyl-1,3-pentanediol-diisobutyrate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4; IS DNBP-D4	intern
Dibutyl sebacate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Triethyl 2-acetylcitrate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4	intern
Bis(2-ethylhexyl)adipate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHA-D8	intern
Bis(2-ethylhexyl) se- bacate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHA-D8	intern
Tributyl 2-acetylcitrate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Tris(2-ethylhexyl)trimel- litate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNDP-D4	intern
Benzophenone	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BP-D5	intern
Tributyl phosphate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4; IS DEHA-D8	intern
Erucamide	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS OEA-D4	intern
Di-propylheptyl phtha- late	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHA-D8	intern
N-Oleoylethanolamide	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS OEA-D4	intern

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
tert-Butylphenyl diphe- nyl phosphate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNNP-D4	intern
Di-ethylhexyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHP-D4	intern
Oleamide	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS OEA-D4	intern
Di(2-Ethylhexyl)maleate) [Dioctyl maleate]	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHA-D8	intern
Diisopropyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4	intern
Di-n-nonyl Phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNNP-D4	intern
Bis(4-methyl-2-pen- tyl)phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Di-ethoxyethyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEEP-D4	intern
Bis(2-ethylhexyl) Azelate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHP-D4	intern
Diethyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4	intern
Diethoxyethylphthalat	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS BBP-D4	intern
Bis(2-ethylhexyl) isoph- thalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHP-D4	intern
Triisobutyl phosphate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4; IS DNBP-D4	intern
Diisopentyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Di-n-octyl sebacate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHA-D8	intern
Dimethyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4	intern
Tris-2-ethylhexylphos- phat	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DEHA-D8	intern
Diallyl Phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DAP-D4	intern
n-Ethyl-4/2-methyl-ben- zenesulfonamide	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS/MS	36	IS DNBP-D4	intern
Di-iso-nonyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern
Di-iso-decyl phthalate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern
Bis(7-methyloctyl) cyclo- hexane-1,2-dicar- boxylate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
Di-iso-nonyl adipate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern
Diisodecyl adipate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern
Diisodecyl azelate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern
Diisoctyl azelate	Weichmacher	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	LC-MS/MS	36	IS DINCH-D4	intern
NIAS	NIAS	Aus Lebensmittelkon- taktmaterialien migrie- rende Stoffe	GC-MS	37	D3 2,4 Dime- thylphenol 3,5,6; D18 2,4 Di-tert-bu- tylphenol	sonstiges Forschungs- institut
Aluminium	Aluminium	Basismodul	ICP-OES	2	Yttrium	Handels- labor
Antimon	Antimon	Basismodul	ICP-MS	1	Indium	Handels- labor
Arsen	Arsen & Arsen- speziationen	Basismodul	ICP-MS	1	Niob	Handels- labor
anorg. Arsen	Arsen & Arsen- speziationen	Basismodul	HPLC-ICP- MS/MS	8	/	sonstiges Forschungs- institut
Arsenobetain	Arsen & Arsen- speziationen	Basismodul	HPLC-ICP- MS/MS	8	/	sonstiges Forschungs- institut
Dimethylarsinsäure	Arsen & Arsen- speziationen	Basismodul	HPLC-ICP- MS/MS	8	/	sonstiges Forschungs- institut
Monomehtylarsonsäure	Arsen & Arsen- speziationen	Basismodul	HPLC-ICP- MS/MS	8	/	sonstiges Forschungs- institut
Barium	Barium	Basismodul	ICP-MS	1	Indium	Handels- labor
Blei	Blei	Basismodul	ICP-MS	1	Rhenium	Handels- labor
Cadmium	Cadmium	Basismodul	ICP-MS	1	Niob	Handels- labor
Cobalt	Cobalt	Basismodul	ICP-MS	1	Indium	Handels- labor
Lithium	Lithium	Basismodul	ICP-MS	1	Niob	Handels- labor
Methylquecksilber	Methylqueck- silber	Basismodul	ICP-MS	9	Iridium	Handels- labor
Nickel	Nickel	Basismodul	ICP-MS	1	Niob	Handels- labor
Quecksilber	Quecksilber	Basismodul	Feststoffanaly- sator	4	/	Handels- labor
Silber	Silber	Basismodul	ICP-MS		Indium	Handels- labor
Thallium	Thallium	Basismodul	ICP-MS	1	Rhenium	Handels- labor
Vanadium	Vanadium	Basismodul	ICP-MS	1	Niob	Handels- labor
Zinn	Zinn	Basismodul	ICP-MS	1	Rhodium	Handels- labor
Nitrat	Nitrat	Basismodul	Enzymatisch	6	1	Handels- labor
2,3,7,8-TeCDD	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
1,2,3,7,8-PeCDD	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
1,2,3,4,7,8-HxCDD	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu- chungsamt
1,2,3,6,7,8-HxCDD	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
1,2,3,7,8,9-HxCDD	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
1,2,3,4,6,7,8-HpCDD	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
00050 : 11 111	D: : 0 !!		00 1101 10		10.0	chungsamt
OCDF Octachlordibenzo-	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
furan	PCBs					tersu-
2 2 7 0 TaCDE	Diavina 9 dl	Dasismadul	CC LIDIAC		13-C-markiert	chungsamt
2,3,7,8-TeCDF	Dioxine & dl-	Basismodul	GC-HRMS	/	13-C-markiert	Landesun-
	PCBs					tersu-
1,2,3,7,8-PeCDF	Dioxine & dl-	Basismodul	GC-HRMS		13-C-markiert	chungsamt Landesun-
1,2,3,7,6-1 6001	PCBs	Dasisilloudi	GC-HIMIVIS	,	15-C-markier	tersu-
	. 003					chungsamt
2,3,4,7,8-PeCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
,, .,, ,0 : 000:	PCBs	200.01110001	50 1111115	,	armert	tersu-
	- -					chungsamt
1,2,3,4,7,8-HxCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
1,2,3,6,7,8-HxCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
2,3,4,6,7,8-HxCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
1,2,3,7,8,9-HxCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
1,2,3,4,6,7,8-HpCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
1,2,3,4,7,8,9-HpCDF	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
OCDD Ostaskia ulikasa	D' ' 0 -II	Davis and I	CC LIDNAC		42.0	chungsamt
OCDD Octachlordiben-	Dioxine & dl-	Basismodul	GC-HRMS	/	13-C-markiert	Landesun-
zodioxin	PCBs					tersu-
PCB 77	Dioxine & dl-	Basismodul	GC-HRMS		13-C-markiert	chungsamt Landesun-
PCD //	PCBs	Dasisiiiouui	GC-HKIVIS	,	15-C-IIIai Kiei t	tersu-
	FCBS					chungsamt
PCB 81	Dioxine & dl-	Basismodul	GC-HRMS		13-C-markiert	Landesun-
. CD 01	PCBs	Dasisificadi	COLIMINA	,	13-C-IIIai NICI L	tersu-
	. 003					chungsamt
PCB 126	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs	200.0	22 1111113	,	0	tersu-
						chungsamt
PCB 169	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
PCB 105	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
						chungsamt
PCB 114	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-
		<u></u>				chungsamt
PCB 118	Dioxine & dl-	Basismodul	GC-HRMS	7	13-C-markiert	Landesun-
	PCBs					tersu-

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
PCB 123	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 156	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu-
PCB 157	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	chungsamt Landesun- tersu-
PCB 167	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	chungsamt Landesun- tersu- chungsamt
PCB 189	Dioxine & dl- PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 28	ndl-PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 52	ndl-PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 101	ndl-PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 138	ndl-PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 153	ndl-PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
PCB 180	ndl-PCBs	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 28 2,4,4´-Tri- bromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 49 2,2',4,5'-Tetra- bromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 47 2,2′,4,4′-Tetra- bromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 100 2,2',4,4',6-Pentabromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 99 2,2′,4,4′,5-Pentabromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 154 2,2′,4,4′,5,6- Hexabromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu-
BDE 153 2,2′,4,4′,5,5′- Hexabromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	chungsamt Landesun- tersu- chungsamt
BDE 138 2,2',3,4,4',5'- Hexabromdiphenylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 183 2,2',3,4,4',5',6- Heptabromdiphe- nylether	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
BDE 209 2,2′,3,3′,4,4′,5,5′,6,6′- Decabromdiphenyle	PBDE	Basismodul	GC-HRMS	7	13-C-markiert	Landesun- tersu- chungsamt
Monobutylzinn (MBT)	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d9-MBT	Handels- labor

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
Monobutylzinn (MBT) - Sn	Organische Zinnverbin-	Basismodul	GC-MS	10	d9-MBT	Handels- labor
Dibutylzinn (DBT)	dungen Organische Zinnverbin-	Basismodul	GC-MS	10	d27-TBT	Handels- labor
Dibutylzinn (DBT) - Sn	dungen Organische Zinnverbin-	Basismodul	GC-MS	10	d27-TBT	Handels- labor
Tributylzinn (TBT)	dungen Organische	Basismodul	GC-MS	10	d27-TBT	Handels-
	Zinnverbin- dungen					labor
Tributylzinn (TBT) - Sn	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d27-TBT	Handels- labor
Tetrabutylzinn (TTBT)	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d36-TTBT	Handels- labor
Tetrabutylzinn (TTBT) - Sn	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d36-TTBT	Handels- labor
Monophenylzinn (MPhT)	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d5-MPhT	Handels- labor
Monophenylzinn - Sn	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d5-MPhT	Handels- labor
Diphenylzinn (DPhT)	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d5-MPhT	Handels- labor
Diphenylzinn (DPhT) - Sn	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d5-MPhT	Handels- labor
Triphenylzinn (TPhT)	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d15-TPhT	Handels- labor
Triphenylzinn (TPhT) - Sn	Organische Zinnverbin- dungen	Basismodul	GC-MS	10	d15-TPhT	Handels- labor
Acesulfam K	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS	62	Acesulfam K-d4	Handels- labor
Advantam	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS	62	Advantam-d3	Handels- labor
Aspartam	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS	62	Aspartam-d6	Handels- labor
Cyclamat	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS	62	Cyclamat-d11	Handels- labor
Neohesperidin-DC	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS		Neohesperidin-DC- d3	Handels- labor
Neotam	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS		Neotam-d3	Handels- labor
Saccharin	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS		Saccharin-d4	Handels- labor
Rebaudiosid A	Süßungsmittel	Lebensmittelzusatz- stoffe	LC-MS/MS	62		Handels- labor
Steviosid Sucralose	Süßungsmittel Süßungsmittel	Lebensmittelzusatz- stoffe Lebensmittelzusatz-	LC-MS/MS	62	Sucralose-d6	Handels- labor Handels-
Sucraiose Benzoate	Benzoate	stoffe Lebensmittelzusatz-	HPLC-UV	49		labor Handels-
Sorbate	Sorbate	stoffe Lebensmittelzusatz-	HPLC-UV	48		labor Handels-
Sulfite	Sulfite	stoffe Lebensmittelzusatz-	enzyma-	50		labor Handels-
Nitrite	Nitrite	stoffe Lebensmittelzusatz-	tisch/destillativ Enzymatisch/IC	51		labor Handels-
		stoffe				labor

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
						labor
Aflatoxin B2	Aflatoxine	Mykotoxine	IAC-LC-FLD	19	Aufdotiert	Handels- labor
Aflatoxin G1	Aflatoxine	Mykotoxine	IAC-LC-FLD	19	Aufdotiert	Handels- labor
Aflatoxin G2	Aflatoxine	Mykotoxine	IAC-LC-FLD	19	Aufdotiert	Handels- labor
Aflatoxin M1	Aflatoxine	Mykotoxine	IAC-LC-FLD	19	Aufdotiert	Handels- labor
Ochratoxin A	Ochratoxin A	Mykotoxine	IAC-LC-FLD	19	Aufdotiert	Handels- labor
Patulin	Patulin	Mykotoxine	LC-MS/MS	19	internen Standard (13-C Patulin)	Handels- labor
Deoxynivalenol (DON)	Deoxyni- valenol (DON)	Mykotoxine	LC-MS/MS	19	13-C-markierten internen Standards	Handels- labor
Zearalenon	Zearalenon	Mykotoxine	LC-MS/MS	19	interner Standard Zearalanon	Handels- labor
Fumonisin B1	Fumonisine	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Fumonisin B2	Fumonisine	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Beauvericin	Beauvericin	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Citrinin	Citrinin	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Enniatin A	Enniatine	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Enniatin A1	Enniatine	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Enniatin B	Enniatine	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Enniatin B1	Enniatine	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
(alpha + beta)-Ergocryp- tin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
(alpha + beta)-Ergocryp- tinin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergocornin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergocorninin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergocristin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergocristinin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergometrin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergometrinin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergosin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergosinin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergotamin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Ergotaminin	Ergotalkaloide	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Alternariol	Alternaria-To- xine	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
Alternariol Monome- thylether	Alternaria-To- xine	Mykotoxine	LC-MS/MS	20	Aufdotiert	Handels- labor
HT-2 Toxin	T-2 und HT-2	Mykotoxine	LC-MS/MS	19	13-C-markierten internen Standards	Handels- labor

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
T-2 Toxin	T-2 und HT-2	Mykotoxine	LC-MS/MS	19	13-C-markierten internen Standards	Handels- labor
Diacetoxyscirpenol	Diacetoxyscir- penol	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Nivalenol	Nivalenol	Mykotoxine	LC-MS/MS	19	13-C-markierten internen Standards	Handels- labor
3-Acetyl-Deoxynivalenol	3-Acetyl-Deo- xynivalenol	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
15-Acetyl-Deoxyni- valenol	15-Acetyl-Deo- xynivalenol	Mykotoxine	LC-MS/MS	19	Aufdotiert	Handels- labor
Vitamin A (Retinol)	Vitamin A	Nährstoffe	HPLC-FLD	13	/	Handels- labor
Vitamin A (β-Carotin)	Vitamin A	Nährstoffe	HPLC-DAD	13	/	Handels- labor
Vitamin E (α-, β-, γ-, δ- Tocopherol)	Vitamin E	Nährstoffe	HPLC-FLD	13	/	Handels- labor
Vitamin K1	Vitamin K1	Nährstoffe	HPLC-FLD	11	/	Handels- labor
Vitamin K2 (Menachinon 4)	Vitamin K2	Nährstoffe	HPLC-MS/MS	12	Menachinon 7 / Menadion (Vitamin K3)	Handels- labor
Folsäure	Folsäure	Nährstoffe	Mikrobiologi- sche Bestim- mung	11	/	Handels- labor
Calcium	Calcium	Nährstoffe	ICP-MS	16	Indium	Handels- labor
Magnesium	Magnesium	Nährstoffe	ICP-MS	16	Indium	Handels- labor
Chlorid	Chlorid	Nährstoffe	Titration, IC	17	/	Handels- labor
Kalium	Kalium	Nährstoffe	ICP-MS	16	Indium	Handels- labor
Natrium	Natrium	Nährstoffe	ICP-MS	16	Indium	Handelsla bor
Fluorid	Fluorid	Nährstoffe	Potentiometri- sche Bestim- mung/Ionense- lektive Elekt- rode	17	/	Handels- labor
Selen	Selen	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Chrom	Chrom	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Jod	Jod	Nährstoffe	ICP-MS	1	Tellur	Handels- labor
Kupfer	Kupfer	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Mangan	Mangan	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Molybdän	Molybdän	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Phosphor	Phosphor	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Zink	Zink	Nährstoffe	ICP-MS	1	Niob	Handels- labor
Glyphosat	Glyphosat/ AMPA	Pestizide	LC-MS/MS	40	Glyphosate 1,2- 13C2 15N	Handels- labor
Aminometyhlphosphon- säure (AMPA)	Glyphosat/ AMPA	Pestizide	LC-MS/MS	40	Aminomethylphosphonic acid (13,C 99%; 15N, 98%)	Handels- labor
Chlorat	Chlorat/ Perchlorat	Pestizide	HPLC-MS/MS	41	-	Landesun- tersu- chungsam

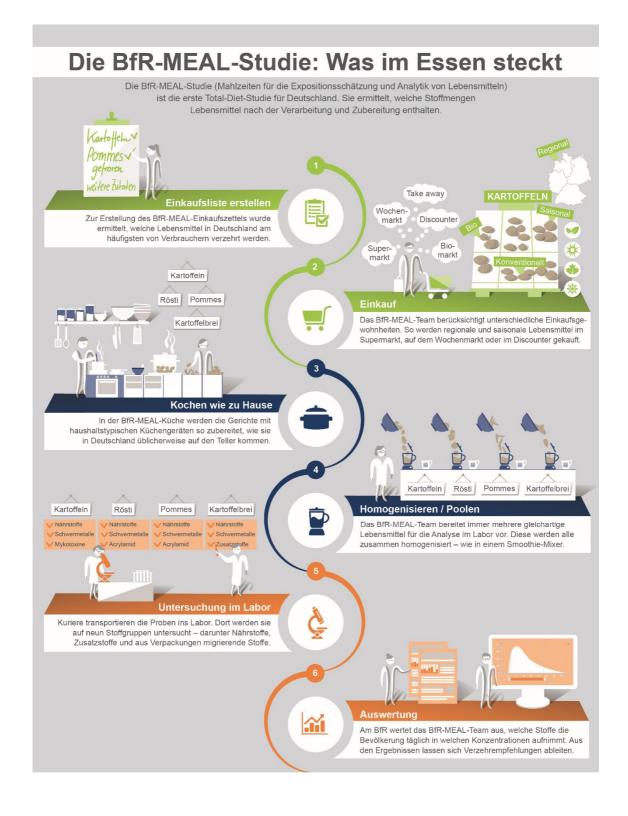
Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
Perchlorat	Chlorat/ Perchlorat	Pestizide	HPLC-MS/MS	41	-	Landesun- tersu- chungsamt
1,2,4-Triazol	Triazole	Pestizide	LC-DMS/MS/MS	39	1,2,4 Triazol (3,5- 13C; 1,2,4-15N)	Handels- labor
Triazol-Alanin	Triazole	Pestizide	LC-DMS/MS/MS	39	Triazol-Alanin (3,5- 13C; 1,2,4-15N)	Handels- labor
Triazol-Essigsäure	Triazole	Pestizide	LC-DMS/MS/MS	39	Triazol-Essigsäure (3,5-13C; 1,2,4- 15N)	Handels- labor
Triazol-Milchsäure	Triazole	Pestizide	LC-DMS/MS/MS	39	Triazol-Milchsäure (3,5-13C; 1,2,4- 15N)	Handels- labor
Ethylenthioharnstoff (ETU)	ETU/PTU/ Chlormequat	Pestizide	LC-MS/MS		D4-Ethylene thiou- rea	intern
Propylenthioharnstoff (PTU)	ETU/PTU/ Chlormequat	Pestizide	LC-MS/MS		D3-1,2-Propylene thiourea	intern
Chlormequat	ETU/PTU/ Chlormequat	Pestizide	LC-MS/MS	-	D9-Chlormequat chloride	intern
Boscalid (F) (R)	Multimethode	Pestizide	GC-MS/MS	42	*	Handels- labor
Captan	Multimethode	Pestizide	GC-MS/MS	42	*	Handels- labor
Captan (Summe)	Multimethode	Pestizide	GC-MS/MS	42		Handels- labor
Chlorpyrifos (F)	Multimethode	Pestizide	GC-MS/MS	42		Handels- labor
Cyantraniliprol	Multimethode	Pestizide	LC-MS/MS	42		Handels- labor
Cypermethrin (Summe der Isomeren)	Multimethode	Pestizide	GC-MS/MS	42		Handels- labor
Cyprodinil (F) (R)	Multimethode	Pestizide	GC-MS/MS	42		Handels- labor
Deltamethrin (cis-Delta- methrin) (F) Difenoconazol	Multimethode Multimethode	Pestizide Pestizide	GC-MS/MS GC-MS/MS, LC-	42		Handels- labor Handels-
Dimethoat	Multimethode	Pestizide	MS/MS LC-MS/MS	42		labor Handels-
Fluopyram	Multimethode	Pestizide	GC-MS/MS	42		labor Handels-
Hexachlorbenzol (F)	Multimethode	Pestizide	GC-MS/MS	42		labor Handels-
Hexythiazox	Multimethode	Pestizide	LC-MS/MS	42		labor Handels-
Imazalil	Multimethode	Pestizide	LC-MS/MS	42		labor Handels-
Indoxacarb (Summe der	Multimethode	Pestizide	GC-MS/MS	42	*	labor Handels-
S- und R-Isomeren) (F) Iprodion (R)	Multimethode	Pestizide	GC-MS/MS	42	*	labor Handels-
Lambda-Cyhalothrin (F)	Multimethode	Pestizide	GC-MS/MS	42	*	Handels-
(R) Myclobutanil (R)	Multimethode	Pestizide	GC-MS/MS	42	*	Handels-
Omethoat	Multimethode	Pestizide	LC-MS/MS	42	*	labor Handels- labor
Pirimicarb	Multimethode	Pestizide	GC-MS/MS, LC- MS/MS	42	*	Handels- labor
Pirimicarb, Desmethyl-	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor
Pyraclostrobin (F)	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor
Pyrimethanil	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
Spinosad (Summe)	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor
Tetrahydrophthalimid	Multimethode	Pestizide	GC-MS/MS	42	*	Handels- labor
Thiabendazol (R)	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor
Thiacloprid (F)	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor
Triflumuron (F)	Multimethode	Pestizide	LC-MS/MS	42	*	Handels- labor
Perfluoroctansulfonat (PFOS)	Perfluoroctan- sulfonat (PFOS)	PFAS	LC-MS/MS	21	13C4-PFOS	Handels- labor
Perfluoroctansäure (PFOA)	Perfluoroctan- säure (PFOA)	PFAS	LC-MS/MS	21	13C8-PFOA	Handels- labor
Perfluorbutansulfonat (PFBS)	Perfluorbutan- sulfonat (PFBS)	PFAS	LC-MS/MS	21	13C3-PFBS	Handels- labor
Perfluorbutansäure (PFBA)	Perfluorbutan- säure (PFBA)	PFAS	LC-MS/MS	21	13C4-PFBA	Handels- labor
Perfluorpentansäure (PFPeA)	Perfluorpent- ansäure (PFPeA)	PFAS	LC-MS/MS	21	13C5-PFPeA	Handels- labor
Perfluorhexansulfonat (PFHxS)	Perfluorhexan- sulfonat (PFHxS)	PFAS	LC-MS/MS	21	1802-PFHxS	Handels- labor
Perfluorhexansäure (PFHxA)	Perfluorhexan- säure (PFHxA)	PFAS	LC-MS/MS	21	13C2-PFHxA	Handels- labor
Perfluorheptansulfon- säure (PFHpS)	Perfluorhep- tansulfonsäure (PFHpS)	PFAS	LC-MS/MS	21	13C4-PFOS	Handels- labor
Perfluorheptansäure (PFHpA)	Perfluorhept- ansäure (PFHpA)	PFAS	LC-MS/MS	21	13C4-PFHpA	Handels- labor
Perfluornonansäure (PFNA)	Perfluornon- ansäure (PFNA)	PFAS	LC-MS/MS	21	13C5-PFNA	Handels- labor
Perfluordecansulfonat (PFDS)	Perfluordecan- sulfonat (PFDS)	PFAS	LC-MS/MS	21	13C4-PFOS	Handels- labor
Perfluordecansäure (PFDeA)	Perfluordecan- säure (PFDeA)	PFAS	LC-MS/MS	21	13C2-PFDA	Handels- labor
Perfluorundekansäure (PFUnA)	Perfluorunde- kansäure (PFUnA)	PFAS	LC-MS/MS	21	13C2-PFUnA	Handels- labor
Perfluordodekansäure (PFDoA)	Perfluordode- kansäure (PFDoA)	PFAS	LC-MS/MS	21	13C2-PFDoA	Handels- labor
Perfluortridecansäure (PFTrA)	Perfluortride- cansäure (PFTrA)	PFAS	LC-MS/MS	21	13C2-PFDoA	Handels- labor
Perfluortetradekansäure (PFTA)	Perfluortetra- dekansäure	PFAS	LC-MS/MS	21	13C2-PFTeDA	Handels- labor
Florfenicol	(PFTA) Amphenicole	Pharmakologisch aktive Substanzen	LC-HR/MS	45	CAP-d5	Handels- labor
Danofloxacin	Chinolone	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Enrofloxacin-d5	Handels- labor
Enrofloxacin	Chinolone	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Enrofloxacin-d5	Handels- labor
Ciprofloxacin	Chinolone	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Enrofloxacin-d5	Handels- labor
Marbofloxacin	Chinolone	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Enrofloxacin-d5	Handels- labor
Trimethoprim	Diamino-Pyri- midin-Derivate	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Sulfamethoxazol- d4	Handels- labor
Tylosin	Makrolide	Pharmakologisch ak- tive Substanzen	LC-HR/MS	45	Erythromycin-d3	Handels- labor

Analyt	Stoffgruppe Modul				interner Standard*	Labor
Tilmicosin	Makrolide	Pharmakologisch ak- tive Substanzen	LC-HR/MS	45	Erythromycin-d3	Handels- labor
Tulathromycin	Makrolide	Pharmakologisch ak- tive Substanzen	LC-HR/MS	45	Erythromycin-d3	Handels- labor
Tildipirosin	Makrolide	Pharmakologisch ak- tive Substanzen	LC-HR/MS 45 Erythromycin-d3		Erythromycin-d3	Handels-
Gamithromycin	Makrolide	Pharmakologisch ak-	LC-HR/MS 45 Erythromycin-d3		Handels-	
Erythromycin A	Makrolide	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Erythromycin-d3	labor Handels- labor
Amoxicillin	Penicilline	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Pen G-D7	Handels-
Benzylpenicillin	Penicilline	Pharmakologisch ak- tive Substanzen	LC-HR/MS	45	Pen G-D7	Handels-
Sulfathiazol	Sulfonamide	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Sulfamethoxazol- d4	Handels- labor
Sulfadimidin (Sulfame- thazin)	Sulfonamide	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Sulfamethoxazol- d4	Handels- labor
Sulfadiazin	Sulfonamide	Pharmakologisch ak- tive Substanzen	LC-HR/MS	45	Sulfamethoxazol- d4	Handels- labor
Sulfadoxin	Sulfonamide	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Sulfamethoxazol- d4	Handels- labor
Sulfadimethoxin	Sulfonamide	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Sulfamethoxazol- d4	Handels- labor
Chlortetracyclin	Tetracycline	Pharmakologisch ak- tive Substanzen	LC-HR/MS	45	Demeclocylin	Handels- labor
Tetracyclin	Tetracycline	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Demeclocylin	Handels- labor
Oxytetracyclin	Tetracycline	Pharmakologisch aktive Substanzen	LC-HR/MS	45	Demeclocylin	Handels- labor
Epi-Chlortetracyclin	Tetracycline	Pharmakologisch ak- tive Substanzen	LC-HR/MS 45 Demeclocylin		Handels- labor	
Epi-Tetracyclin	Tetracycline	Pharmakologisch ak- tive Substanzen	LC-HR/MS 45 Demeclocylin		Demeclocylin	Handels- labor
Epi-Oxytetracyclin	Tetracycline	Pharmakologisch ak- tive Substanzen	LC-HR/MS 45 Demeclocylin		Handels- labor	
Doxycyclin	Tetracycline	Pharmakologisch ak- tive Substanzen	LC-HR/MS 45 Demeclocylin		Handels- labor	
Streptomycin	Aminoglyco- side	Pharmakologisch ak- tive Substanzen	LC/MS/MS 46 -		Handels- labor	
Dihydrostreptomycin	Aminoglyco- side	Pharmakologisch ak- tive Substanzen	LC/MS/MS 46 -		-	Handels- labor
Spectinomycin	Aminoglyco- side	Pharmakologisch ak- tive Substanzen	LC/MS/MS 46 -		-	Handels- labor
Gentamycin	Aminoglyco- side	Pharmakologisch aktive Substanzen	LC/MS/MS	46	-	Handels- labor
Neomycin	Aminoglyco- side	Pharmakologisch ak- tive Substanzen	LC/MS/MS	46	-	Handels- labor
Dinitrocarbanilide	Kokzidiostatika	Pharmakologisch ak- tive Substanzen	LC-MS/MS 47 DNC-D8		DNC-D8	Handels-
Monensin	Kokzidiostatika	Pharmakologisch ak- tive Substanzen	LC-MS/MS 47 DNC-D8		DNC-D8	Handels-
Lasalocid	Kokzidiostatika	Pharmakologisch aktive Substanzen	LC-MS/MS 47 DNC-D8		DNC-D8	Handels-
Narasin	Kokzidiostatika	Pharmakologisch aktive Substanzen	LC-MS/MS 47 DNC-D8		Handels-	
Maduramycin	Kokzidiostatika	Pharmakologisch ak- tive Substanzen	LC-MS/MS 47 DNC-D8		DNC-D8	Handels-
Acrylamid	Acrylamid	Prozesskontaminanten	LC-MS/MS 43 Acrylamid-d3		Acrylamid-d3	Handels-
3-MCPD	2-/3-MCPD/- Ester	Prozesskontaminanten	GC-MS 44 d5-3-N		d5-3-MCPD	Handels-
2-MCPD	2-/3-MCPD/- Ester	Prozesskontaminanten	GC-MS 44 d5-2-MCPD		Handels-	
3-MCPD-Ester	2-/3-MCPD/- Ester	Prozesskontaminanten	en GC-MS/MS 44 d5-3-MCPD-Ester		d5-3-MCPD-Ester	Handels-
2-MCPD-Ester	2-/3-MCPD/- Ester	Prozesskontaminanten	GC-MS/MS	44	d5-2-MCPD-Ester	Handels-

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
lycidyl-Ester Glycidol-Ester Prozesskontaminante		Prozesskontaminanten	GC-MS/MS	44	d5-3-MCPD-Ester	Handels- labor
Benzo[c]fluoren	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[a]pyren-D12	Handels- labor
Cyclopenta[c,d]pyren	ren) PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[a]pyren-D12	Handels- labor
Benzo[a]anthracen	ren) PAKs (15+1 und Benzo[e]py- ren)	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[a]anthracen D12	Handels- labor
Chrysen	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Chrysen D12	Handels- labor
5-Methylchrysen	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Chrysen D12	Handels- labor
Benzo[b]fluoranthen	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[b]fluoran- then D12	Handels- labor
Benzo[k]fluoranthen	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[k]fluoran- then D12	Handels- labor
Benzo[j]fluoranthen	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[k]fluoran- then D12	Handels- labor
Benzo[a]pyren	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[a]pyren-D12	Handels- labor
Benzo[e]pyren	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[a]pyren-D12	Handels- labor
Indeno[1,2,3-cd]pyren	PAKs (15+1 und Benzo[e]py-	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Indeno[1,2,3- cd]pyren D12	Handels- labor
Dibenz[a,h]anthracen	ren) PAKs (15+1 und Benzo[e]py- ren)	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Dibenz[a,h]anth- racen D14	Handels- labor
Benzo[g,h,i]perylen	PAKs (15+1 und Benzo[e]py- ren)	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[g,h,i]perylen D12	Handels- labor
Dibenzo[a,l]pyren	PAKs (15+1 und Benzo[e]py- ren)	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[g,h,i]perylen D12	Handels- labor
Dibenzo[a,e]pyren	PAKs (15+1 und Benzo[e]py- ren)	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[g,h,i]perylen D12	Handels- labor
Dibenzo[a,i]pyren	PAKs (15+1 und Benzo[e]py- ren)	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[g,h,i]perylen D12	Handels- labor
Dibenzo[a,h]pyren	PAKs (15+1 und	Prozesskontaminanten	LC-LC-GC- MS/MS	23	Benzo[g,h,i]perylen D12	Handels- labor

Analyt	Stoffgruppe	Modul	Methode	Los	interner Standard*	Labor
	Benzo[e]py-					
	ren)					


^{*} Im Rahmen der Multimethode Pestizide wurden keine internen Standards verwendet. Zur Überprüfung der Probenaufarbeitung wurden den Proben bei der Aufarbeitung Surrogatverbindungen/Qualitätssicherungsstandards ("procedural internal standards") gemäß Abschnitt 4.5 der amtlichen Methode zur Kalibrierung und quantitativen Auswertung chromatographischer Methoden für die Bestimmung von Pflanzenschutzmittelrückständen und organischen Kontaminanten (ASU L 00.0013) zu dotiert.

A3 Lebensmittelliste Basismodul für die BfR-MEAL-Studie (Stand 2022)

S	Getreide und Getreideprodukte	Blätterteig- und Plundergebäck Cornflakes, Creme- und Sahnetorten Dinkelbrot Doppelkekse mit Kakaofüllung Eierpfannkuchen, Frischeiwaffel Früchte-Müsli gelaugte Dauerbackwaren (z. B. Salzstangen) Mehrkornbrot, mit/ohne Ölsaaten Graubrot Grießbrei, Grießpudding Haferbrei Haferflocken Käsekuchen Knäckebrot Kuchen aus Rührteig (z. B. Sandkuchen, Muffin) Kuchen aus Hefeteig (z. B. Butterkuchen, Bienenstich) Kuchen mit Obst (z. B. Apfelkuchen) Laugengebäck Lebkuchen, Printen, Pfeffernüsse Mischgetreidewaffel, gepufft Mohnkuchen, Mohngebäck Plätzchen, Kekse Reis Reiswaffel, gepufft Schoko-Müsli Schokobrötchen, Milchbrötchen Semmelknödel, böhmische Knödel Müsli, gemischt Teigwaren, eifrei (z. B. Hartweizengrießnudeln) Teigwaren, mit Hühnerei (z. B. Eiernudeln, Spätzle) Frühstückscerealien, verarbeitet Vollkornbrötchen Weißbrot, Brötchen Zwieback Chia-Samen Buchweizen Quinoa Amaranth Hirse
	Gemüse, Gemüseprodukte und Pilze	Algen Aubergine Blattsalat Blumenkohl Prinzessbohnen, Brechbohnen Brokkoli Erbsen Erbsen und Karotten, gemischt Fenchel, Knolle Gemüsemischung Grünkohl Gurke eingelegte Gurke Kohlrabi Küchenkräuter, frisch Kürbis Melone Karotte Paprikaschote Porree Radieschen Rotkohl Sauerkraut Spargel Spinat Tomate Weißkohl Pfifferling Zucchini Champignon Maiskörner Zwiebel Steinpilz Gemüsechips
	Stärkehaltige Wurzeln oder Knollen und Erzeugnisse daraus	Süßkartoffel Kartoffelbrei, Kartoffelpüree Kartoffelchips Kartoffelkloß Bratkartoffeln Salzkartoffeln (geschält) Pellkartoffeln (ungeschält) Pommes frites
	Hülsenfrüchte, Nüsse, Ölsaaten und Gewürze	dicke Bohnen, Kidney-Bohnen Cashewnüsse Erdnüsse Erdnussbutter Gewürze Haselnüsse Haselnussmus Hülsenfrüchte aus Konserve (z.B. Kichererbsen, Linsen) Kichererbsen Kürbiskerne Leinsamen Linsen Macadamia-, Para- und Pecannüsse Mandeln, süß Mandelmus Oliven Pistazien Sonnenblumenkerne Studentenfutter Walnüsse
	Obst und Obstprodukte	Apfel Apfelmus Avocado Banane Birne Datteln Erdbeeren Fruchtkonfitüre, Fruchtaufstrich, Pflaumenmus Fruchtpüree aus dem Quetschbeutel Kirschen Kiwi Mango Nektarine, Pfirsich Obstkonserve Obstsalat Orange, Apfelsine, Mandarine, Clementine Pflaume Him-, Brom, Heidel-, Stachel- und Johannisbeeren Trockenfrüchte Rosinen, Sultaninen Weintrauben Zitrone
	Fleisch und Fleischprodukte	Blutwurst Brühwurst, fein (z. B. Lyoner, Fleischwurst, Mortadella) Mortadella (Geflügel) Wiener, Bockwurst (Schwein) Wiener, Bockwurst, Bratwurst (Geflügel) Bratwurst (Schwein) Ente, Fleisch Geflügel, Leber Kasseler, Kochschinken (Schwein) Brühwurst, grob (z. B. Bierwurst, Jagdwurst) Hackfleisch (Schwein, Rind) Huhn, Fleisch Kochmettwurst Leberwurst (Geflügel) Leberwurst (Schwein, Rind) Säugetlere, Niere Pastete Pute, Fleisch Rind, Fleisch Rind, Leber Rohschinken, geräuchert (Schwein) Rohschinken (Schwein) Schaf, Fleisch Schaf, Leber Rohwurst, schnittfest (z. B. Salami) Salami (Geflügel) Schwein, Fleisch Schwein, Hackfleisch Schwein, Leber Schnitzel, paniert (Schwein) Innereien, ohne Leber (Geflügel) Innereien, ohne Leber und Niere (Schwein, Rind) Rohwurst, streichfähig (z. B. Mettwurst, Teewurst) Hirsch und Reh, Fleisch Wildschwein, Fleisch
	Fisch, Krusten- und Weichtiere und Erzeugnisse daraus	Aal Aal, geräuchert Dornhai, geräuchert (z.B. Schillerlocke) Dorschleber Fischfilet, überbacken Fischstäbchen Forelle Forelle, geräuchert Garnelen (Shrimps) Hering, Brathering Heilbutt Heilbutt, geräuchert Herings, geräuchert Heringsfilet in Soße Kabeljau Karpfen Köhler Lachs Lachs, geräuchert Scholle, Seezunge Marinierter Hering, Matjes, Bismarckhering Rollmops Rotbarsch Thunfisch Thunfisch, geräuchert Thunfisch in eigenem Saft/in Soße (Konserve) Thunfisch in Öl (Konserve) Tintenfisch Muscheln Pangasius
	Milch und Milchprodukte	Buttermilch Emmentaler Hartkäse Frischkäse natur Frischkäse mit Kräutern Frischkäsezubereitung Getränkepulver, löslich Joghurt natur Joghurterzeugnis, -drink Kaffeesahne Kondensmilch Kuhmilch Milchmischerzeugnis Milchspeiseeis Pudding Speisequark Quark/-zubereitung mit Kräutern Quarkdessert Sahne, mind. 30 % Fett Schafskäse Haferflocken (löslich) in Milch Schmelzkäse Schnittkäse Weichkäse Ziegenkäse
	Eier und Eierprodukte	Hühnerei Spiegelei

	Zucker, Süßwaren und süße Desserts auf Wasserbasis	Gummibonbons Hartkaramellen Honig Kandierte Früchte Kaugummis Lakritze Milchschokolade Nuss-Nougat-Creme und Schokocreme Pralinen Schaumküsse/Schokoküsse Schokolade, gefüllt Schokoladen-Riegel Wassereis, Fruchteis, Sorbet Zartbitterschokolade, Bitterschokolde Zucker
	Tierische und pflanzliche Fette und Öle	Butter Halbfettbutter, Butterzubereitung, Milchstreichfett Maiskeimöl Margarine fettreduzierte Margarine, Halbfettmargarine, Streichfett Olivenöl Rapsöl Sonnenblumenöl
	Gemüsesäfte, Fruchtsäfte und -nektare	ACE-Getränk Fruchtnektar, Apfel Fruchtsaft, Apfel Fruchtnektar, divers Fruchtsaft, divers Fruchtnektar, Multivitamin Fruchtsaft, Multivitamin Fruchtnektar, Orange Fruchtsaft, Orange Fruchtsaft, Weintraube
	Wasser und Getränke auf Wasserbasis	Teekaltgetränk/Eisteegetränk Energy Drink Fruchtschorle Limonade, Colagetränk Mineralwasser Trinkwasser
	Kaffee, Kakao, Tee und Aufgüsse	Früchtetee (Getränk) Kaffee (Getränk) Kaffee-Ersatz (Getränk) Kakaopulver Kräutertee (Getränk) löslicher Kaffee (Getränk) Roibuschtee (Getränk) Tee (Getränk)
	Alkoholische Getränke	Bier Biermischgetränk Malzbier Rotwein Spirituose spirituosenhaltiges Mixgetränk weinhaltiges Getränk (Weinschorle, Glühwein) Weißwein, Schaumwein
	Lebensmittel für Säuglinge und Kleinkinder	Beikost: Fruchtsaft und -nektar Beikost: Hirse Getreidebrei (Pulver) Beikost: Getreidebrei mit Säuglingsmilchnahrung (Pulver) Kekse und Gebäck für Säuglinge und Kleinkinder Beikost: Milchfertigbrei Beikost: verzehrfertiger Brei, milchbasiert Beikost: verzehrfertiger Brei, Fruchtbrei Beikost: verzehrfertiger Brei, Menü Beikost: verzehrfertiger Brei, Gemüsebrei Säuglingsmilchnahrung (Pulver) Tee- und Heißgetränk für Säuglinge und Kleinkinder
100	Produkte für spezielle Ernährungsformen und Lebensmittelimitate	Reisdrink Sojadessert Sojadrink texturiertes Soja Tofu Aufstrich, vegetarisch Würstchen, vegetarisch
	Speisen und Gerichte	Bauernfrühstück Bratling, vegetarisch Brot überbacken Burger Döner Kebap Fleisch-Gemüse-Gericht Frikadelle Geflügelgericht (Ragout, Frikassee) Geflügeleintopf Gemüseauflauf Gemüsebrühe Gemüse-Eintopf mit Fleischeinlage Gemüsepfanne Gemüsesuppe Gulasch/Geschnetzeltes (Schwein, Rind) Gulaschsuppe Gyros (Schwein) Kaiserschmarrn Beikost: Kartoffel-Gemüse-Brei Beikost: Kartoffel-Gemüse-Fleisch-Brei Kartoffelgratin Kartoffelpfer/Rösti Kartoffelsalat Kartoffelsuppe Klare Brühe mit Teigwareneinlage Leberspätzlesuppe/Leberknödelsuppe Linsen-, Erbsen-, Bohnensuppe Milchreis Nudelauflauf/Lasagne mit Fleisch Nudelauflauf/Lasagne ohne Fleisch Nudelsalat Omelett, Rührei Paprikaschote, gefüllt Pilzsuppe Pilzsuppe Pilzsuppe Pilzsuppe Pilzsuppe Pilsch Rührei Pilsch Rührei Pilsch Riesch Riesch Rahmspinat Reisgericht (Reis, Fleisch und Gemüse) Reisgericht (Reis und Gemüse) Rinderroulade Risotto Salat mit Dressing, divers Suppe mit Gemüseeinlage Suppe mit Getreideeinlage Suppeneinlagen Sushi Teigwaren, gefüllt, vegetarisch (z. B. Tortellini) Teigwaren mit Fleischfüllung (z. B. Ravioli, Maultaschen) Tomatensuppe Wurstsalat
	Würzmittel und Soßen	Brühwürfel (Trockenprodukt) dunkle Soße Gemüsesoße helle Soße, einfach helle Soße mit Schinken helle Soße mit Kräutern, Pilzen oder Knoblauch Käsesoße Pesto Salatsoße Salz Senf Sojasoße Soße mit Fleischeinlage Tomatenketchup Tomatensoße Vanillesoße

A4 Kommunikationsmedien

A5 Übersicht Publikationen nach Substanzen

Substanz	tanz Veröffentlicht			Referenzen		
	Gehalts- daten	Expo- sition	Risiko- bewertung	_		
Arsen &	Х	х	<u> </u>	Hackethal, C. et al. (2023): Chronic dietary exposure to total ar-		
Arsenspe-				senic, inorganic arsenic and water-soluble organic arsenic spe-		
ziationen				cies based on results of the first German total diet study. Sci-		
(5 Substan-				ence of the Total Environment 859 160261.		
zen)				Hackethal, C. et al. (2021): Total arsenic and water-soluble ar-		
				senic species in foods of the first German total diet study (BfR		
				MEAL Study). Food Chemistry 346.		
Blei	х			Fechner, C. et al. (2022): Results of the BfR MEAL Study: In Ger-		
				many, mercury is mostly contained in fish and seafood while		
				cadmium, lead, and nickel are present in a broad spectrum of		
				foods. Food Chemistry: X 14 100326.		
				Ptok, S. et al. (2020): Cadmium und Blei in Lebensmitteln expo-		
				sitionsrelevanter Lebensmittelgruppen – Ergebnisse der BfR-		
				MEAL-Studie. 14. DGE-Ernährungsbericht, 142-179.		
Cadmium	х			Fechner, C. et al. (2022): Results of the BfR MEAL Study: In Ger-		
				many, mercury is mostly contained in fish and seafood while		
				cadmium, lead, and nickel are present in a broad spectrum of		
				foods. Food Chemistry: X 14 100326.		
				Ptok, S. et al. (2020): Cadmium und Blei in Lebensmitteln expo-		
				sitionsrelevanter Lebensmittelgruppen – Ergebnisse der BfR-		
				MEAL-Studie. 14. DGE-Ernährungsbericht, 142-179.		
Calcium	х			Schwerbel, K. et al. (2022): Results of the BfR MEAL Study: The		
				food type has a stronger impact on calcium, potassium and		
				phosphorus levels than factors such as seasonality, regionality		
				and type of production. Food Chemistry: X 13.		
Dioxine &	X	Х		Stadion, M. et al. (2022): The first German total diet study (BfR		
dl-PCBs				MEAL Study) confirms highest levels of dioxins and dioxin-like		
(29 Sub-				polychlorinated biphenyls in foods of animal origin. Food Che-		
stanzen)				mistry: X 16 (2022) 100459.		
				BfR (2022): Exposition gegenüber ndl-PCB und dl-PCB über Le-		
				bensmittel aus der BfR MEAL-Studie. Erlass des Bundesministe-		
				rium für Umwelt, Naturschutz, nukleare Sicherheit und Ver-		
				braucherschutz (BMUV).		
Jod	Х	Х	X	BfR (2022): Rückläufige Jodzufuhr in der Bevölkerung: Mo-		
				dellszenarien zur Verbesserung der Jodaufnahme bei Kindern		
				und Jugendlichen. Stellungnahme Nr. 026/2022 des BfR vom		
				17. Oktober 2022.		
				BfR (2021): Rückläufige Jodzufuhr in der Bevölkerung: Mo-		
				dellszenarien zur Verbesserung der Jodaufnahme. Stellung-		
17 12				nahme Nr. 005/2021 des BfR vom 9. Februar 2021.		
Kalium	Х			Schwerbel, K. et al. (2022): Results of the BfR MEAL Study: The		
				food type has a stronger impact on calcium, potassium and		
				phosphorus levels than factors such as seasonality, regionality		
V				and type of production. Food Chemistry: X 13.		
Kupfer	Х	X		Kolbaum, A. E. et al. (2023). Long-term dietary exposure to		
				copper in the population in Germany – Results from the BfR MEAL study. Food and Chemical Toxicology, 176: 113759.		
Methyl	v	v		Sarvan, I. et al. (2021): Exposure Assessment of methylmercury		
Methyl- quecksilber	Х	Х		in samples of the BfR MEAL Study. Food and Chemical Toxicol-		
quecksiinei				ogy 149.		
ndl-PCBs	v	v		BfR (2022): Exposition gegenüber ndl-PCB und dl-PCB über Le-		
(6 Substan-	Х	X		bensmittel aus der BfR MEAL-Studie. Erlass des Bundesministe-		
zen)				rium für Umwelt, Naturschutz, nukleare Sicherheit und Ver-		
2011)				braucherschutz (BMUV).		
				BfR (2018): Nicht-dioxinähnliche PCB sind in Lebens- und Fut-		
				termitteln unerwünscht. Mitteilung Nr. 037/2018 des BfR vom		
				3. Dezember 2018.		

Substanz	Veröffentlicht			Referenzen		
	Gehalts- daten	Expo- sition	Risiko- bewertung	_		
Nickel	Х	X	x	Fechner, C. et al. (2022): Results of the BfR MEAL Study: In Germany, mercury is mostly contained in fish and seafood while cadmium, lead, and nickel are present in a broad spectrum of foods. Food Chemistry: X 14 100326. BfR (2022): Nickel: Schätzung der langfristigen Aufnahme über Lebensmittel auf Grundlage der BfR-MEAL-Studie. Mitteilung Nr. 033/2022 des BfR vom 22. November 2022.		
Phosphor	х			Schwerbel, K. et al. (2022): Results of the BfR MEAL Study: The food type has a stronger impact on calcium, potassium and phosphorus levels than factors such as seasonality, regionality and type of production. Food Chemistry: X 13.		
Quecksilber	х			Fechner, C. et al. (2022): Results of the BfR MEAL Study: In Germany, mercury is mostly contained in fish and seafood while cadmium, lead, and nickel are present in a broad spectrum of foods. Food Chemistry: X 14 100326.		
ß-Carotin*	х			Schendel, S. et al. (2022): Results of the BfR MEAL Study: Highest levels of retinol found in animal livers and of β -carotene in yellow-orange and green leafy vegetables. Food Chemistry: X 16 100458.		
Süßung- smittel (10 Substan- zen)	х			BfR (2023): Alternativen zu Zucker: Wie viel Süßungsmittel steckt in Erfrischungsgetränken? Stellungnahme Nr. 006/2023 des BfR vom 07.02 2023.		
Vitamin A	х			Schendel, S. et al. (2022): Results of the BfR MEAL Study: Highest levels of retinol found in animal livers and of β -carotene in yellow-orange and green leafy vegetables. Food Chemistry: X 16 100458.		

Über das BfR

Das Bundesinstitut für Risikobewertung (BfR) ist eine wissenschaftlich unabhängige Einrichtung im Geschäftsbereich des Bundesministeriums für Ernährung und Landwirtschaft (BMEL). Es berät die Bundesregierung und die Bundesländer zu Fragen der Lebensmittel-, Chemikalien- und Produktsicherheit. Das BfR betreibt eigene Forschung zu Themen, die in engem Zusammenhang mit seinen Bewertungsaufgaben stehen.

BfR-MEAL-Studie

In welchen Mengen nehmen wir erwünschte und unerwünschte Stoffe durchschnittlich über unsere Nahrung auf? Sind bestimmte Lebensmittel stärker belastet? Und welche gesundheitlichen Auswirkungen hat die Art der Zubereitung auf die Lebensmittel? Die BfR-MEAL-Studie hilft, diese und andere Fragen zu beantworten.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Impressum

Herausgeber:

Bundesinstitut für Risikobewertung

Max-Dohrn-Straße 8–10 10589 Berlin T +49 30 18412-0 F +49 30 18412-99099 bfr@bfr.bund.de bfr.bund.de

BfR-Autor/innen: Dr. Sebastian Ptok, Dr. Irmela Sarvan, Sophia Schendel, Dr. Mandy Stadion, Dr. Tanja Berg, Ma-

ria Scherfling, Diana Steddin, Prof. Dr. Matthias Greiner, Dr. Oliver Lindtner

Anzahl Tabellen: 39 Anzahl Abbildungen: 9 Anzahl Seiten: 99

Anstalt des öffentlichen Rechts

Vertreten durch den Präsidenten Professor Dr. Dr. Andreas Hensel Aufsichtsbehörde: Bundesministerium für Ernährung und Landwirtschaft

USt-IdNr: DE 165 893 448 V.i.S.d.P: Dr. Suzan Fiack

CC-BY-ND

BfR | Risiken erkennen – Gesundheit schützen