U.S. EXPERIENCE:

DECONTAMINATION PROCEDURES FOR MEAT

K.E. Belk Center for Meat Safety & Quality Department of Animal Sciences Colorado State University Fort Collins, CO 80523-1171

Hazards Associated With Foodborne Illness

Foodborne illness
incidents/outbreaks due to:Chemical Hazards4%Physical Hazards2%Biological Hazards94%

Annual Foodborne Illnesses in the U.S.

(Of 9.4/38.4 million est. cases by 31 pathogens/unspecified agents, respectively)

	Rank	Eat No	Hoopitalizatia	Dooth	
Pathogen	(cases)	Est. No. Episodes	Hospitalizatio ns	Death s	%
Norovirus (viral)	1	5,461,731	14,663	149	0.0027
<i>Salmonella</i> spp., Nontyphoidal	2	1,027,561	19,336	378	0.0368
Clostridium perfringens	3	965,958	438	26	0.0027
Campylobacter spp.	4	845,024	8,463	76	0.0090
Staphylococcus aureus	5	241,148	1,064	6	0.0025
<i>Shigella</i> spp.	6	131,254	1,456	10	0.0076
Non-O157 STECs	7	112,752	271	0	0.0000
Yersinia enterocolitica	8	97,656	533	29	0.0297
<i>Toxoplasma gondii</i> (parasite)	9	86,686	4,428	327	0.3772
<i>Giardia intestinalis</i> (parasite)	10	76,840	225	2	0.0026
Bacillus cereus	11	63,400	20	0	0.0000
		00 4 50	0.100	00	0.001

USDA-FSIS Raw Ground Beef E. coli 0157:H7 Testing Program¹

¹ Results of raw ground beef products analyzed for *E. coli* O157:H7 in federal plants.

- * In '98, FSIS increased sample size from 25 g to 375 g.
- ** In July '99, FSIS changed to a more sensitive analytical method.
- *** In Oct '05, a new screening method was introduced to reduce the number of screen positives that do not confirm positive.
- ****Raw GB through May 20, 2012.

USDA-FSIS Prevalence Of Salmonella spp. In/On Beef*

* FSIS results of ground beef analyzed for *Salmonella* spp. Data for '98 through '05 reflects "A" sample sets, while data for '06-'09 reflects all samples.

**Since June 2006, establishments have been scheduled based on risk-based criteria designed to focus FSIS resources on establishments with the most samples positive for *Salmonella* and the greatest number of samples with serotypes most frequently associated with human salmonellosis.

***Following 2010, % prevalence became useless because of targeted/class sampling policy.

FEDERAL MEAT INSPECTION ACT 21 CFR, CHAPTER 12

Sec. 602. Congressional statement of findings

Meat & meat food products are an important source of the Nation's total supply of food. They are consumed throughout the Nation & the major portion thereof moves in interstate or foreign commerce. It is essential in the public interest that the health & welfare of consumers be protected by assuring that meat & meat food products distributed to them are wholesome, not adulterated, & properly marked, labeled, & packaged ...

FSIS RESPONSIBILITIES

- 1. Antemortem inspection.
- 2. Humane methods.
- 3. Postmortem inspection.
- 4. Product inspection.

- 5. Assurance that all plants adopt & use HACCP.
- 6. Assurance that SSOPs are practiced by personnel.
- 7. Verification of HACCP System effectiveness (*Salmonella* performance standards).
- 8. Oversight of plant generic *E. coli* testing protocols.
- 9. Laboratory determinations & assays.
- **10.** Control & restriction of condemned products.
- **11.** Marking, labeling, & inspection insignia.
- **12.** Facilities construction & operational sanitation.

Pre-requisite Programs to HACCP

NACMCF

- (1) Facilities
- (2) Supplier Control
- (3) Specifications
- (4) **Production Equipment**
- *(5) Cleaning & Sanitation
- *(6) Personal Hygiene
- (7) Employee Education/Training
- (8) Chemical Control
- (9) Receiving/Storage/Shipping
- (10) Traceability & Recall
- (11) Pest Control

FDA

- (12) Allergen Control
- (13) Complaint Investigation
- (14) Labeling
- (15) Preventive Maintenance
- (16) Water Quality & Treatments
- (17) Document & Record Control
- (18) Internal Audits
- (19) Calibration
- (20) Sensory Testing

Plant Pre-Operational Sanitation (SSOPs)

- 1. Equipment disassembly & dry pick-up (often by plant personnel).
- 2. Rinsing (from top of equipment or structures down towards the floor).
- 3. Foaming (w/ cleaner).
- 4. Scrubbing of all product contact surfaces.
- 5. Rinsing & 2nd scrubbing as needed.
- 6. Application of 1st & strongest sanitizer.
- 7. 3rd Rinse.

Operational Sanitation

SEVEN PRINCIPLES OF HACCP

Following full implementation of written Pre-Requisite Programs (GMPs, SSOPs):

- **1. Conduct a Hazard Analysis.**
- 2. Identify Critical Control Points (CCPs).
- 3. Establish Critical Limits (CLs).
- 4. Monitor the Critical Control Points.
- 5. Determine Appropriate Corrective Actions.
- 6. Establish Verification procedures to ensure that the system works.
- 7 Maintain accurate Record-Keeping

Multiple Hurdles Technology

Beef Slaughter

Antemortem Inspection Immobilization Stunning **Exsanguination Hide washing** Hoof removal **Hide removal** Head removal **Pre-Evis washing/OA** Bunging **Evisceration** Splitting **Postmortem Inspection** Washing/TP/OA Chilling

Carcass Contamination

Prevalence Of *E. Coli* 0157:H7 In Feedlot Cattle Feces, Hides, & Carcasses

Of 15 lots tested:

- > 87% at least one positive feedlot fecal sample.
- > 54% positive hide sample.
- > 80% positive colon.
- > 47% positive pre-evis.
- > 6% positive post-evis.

	Stratified by % E. coli O157:H7 on Pen Floor		
Samples	> 20%	< 20%	
Hide	20%	5.7%	
Colon	46.3%	7.1%	
Pre-Evis	12.5%	7.1%	
Post-Evis	2.5%	0.0%	
Post- Final Funded	0.6% by USDA-C	0.0% SREES	

Hide Washing Systems

Cargill's system includes a water and sodium hydroxide mix to release contaminants, followed by a high-pressure rinse and lactic acid application.

field report operations & technology

Cargill sharpens its edge on E. coli O157:H7

A unique partnership yields a promising new carcass wash system

By Baniel J. Swith, senior editor ring the raintest weeks of the ear, it's not unusual for proincers to bring cattle whose hides are infected with E. coli O157:H7 at a rate of 60 percent or higher to the plant.

The dangers and heightened public awareness of E. coli Q157:H7 have prompted all packers/processors and their suppliers to rethink and retool their food safety technologies. Among the more promising endcavors is a unique partnership between Cargill Foods' Excel division, Bicko Corp. and Chad Co. in manufacturing a new intervention technology.

Dubbed the "cattle wash" by Excel President Bill Buckner, the two-step process has been installed with little fanfare at the company's beef plants in Until September, both Birko and Chad

mixture, which releases soils and contclaim, which should be available before aminants from the bide. The carcass year's end. then moves to a second cabinet, where it is rinsed at high pressure with water before before being steam-vacuumed with a lactic acid application, accordine to Matt Osborn, the general manager of Excel's Schuyler plant. "Through the combination of high

water pressure, temperature control, pH control and mechanical action, this appears to be a show-stopper as it applies to food safety," Osborn says. Using 600 gallons of recycled water per minute, oscillating spray nozzles

hit the carcass from a distance of 12 inches to 18 inches. Foaming is controlled by an anti-foaming agent. "The immediate thing you notice, from a physical standpoint, is how clean the hides are when they come out of the cabinet," Osborn says, "There is a bit, visible difference in the cleanli-

hit with a water and sodium hydroxide

ness of cattle going down the line." Sharing the success

Clint Heffer, Birko's vice president and equipment manager, says the introduction of its patented Cattlegard solution to the cattle wash system immediately made the sodium hydroxide more soluble with water. "The challenge for us was to figure

out the exact proportion of what was needed, and then to engineer a way to deliver the mixture," Heffer says. "We think this could end up being an industry icon." Food safety is not proprietary, and the American Meat Institute has

cess until they had data to support that

already videotaped Cargill's cattle wash with the intent of including it in procoming media operations that tout innovation in food safety. "The first one we built was some

thing of a prototype, if you will, and we've fine turned it alone the way," says Chad engineer Jerry Anderson, "We've learned something from each of the four installations, and have gotten all of the bugs worked ont."

Hock/Carcass Steam-Vacuuming

Pre-evisceration Washing/OA Spraying Of Carcasses

Warm-water Carcass Washing/Zero Tolerance Trimming

Thermal Pasteurization Of Carcasses

Reductions In Inoculated *E. Coli* 0157:H7 On Beef Carcass Tissue Using Various Decontamination Solutions (*Ransom et al., 2001*)

Effect of BoviBrom on Hot Carcass Surface TPC (Pittman et al., 2011)

Plate Counts By Sampling Site

(8 Plants; N = 1,280; Bacon et al., 2000)

Salmonella On Beef Carcasses At Two In-plant Sampling Sites (Source: Bacon et al., 2001)

	Hide-On (Site 1)		Carcass	Carcass (Site 2)		
Plant	No. Positive Samples	% Prevalence	No. Positive Samples	% Prevalence		
1	19	47.5 ^a	3	7.5 ^b		
2	4	10.0 ^a	0	0.0 ^b		
3	0	0.0	0	0.0		
4	9	23.1 ª	0	0.0 ^b		
5	0	0.0	0	0.0		
6	4	10.0 ^a	0	0.0 ^b		
7	7	17.5 ^a	0	0.0 ^b		
8	6	15.0 ^a	1	2.5 ^b		
Total	49	15.4 ^a	4	1.3 ^b		
	***********	**********				

AMIF Project Summary: Incidence of *E. coli* 0157:H7

No beef trimming samples were found to test positive for *E. coli* 0157:H7 when sampled on the same days as carcasses.

Source: Incidence Of Escherichia coli O157:H7 (AMIF/CSU, 2000)

Organic Acid Systems

Worker safety hazards are minimized
Ventilation
In-Line mixing

- Drainage
- Air curtains
- Low application concentrations

Lactic Acid				
× Processing	g Aid at concentrations u	p to 5% (<mark>USDA-FSIS</mark> ,	2006).	
× Human blo	ood contains 8-17 mg / 1	.00 ml plasma <mark>(us</mark>	FDA, 1978).	
× Humans p	roduce 140 g daily durin	g metabolism (Kre	eisberg et al., 1971; USFDA, 1978).	
Residual lactic acid on beef samples after dipping for 30 sec at 55°C in lactic acid solution				
Lactic ad	cid solution (%)	Control (ppm)	Treated (ppm; mg/kg)	
/	2.5	16.8	28.0	
	5.0	33.6*	56.0*	
* Assuming a lir	* Assuming a linear relationship between lactic acid spray concentration and meat residue concentration			
Source: Rose et	Source: Rose et al. (2004)			
× Worst case: Residual concentration from 5.0% LA spray = 56 mg/kg beef.				
Animal	Route	Acute	e Toxicity LD ₅₀ (mg/kg)	
Rat	Intraperitoneal (Na la	ictate)	2,000	
Rat	Oral (lactic acid)		3,730	
Mouse	Oral		4,875	
Source: WHO (1974)				

TPC Remaining 0-hr Following Treatment At Various Application Parameters On Chilled Beef Brisket Sections

■ 1.03 bar 0.22 lpm ■ 1.03 bar 6.62 lpm □ 4.83 bar 0.22 lpm ■ 4.83 bar 6.62 lpm

TPC for Differing Inoculants Remaining After Treatment With 1st & 2nd Lactic Acid Applications

Uninoculated Surrogate O157:H7 STEC

Variety Meat Interventions

Variety Meat Interventions

(Sources: Delmore et al., 1998; Zerby et al., 1998; CSU/USMEF)

	Beef APC (log CFU/g)			
Intervention	L. Intestine	Tongue	Oxtail	
Control/A	4.5 ^a	5.9 ^a	3.2 ^a	
Control/B	2.4 ^c	5.9 ^a		
AASP or DP/A	3.7 ^{ab}	3.1 ^{bc}	2.5 ^b	
AASP or DP/B	2.6 ^c	2.3 ^c		
LADP/A	3.3 ^b	2.5 ^c		
LADP/B	3.6 ^b	3.5 ^b		

^{a,b} Means in a column bearing different superscript letters differ (P < .05).