

The Toxicology Of Mineral Oil At Dermal Exposure

Juan-Carlos Carrillo (Shell)

BfR – December 7-8, 2017

Juan-Carlos Carrillo

What Type Of MOAH Can Be In Mineral Oil?

Highly Alkylated Aromatics

Polycyclic Aromatic Compounds (PAC) –ring structures <u>removed</u> through refinement

Key points for discussion

	1.0		-	-	-
	100			100	-
1.0	100		-		
	-	_	-		

Mouse skin painting studies

DMSO affinity to 3-7 ring PAC – The IP346

Recent MOAH Measurements

Conclusions

The Mouse Skin Painting Bioassay In Mineral Oil Manufacture

BfR December 7-8, 2017 Juan-Carlos Carrillo

5 http://www.bio-protocol.org/attached/image/20160911/20160911234503_5045.jpg

Juan-Carlos Carrillo

The Mouse Skin Painting Bioassay In Mineral Oil Manufacture

The Mouse Skin Painting Bioassay – Carcinogenicity Test

9 ENVIRONMENTAL SCIENCE FOR THE EUROPEAN REFINING INDUSTRY

Juan-Carlos Carrillo

7

Why the Mouse Skin Painting Bioassay?

- Main model to study different types of PAC
- Relevant to other epithelial tissues
- Main route of exposure to mineral oil products

Rundhaug et al., 2010. Cancers; 2(2): 436–482.
 La Voie el al., 1985. Carcinogenesis; 6(10): 1483-1488.
 Luch A., 2009. Mol. Clin. Env. Tox. (1): 151-179
 Bingham et al., 1980. J. Env Path Tox; (3)483-563.

Reproduction permitted with due

acknowledgement

Based on Derived Minimal Effect levels (DMEL), the risk by dermal route is the worst case scenario for PAC mediated carcinogenicity: risk of **one in a million** in developing cancer at a certain dose level. Dermal Oral 0.2 0.4 0.6 N Linearized DMELs (10⁻⁶) mg BaP/kg bw/d Slide credits: D. Adenuga - ExxonMobil DMELs calculated from BMD10 values for BaP carcinogenicity tests in rodents. Reproduction permitted with due See Table 61 of Baua Annex XV Restriction Report Proposal for a Restriction

BfR December 7-8, 2017 Juan-Carlos Carrillo

acknowledgement

9

PAC Tumor Mode of Action Dictates Tumor Location

10

BfR December 7-8, 2017 Juan-Carlos Carrillo

10

MOAH Molecular Structure Determines Carcinogenicity Steric Hindrance

What Type Of MOAH Are Carcinogenic?

Substance or fraction	Live animals after 40 weeks	Re-treatment of live animals with a tumour promotor			
Carcinogenic oil	Tumours in all animals	-			
Fraction I (PAC "free")	No tumours	No tumours			
Fraction II (2 and 3 rings)	No tumours	No tumours			
Fraction III (> 3 rings)	No tumours	Tumours in all animals			
Fraction I+II+III	Tumours in all animals	-			

1. Agarwal et al., 1988

2. Doak et al., 1985

To assess MOAH it is imperative to test SUBSTANCE (the actual oil), and NOT the isolated fractions.

Reproduction permitted with due acknowledgement

Key Points: Mouse Skin Painting Bioassay

DMSO affinity to 3-7 ring PAC

The IP346

The Need To Replace The Mouse Skin Painting Bioassay

Screening Method: Fit For Purpose to Mineral Oils

Mineral Oil Production Boiling Range > 300°C

The 3-7 ring PAC found in mineral oil are found in the 340-565°C boiling point range

Through boiling points we can link manufacture to toxicity

3-7 ring PAC

340 °C Phenanthrene

E

BOILING POINT 😨

Fr 🐜 🧶

BfR December 7-8, 2017

Reproduction permitted with due

Juan-Carlos Carrillo

acknowledgement

16

Screening Method: Selective Towards 3-7 PAC

Screening Method: Reflect Toxicological **Hypothesis**

Juan-Carlos Carrillo

Screening Method By Chromatography

Problems with MOAH Chromatography*

- Does not distinguish MOAH types
- Over estimates because of "tail" length
- No correlation to toxicity
- Not easy to transfer or reproduce

	PAC A			
Oil type	Chromatography	DMSO extract %	Av. alkyl chain length	Cancer
Oil N2 Low viscosity	2.9	6.8	3.4	YES
Oil B. High viscosity	5.7	0.1	12.5	NO

Nahhhh...I don't think It will work. Let's do something different...something smarter...something cooler!

Pr.

10

*PLC-MS = preparative thing layer chromatography followed by mass spectometry

Reproduction permitted with due acknowledgement

BfR December 7-8, 2017 Juan-Carlos Carrillo

19

IP346: The Mouse Dermal Bioassay vs. DMSO% PAC Affinity

FOROPEAN REFINING INDUSTRY

IP346 And Mouse Skin Painting Studies – Data Base

133 data pairs support the IP346 IP 346 < 3% oil is not carcinogenic Completely eliminated carcinogenicity testing on animals IP 346 > 3% is carcinogenic Adopted in the 90's in the EU and in other countries (e.g. Australia, Malaysia) as regulatory standard for carcinogenicity assessment Three is the It is the only validated analytical method with biological significance number thou shall count ! Negative predictivity = 95%Data points Reference (2 year studies) Accuracy = 89%CONCAWE 6/16 133 * (because of false positives) Chasey et al., 1993 94 9 McKee et al., 1989 Doak et al., 1983 12 and (1985) (6) Blackburn et al., 1996 120 MONTY PYTHON Roy et al., 1988 39 *Including all studies cited, without repetitions Reproduction permitted with due acknowledgement *2 3 BfR December 7-8, 2017

Juan-Carlos Carrillo

Juan-Carlos Carrillo

Base oil, wax, white oil, petroleum jelly manufacture

Key Points Mineral Oil Dermal Toxicity

Recent MOAH Measurements

Why Is MOAH "High"? – The MOAH Paradox Example Microcrystalline Wax

- MOAH (HPLC-GC FID) typical levels:
 - ▶ 1-5 %.
- MOAH content < C35
 - virtually absent
- Content of aromatic protons (NMR):
 - ▶ ~ 0,1 0,5 %
- Typical av. mol weight microwax:
 - ▶ 700 (C50H102)
- 3-7 rings aromatics:
 - trace levels (specific UV test / Grimmer etc.)

- High alkylation of a small number of aromatic carbons leads to high MOAH values (everything is interpreted as aromatic)
- The higher the MW the greater the MOAH

MOAH paradox: the more aliphatic, the more "aromatic"

BfR December 7-8, 2017 Juan-Carlos Carrillo

Reproduction permitted with due

acknowledgement

- Recent HPLC-GC measurements on old and new production samples of several (EU) manufacturers (2015) confirm that MOAH was always present - nothing new!
- Historic concentrations used for fundamental toxicological studies were at least as high or even higher than those in products presently on the market

- <1980 Concawe 84-60 Samples - 1990 BIBRA Study Samples - 2015 Recent production samples of several EU Manufacturers

BfR December 7-8, 2017 Juan-Carlos Carrillo

acknowledgement

Do We Need A Sophisticated MOAH Method?

- DAB 8 UV-method did the same Best correlation with Oils
- Oils have shorter MOAH`s
 Longer MOAH chains are not toxicologically relevant
- Replaced by UV-methods including DMSO extraction to focus on PAH
- not biased by MW

Reproduction permitted with due acknowledgement DAB 8 UV = Deutsche Arzneibuch 8, ultra violet method

Pr.

*a

٩

Data source: H&R

MOAH Does Not Correlate With DMSO-PAC Measurements

⊡ *∞

- No correlation between MOAH content* and UV absorption according to the pharmacopoeia PAC test
- Amount of PACs found in products is independent of measured MOAH content

The Mineral Oil Carcinogenicity Weight of Evidence

- ▶ The term "MOAH" does not describe the quality of the substance, because there are two types:
- Bad MOAH: 3-7 ring PAC (eliminated through refinement)
- Harmless MOAH: highly alkylated aromatics (what is left after 3-7 PAC elimination)
- Refinement, toxicologists and compliance tests (IP346, Pharmacopeia) focus on Bad MOAH: 3-7 ring PAC
- Refined mineral oil products have an impeccable history of safety: even if "MOAH" is present

Reproduction permitted with due acknowledgement

"Don't focus on what you can measure, measure what you need to focus on"

Dirk Danneels

Acknowledgements

Dirk Danneels – EWF **Jan Woldhuis** – Paramelt

Olaf Kral – Shell Klaus Suedkamp - Shell Hans Ketelslegers – CONCAWE David Adenuga – ExxonMobil Daniela Heber – H&R

STF 33- CONCAWE

Mineral oils are safe for human health?

Thank You

The IP346 – The EU Standard

(2004)

BSI BS 2000 : Part 346 :1996

Determination of polycyclic aromatics in unused lubricating base oils and asphaltene free petroleum fractions — Dimethyl sulfoxide extraction refractive index method

REGULATIONS

REGULATION (EC) No 1272/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 16 December 2008

on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006

(Text with EEA relevance)

Note L:

The classification as a carcinogen need not apply if it can be shown that the substance contains less than 3 % DMSO extract as measured by IP 346 'Determination of polycyclic aromatics in unused lubricating base oils and asphaltene free petroleum fractions — Dimethyl sulphoxide extraction refractive index method', Institute of Petroleum, London. This note applies only to certain complex oil-derived substances in Part 3.

🖪 🗞 🕹

				Classificatio	n	Labelling			Specific Conc. Lim- its, M-factors	Notes
Index No	International Chemical Identification	BC No	CAS No	Hazard Class and Category Code(s)	Hazard state- ment Code(s)	Pictogram, Signal Word Code(s)	Hazard state- ment Code(s)	Suppl. Hazard state- ment Code(s)		
649-501-00-1	Lubricating oils (petroleum), base oils, paraffinic; Baseoil — unspecified; [A complex combination of hydrocarbons obtained by refining of crude oil. It consists predominantly of aromatics, naphthenics and paraffinics and produces a finished oil with a viscosity of 120 SUS at 100 °F (23 cSt at 40 °C).]	297-474-6	93572-43-1	Carc. 1B	H350	GHS08 Dgr	H350		(HL

Reproduction permitted with due acknowledgement