Strategies for increasing intake of folic acid Hungarian experience

Andrew E. Czeizel

Periconceptional Care

- Check-up of reproductive health
- The 3-month preparation for conception
- Better protection of early pregnancy

Composition of
Supplements

	-	
"Multivitamin		"Placebo-like
(Elevit Pronatal)"		Trace Elements"
Vitamins		
А	4000 IU	
B1	1.6 mg	
B2	1.8 mg	
Nicotinamid	19.0 mg	
B6	2.6 mg	
Calcium Panthothenate	10.0 mg	
Biotin	0.2 mg	
B12	4.0 mcg	
С	100.0 mg	7.5 mg
D	500.0 IU	
Е	15.0 mg	
Folic Acid	0.8 mg	
Minerals		
Calcium	125.0 mg	
Phosphorus	125.0 mg	
Magnesium	100.0 mg	
Iron	60.0 mg	
Trace Elements		
Copper	1.0 mg	1.0 mg
Manganese	1.0 mg	1.0 mg
Zinc	7.5 mg	7.5 mg

	Contract
Roche	Hungarian Periconceptional Care
Capsule A, B	maternal information Side effect structured questionnaire

Goals of the Hungarian randomized double-blind controlled trial (RCT)

- About 95% of women with NTD offspring have no previous NTD pregnancies.
- Thus the question is whether the periconceptional folic acidcontaining multivitamin supplementation can reduce the first occurrence of NTD
- The pharmacological dose (> 1 mg, e.g., 4 mg) of folic acid cannot be recommended for the population at large or without medical supervision.
- Thus, the question is whether a physiological dose (< 1 mg) is effective or not.

Possible other beneficial or adverse effects of periconceptional multivitamin supplementation.

Result of the RCT: Reduction of the First Occurrence of NTD

Study groups	Number of informative offspring		served NTD por 1000	N	pected NTD
Multivitamin	2,471	No 0	_per_1000 0.00	<u> </u>	<u>per 1000</u> 2.78
Placebo-like trace element	2,391	6*	2.51	6.6	2.78

Relative risk (with 95% confidence interval) = 0.06 (0.00, 0.63)Fisher test $P_2=0.01$

* anencephaly 2, spina bifida aperta 2, anencephaly + spina bifida 2

Other effects

Side effects:

- Constipation 1.8% vs 0.8%
- Diarrhea 1.4% vs 0.4%
- Four women had severe allergic exanthema (among 14,500 women)

Other effects

During the preconceptional multivitamin supplementation

- Female cycle more regular
- No difference in sexual activity
- Higher rate of conception (7%)
- Time to achieve pregnancy shorter
- No maternal weight gain

Intention-to-treat analysis of fetal death

Fetal death	Multivitam (N=2,793) No.	in %	Placebo-lii (N=2,660) No.	
Chemical pregnancy	55	1.0	40	1.5
Ectopic pregnancy	7	0.2	4	0.2
Miscarriage	301	10.8	251	9.4
Stillbirth	11*	0.4	9	0.3
Total	374	13.4	304	11.4

*3 stillbirths occurred in twin pregnancies in which the other twin was liveborn Miscarriage ?21=2.69; p=0.10

Total

?21=2.69; p=0.10 ?21=4.82; p=0.03

Other effects

During the postconceptional multivitamin supplementation

• Lower rate of morning sickness

severe	3.0%	VS	6.6%
mild	33.3%	VS	50.3%

- No difference in maternal weight gain
- Higher rate of twin births (40%)
- Significant reduction in some other CAs beyond NTD

Distribution of singletons, twins and triplet in the Hungarian RCT

Type of birth	Multivitamin No.	Placebo-like No.
Stillbirth		
Singleton	8	9
One of twins	3	0
Livebirth		
Singletons	2,367	2,305
Twins	84	64
One of twins	3	0
Triplet	3	0
Total	2,468	2,378
Multiple birth No.	93	64
%	3.77	2.69
	$?_{1}^{2} = 4.48$	p = 0.03

Results of further studies

USA (4/5)	30-60% increase after			nultivitamin		
Sweden (national) significant incre			crease afte	er folic acid		
Hungary (nation	al) (HCC	CSCA)		3	38,151	
					395 (1.04%) twins	
Unsupplemented		12	27	0.78%		
Supplemented	before	2	28	1.52	1.80 (1.14-2.85)	
	after	24	40	1.20	1.50 (1.15-1.97)	
China (public he	alth prog	gram) 0.4 i	mg i	folic acid i	n	
242,015 women						
supplemented					unsupplemented	
multiple pregnancy rate 0.59%					0.65%	
very low rate of dizygotic twins						
TT ge	notype c	of MTHFR	ge:	ne is 20%		

Variables of liveborn singletons

Variables		vitamin 2,367)		bo-like 2,305)
Quantitative	Mean	S.D.	Mean	S.D.
Birth weight (g)	3,291	488	3,288	478
Gestational age (yr)	39.6	1.7	39.6	1.6
Categorical	No.	%	No.	%
Low birthweight	101	4.3	81	3.5
Preterm birth	178	7.5	166	7.2
Boy	1,181	49.9	1,196	51.9

Postnatal somatic, mental and behavioural development

Variables	8-16	2 years	6 years
	months (N=1600)	(N=336)	(N=289)
Somatic		Body weight Body length Head circumference Chest circumference	
Cognitive		Hungarian Developn Binet test (6 yr)	nent Test (2 yr)
Behavioural		Vineland test	
Health status		Case history General paediatric e: Audiological exam Ophthalmological ex	

multivitanini anu no multivitanini supplementeu group							
Categories of CAs Group of CAs	Multivitamin (N=2,471)		No multivitamin (N=2,391)		RR (with 95% CI)		
Group of CAS	No.	Rate	No.	Rate			
Isolated CAs							
NTD	0	0.0	6	2.51	0.07 (0.04, 0.13)		
Orofacial clefts	4	1.62	5	2.09	0.77 (0.22, 2.69)		
Cardiovascular CAs	10	4.05	20	8.36	0.42 (0.19, 0.98)		
CAs of urinary tract	2	0.81	9	3.76	0.21 (0.05, 0.95)		
Limb deficiencies	1	0.40	5	2.09	0.19 (0.03, 1.18)		
Cong. pyloric stenosis	2	0.81	8	3.34	0.24 (0.05, 1.14)		
Others	22	8.90	32	13.38	0.68 (0.37, 1.10)		
Multiple CAs	10	4.05	12	5.02	0.81 (0.36, 1,26)		
Total	51	20.64	97	40.57	0.53 (0.35, 0.70)		

Number and rate (per 1000) of different CA-groups in multivitamin and no multivitamin supplemented group

Reduction of NTD by periconceptional folic acidcontaining multivitamin supplementation in two Hungarian intervention studies

Intervention studies		Unsupplemente
Randomized controlled trial No. of informative offspring No. of NTD offspring RR (95%CI)	d 2,471 0 0.06 (0	2,391 .04,0.13) 6
Two-cohort controlled study No. of informative offspring No. of NTD offspring OR (95% CI)	3,056 1 0.11 (0	3,056 01,0.91) 9
Together No. of informative offspring No. of NTD offspring OR (95% CI)	5,527 _{0.08 (0}	.01,0.47) ^{5,447} 15

Number of informative offspring with cardiovascular CAs in multivitamin (MV) and no multivitamin (No-MV) groups

	RCT		TCS		Pooled data	
Cardiovascular CAs	MV (N=2,471) No.	No-MV (N=2,391) No.	MV (N=3,056) No.	No-MV (N=3,056) No.	MV (N=5,527) No.	No-MV (N=5,447) No.
Conotruncal Ventricular septal defect Others Subtotal	2 1 3	8 2 10	5 3 8	19 1 20	7 4 11	27 3 30
Others	7	10	23	30	30	40
Total	10	20	31	50	41	70
OR (with 95% CI)	0.42 (0.19, 0.98)		0.60 (0.38, 0.96)		0.57 (0.39, 0.85)	

Number of informative offspring with urinary tract's CAs in multivitamin (MV) and no multivitamin (No-MV) groups

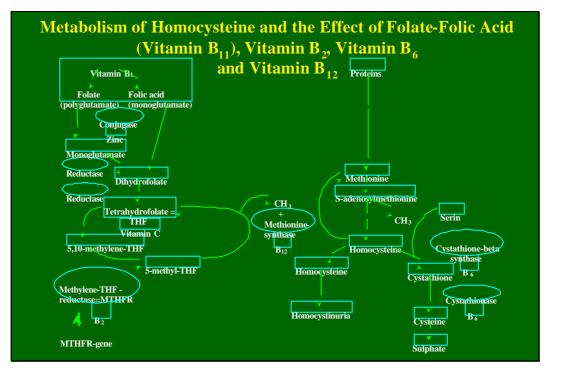
	RCT		TCS		Pooled data	
CAs of urinary tract	MV (N=2,471)	No-MV (N=2,391)	MV (N=3,056)	No-MV (N=3,056)	MV (N=5,527)	No-MV (N=5,447)
	No.	No.	No.	No.	No.	No.
Renal a/dysgenesis	0	3	2	0	2	3
Cystic kidney	1	1	2	0	3	1
Obstructive CAs						
Pelvicureteric	0	4	2	13	2	17
Others	1	1	8	6	9	7
Subtotal	1	5	10	19	11	24
Total	2	9	14	19	16	28
OR (with 95% CI)	0.21 (0.0)5, 0.95)	_0.71 (0.33, 1.50)0.50 (0.30, 1		30, 1.04)	

Number of informative offspring with other "candidate" CAs in multivitamin (MV) and no multivitamin (No-MV) groups

	RCT		TCS		Pooled data	
Other "candidate" CAs	MV (N=2,471) No.	No-MV (N=2,391) No.	MV (N=3,056) No.	No-MV (N=3,056) No.	MV (N=5,527) No.	No-MV (N=5,447) No.
Orofacial clefts						
Cleft lip ± palate	4	3	3	2	7	5
Posterior cleft palate	0	2	1	1	1	3
Total	4	5	4	3	8	8
OR (with 95% CI)	0.77 (0.2	22, 2.69)	1.63 (0.3	31, 28.8)	0.99 (0.3	37, 2.63)
Limb deficiencies	1	5	1	3	2	8
OR (with 95% CI)	0.19 (0.	03, 1.18)	0.33 (0.0	01, 3.71)	0.25 (0.0	05, 1.16)
Cong. pyloric stenosis	2	8	0	2	2	10
OR (with 95% CI)	0.24 (0.	05, 1.14)	0.00 (0.0	00, 26.8)	0.20 (0.0	04, 0.90)
Anal/rectal atresia/stenosis	0	1	1	4	1	5
OR (with 95% CI)	-	_	0.31 (0.0	02, 2.52)	0.20 (0.0	02, 1.69)

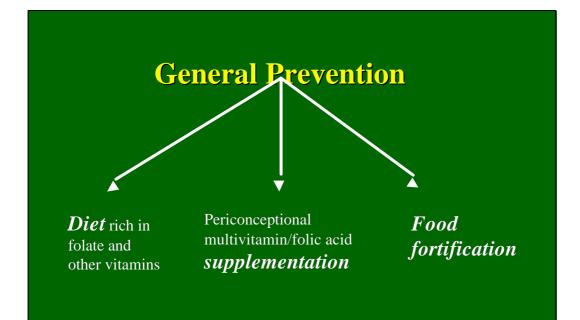
Multiple congenital abnormalities

Shaw et al. Am J Med Genet 2000 Periconceptional intake of vitamin supplements and risk of multiple congenital abnormalities


Czeizel-Medveczky. Obstet Gynecol 2003 Periconceptional multivitamin supplementation and multimalformed offspring

Yuskin et al. Am J Med Genet 2005 Reported multivitamin supplementation and the occurrence of multiple congenital anomalies

Czeizel et al. Am J Med Genet 2006 No association between periconceptional multivitamin supplementation and risk of multiple congenital abnormalities


Acute toxicity of folic acid in pregnant women

No.	Maternal age (yr)	Gestational age (wk)	Folic acid (mg)	Toxic effect in pregnant women	Exposed child (birth weight + health status)
1.	22	34	120	No	3,090 g Good
2.	17	22	120	No	2,450 g Good (adopted)
3.	17	34	150	No	3,400 g Congenital inguinal hernia
4.	31	18	120	No	1,750 g Good

MTHFR gene

- Gene location: Chromosome l, short arm 36.3
- Mutation: 677 T \rightarrow C
- Frequency of
- mutant homozygosity: 5-15 % (11%)
- heterozygosity: 25-65% (45%)

Difficulties in dietary strategy to increase folate intake

Low mean folate intake0.18 mg/dayOptimal folate intake0.66 mg/dayLow bioavailabilty of folate in food30-80 %Natural food folate is relatively ineffective at increasingfolate status (aggressive intervention with dietary folatedid not increase red-cell folate level).

Difficulties of periconceptional supplementation

Large proportion of pregnancies are unplanned.

Low proportion of planned pregnancies are supplemented.

Theoretical problems (folic acid alone or multivitamins, dose).

Folic acid alone or folic acid-containing multivitamin							
Folic acid alone	Multivitamin						
Efficacy							
70% of NTD	92% of NTD						
Oth	Other effects						
?	Prevention of other major CAs						
Theoretical background(in hyperhomocysteinemia related NTD)However, vitamin B12, B2Key factorand B6 are independent factors.							

USA Canada Chile Ireland	Food fortification
Hungary	(August 20, 1998) Microgram Vitamin
Bread (200 g)	Folic acid200Vitamin B121Vitamin B61800
Flour (100 g)	(January 1, 2006) Folic acid 350 Vitamin B12 10 Vitamin B6 1600 Vitamin B2 500

Hungarian experiences

Voluntary fortification

Facts

media campaign is expensive price is higher (antisocial) consumption is low

Mandatory fortification

Arguments

information for public is enough not expensive (governmental support) consumption is high

General conclusion

Inertia on the use of folic acid or folic acid containing multivitamins for the primary prevention of CAs is medical malpractice

