

Mineral oils depicted by gas chromatograms

Principals for the analysis in food

Koni Grob, Kantonales Labor Zürich

Mineral oils in food packaging – developments and solutions Seminar Berlin 23rd of September 2011

GC of mineral oil saturated hydrocarbons (MOSH)

GC on apolar stationary phase separates ~ by volatility, ~ by molecular mass

Mineral n-Alkanes

± constant difference in retention times per C-atom \rightarrow peaks can be counted

MOSH: homogeneous distribution between even and odd nubered n-alkanes

Plants waxes: odd-numbered n-alkanes predominate

Mineral iso-alkanes

(separation on a 10 m x 0.25 mm i.d. column)

Mineral oil aromatic hydrocarbons (MOAH)

On non-polar stationary phases MOAH are coeluted with MOSH but carbon number does not correspond:

Methyl anthracene (C₁₅) eluted at n-C₂₁, Chrysene (C₁₈) at n-C₂₇, Pyrene (C₁₆) at n-C₂₄

Comparison of MOAH with PAHs

- Polycyclic aromatic hydrocarbons (PAHs)
 - from pyrolysis processes (coaking, smoked products, black saussages...)
 - little alkylated compounds
 - widely analyzed for decades
 - analyzed (and evaluated) as individual substances
- MOAH
 - from geological processes
 - 97 to >99 % alkylated
 - very many isomers
 - cannot be resolved to individual substances → hump
 - little investigated (and evaluated)

Characterization of mineral oil products

Oils for printing inks

Batching oil for jute bags

Contaminated hazel nuts, cocoa beans, coffee, rice, oil seeds

Vaseline

sold, e.g., for cosmetics or pharmaceutical applications

Pictures of mineral oil products

Wax (candle)

Extender oils (plasticizing rubber and elastomers)

Poly-alpha-Olefines (PAOs)

Adhesives (hotmelts) for paperboard

Pictures of mineral oil products

Mineral oils in background

Mineral oils in background

MOSH in wheat

MOSH in sunflower seeds: environmental contamination

Mechanically harvested seeds

Mineral oils in background

MOSH in human body fat

Abdominal fat obtained by Caesarean sections

Concin, K. Grob G. Hofstetter, essler Concin, paraffins in human body fat and milk. N ð 008 selier oxicology, omovsl elmei Unemical Windbichle Mineral oil B. Plattner Food and

MOSH in human body fat

tells us about the critical hydrocarbons: those our body is unable to eliminate

Principals for the analysis

- Tasks of analysis
- Extraction from packaging material and foods
- Aliquot required for analysis in foods
- FID as detector
- Information obtained from GC analysis

Principals for analysis

Tasks of the analysis

- Mineral oil as MOSH and MOAH, separated from endogenous hydrocarbons
- **MOSH** fractions in packaging (paperboard and plastic):
 - <C16
 - C16-C24 (limit for migration through gas phase)
 - C24-C35 (only for applications with wetting contact)
- MOSH fractions in food:
 - <C16 (envisioned limit: 12 mg/kg)</p>
 - C16 to about C25 (migration through gas phase)
 - C16-C35 (envisioned limit: 0.6 mg/kg)
- **MOAH** fractions in packaging:
 - <C24 (no separation at C16)
 - C24-C35 (only for applications with wetting contact)
- **MOAH** in food:
 - up to about C25 (migration through gas phase)
 - up to C35 (envisioned limit: 0.15 mg/kg)

POSH: same as MOSH until evaluated otherwise?

Critical points in sampling and storage of samples

Information needed: history of the sample? conditions of storage

- migration from transport box?
- reference samples?

Migration is a continuing process

- measurement for moment of sampling? \rightarrow separate different parts
 - box and bag into aluminum foil
 - food in glass jar, lid protected by aluminum foil
- further storage? → wrap in aluminum foil (no evaporation outwards, no contamination from outside)
- Paperboard: sample not from top of stack
- pick-up from air, loss into air

Sending sample

- paperboard: wrap into aluminum foil

Extraction of dry foods

- Problem: inclusions into solid structures!
- Experiments on dry noodles (no eggs)
 - Migrate from paperboard completely extracted overnight/RT or 2 h/60 ℃ (<10 % in 2nd extract weekend/60 ℃)
 - MOSH worked into noodles during manufacture little extracted
 - tested for noodle prepared in the lab
 - complete extraction requires swelling with water (cooking)
- Powdered baby formula, milk powder
 - overnight/RT: ca. 30 % of migrate, but <10 % of fat and endogenous hydrocarbons
 - overnight/60 °C: complete for migrate, 25 % for fat, endogenous hydrocarbons and MOSH in the sample before packing
 - preferred conditions: reduces interference
 - complete extraction: heating in concentrated HCI (30 min/80 °C)

Extraction yields for solids

- cannot be checked by spiking samples!
 - added material is easier to extract than that included
- Second extracts
 - rinse solid residue after first extraction (removal of residual extract)
 - extract a second time under more severe conditions
 - weekend instead of overnight
 - at 60 ℃ instead of at ambient temperature
- If second extract contains significant amounts: extraction might be still far from complete
 - swell sample, e.g. in hot water
 - extract by procedure with ethanol (see below)

Extraction of wet foods

- Water is a perfect barrier against extraction with hexane!
 - fills pores, prevents hexane from extracting content in the pores
 - cooked noodles thoroughly mixed into hexane: extraction yield <5 %
- water cannot be evaporated (loss of volatile hydrocarbons)
- sodium sulfate (e.g. fish)
 - homogenized food + 2-4 times amount sodium sulfate (\rightarrow no lumps)
 - immersion in hexane overnight
- preferred method: replacement of water by ethanol
 - hexane/ethanol are miscible >10 % water
 - 5 g food + 25 ml ethanol, blending
 - allow to stand for 1 h (exchange with water → pores filled with >80 % ethanol, which provides sufficient solubility)
 - ethanol decanted, hexane overnight/RT
 - combine hexane with ethanol, extract ethanol with water

Principals for analysis: extraction

Extraction of paper and board

- Extraction with hexane or MTBE loads the precolumn with involatile material
 - hotmelts/adhesives
 - binder resins
- → selective extraction discriminating above <C24</p>
- Ethanol
 - discriminates against high molecular mass hydrocarbons, particularly nalkanes
 - improves extraction of <C24 (swelling?)

Extraction yield: second extracts

Hexane:ethanol 1:1

- 2 h/RT sufficient of MOSH and MOAH
- not for diisopropyl naphthalene (DIPN)

Check with second extraction under more severe conditions

Extraction of plastics

Limiting step: diffusion to the surface of the plastic Strongly varying permeability of polymers

- barriers are not permeable \rightarrow difficult to extract
- migrated hydrocarbons are more easily extracted than those built in
- 2 h/RT sufficient for polyethylene

Default conditions: overnight/RT

- testing by second extracts necessary for polymers other than polyolefins

FID as detector

- only detector with equal response for all hydrocarbons (calibration!)
- drawbacks: low sensitivity, no selectivity
- → enables calibration with any hydrocarbon

MS in TIC is more sensitive, but response depends on structure. Example: n-alkanes at equal concentrations, EI/TIC on ion trap.

Response increases with mass owing to higher yield of larger fragments (also depending on scanned mass range).

Design of methods: detection limit

 Quantification limit of FID for a hump of MOSH and MOAH of intermediate width: 50 ng

>100 times higher than for a clean signal!

- to reach 0.5 mg/kg limit with 50 ng MOSH or MOAH requires aliquot of 100 mg food being injected into GC
- to enable injection of 1 $\mu l,$ the fractions obtained from the "manual method" (8-10 ml) would have to be reconcentrated to 10 μl
 - not feasible for routine method
 - loss of volatile components

\rightarrow injection of 50 µl is a prerequisite

 \rightarrow reconcentration to about 500 µl

Loss of volatile components

Chromatogr into GC Volumes Müller. шi rge and Grob đ jection -30 297 Evaporation 1987 Sample Capillary 404

Dilution and reconcentration by a factor of ~80

Principals for analysis: method design

Chromatography on the glass wall: volatility depends on the retention power of the wall (material acting as retaining stationary phase)

Principals for analysis: method design

80 µl injection instead of reconcentration: practically no losses!

Keeper

- Loss of volatiles can be reduced by adding a substance acting as retaining stationary phase
 - such as toluene (manual method)
- Toluene also strongly slows solvent evaporation, rendering the end of solvent evaporation more robust

Capacity to retain lipids

- Fat (primarily triglycerides) removed by retention on LC column
- Triglycerides may flood up to half of LC column, leaving the other half for the isolation of the MOSH and MOAH-fraction
- Capacity of the proposed columns
 - "manual method": 200 mg
 - HPLC: 20 mg
- Sample extracts can be reconcentrated before preseparation to the limit determined by their fat content
- Limit of quantitation is determined by
 - fat content
 - capacity of the LC preseparation

Limit of quantification

Reconcentration before LC preseparation by fat content:

low fat (≤4 %) samples (rice, corn, noodles)

- 10 times \rightarrow quantitation limit of about 0.1 mg/kg

- medium fat (~20 %) samples (cereals, muesli, biscuits)
 no reconcentration → quantitation limit of about 0.5 mg/kg
- high fat (~40 %) samples (chocolate)
 - only half amount/concentration \rightarrow quantitation limit of about 1 mg/kg

Limit of quantification of 0.6 mg/kg not reached for all samples

\rightarrow compromise

- LC capacity not adjusted to high fat content
- enrichment on larger column before standard method
- often also removal of plant n-alkanes needed

Tasks for gas chromatography (GC)

- Distinction between mineral and plant hydrocarbons
- Recognition of other interfering components (e.g. DIPN, wood oil components in MOAH)
- Characterization of MOSH and MOAH → source, mode of transfer)
 - molecular mass distribution
 - carbon number at center of elution
 - range of hydrocarbons
 - presence or absence of n-alkanes
- for paperboard: separation at n-C24 (migrating part)
- easy analysis up to about C50