Migration of Perfluorochemicals From Food Contact Materials

Tim Begley Office of Regulatory Science Center for Food Safety and Applied Nutrition Food and Drug Administration

Why are we interested in perfluoro chemical migration?

- Perfluoro chemicals found in human serum (Olsen et al. 1999). Occupational exposure.
- May 2000, 3M Company announce phase out of perfluorooctyl chemistry.
- August 2002, marine mammals, fishes and birds (Kannan et al. Environ. Sci. Technol.)
- Elderly in Seatle WA are found to have perfluoro chemicals in their serum (Olsen et al. 2003).

Why are we interested in perfluoro chemical migration?

- PFOA is biopersistent / bioaccumulative
- <u>Half-life</u> in human serum may be 4.4 years (Butenhoff et al. 2004).
- Potential concerns for carcinogenesis; developmental/reproductive and immunotoxic.
- Many fluorochemicals regulated for food-contact contain PFOA as an impurity and/or have chemical moieties similar to PFOA.

2-perfluorooctylethanol or (8:2 telomer alcohol) has been shown to biodegrade to PFOA

Perfluorooctanoic acid = PFOA

Dinglasan, M.J.A., et al., 2004, Environmental Science and Technology, 38, 2857-2864.

Structures of perfluorochemicals found in human serum

Perfluoroocatanesulfonate = PFOS

Perfluorooctanoic acid = PFOA

Typical Commercial Products Potentially Made with Fluorochemicals

Food package types that contain fluorochemicals

Polymers

cookware tubing gaskets

Paper

microwave popcorn muffin bags french fry bags pizza liners sandwich wrappers burger/pizza boxes

Historical Regulation in the USA

- 1962 PTFE for cookware
- 1984 perfluorochemical elastomers
- 1958 paper coatings (prior-sanctioned)
- 1962 1st paper coatings (petition)

Where are perfluorochemicals for paper regulated?

- In US approximately 15 materials are regulated
- BfR also has a number of perfluoro chemicals regulated

Types of perfluorochemicals added to food contact paper

• Perfluoro telomer type $C_6 \quad C_8 \quad C_{10} \quad C_{12} \quad C_{14}$ based

Polymeric type

Typical structures of perfluoro telomer based paper coatings

C

Analysis of PTFE Cookware for PFOA

Summary of PFOA analysis of some polymers

<u>Material</u>	<u>Conc. PFOA</u> μg/kg
PTFE Cookware	4-75
Dental Floss	3
Dental Tape	4
PTFE Sealant Tape	1800
FEP Tubing	ND

Does PFOA migrate from PTFE during cooking?

- Use PTFE sealant film for migration test.
- PTFE film has $C_{p0} = 1.8 \text{ mg/kg}$
- Test for migration at 100°C and 175°C into water and oil.

Typical LCMS analysis for PFOA migrating from PTFE into Miglyol at 100℃

Migration of PFOA from PTFE sealant film after 2hrs at cooking temperatures

M_t (PFOA)

100 °C Water 150 ng/dm² (1.6 ± 0.4μg/kg) Miglyol 120 ng/dm² (1.3 ±.07 μg/kg)

175°C Miglyol 710 ng/dm² (7.7± 0.1 μg/kg)

Fractional PFOA Migration from PTFE

- Fractional Migration <u>oil</u> at $175^{\circ}C$ $M_t/M_{\odot} = 17\%$
- Fractional Migration water at 100 °C $M_t/M_{\odot} = 4\%$

Simulated Loss of PFOA from Cookware based on Fractional Migration, Potential Values

Simulated Loss of PFOA from Cookware based on Fractional Migration, Potential Values

Does PTFE Degrade to PFOA at High Temperature?

Temperature Respnse for Heating an Empty 28cm PTFE Coated Pan with a Flame

• FDA, No detectable increase in PFOA in PTFE

 \bigcirc

Sinclair et al., Environ. Sci. Tech. 2007, No PFOA

Fluorochemicals for Food Contact Paper

Fluorochemical Paper coatings

- Fluorochemical paper concentrations can be up to 0.5% or 5000 mg/kg.
- Temperature range for paper applications
 -5 °C − 200+ °C.
- Most perfluoro telomer based paper treatments have molecular weights >1000 but the molecular size is similar to much smaller molecules.

Migration of chemicals with MW > 1000 ?

Is PFOA in Perfluorochemical Paper Coatings and treated Paper Products?

<u>Concentration of PFOA in Perfluoro Paper</u> <u>Coatings and Paper Products</u>

<u>Material</u>	C _{p0} PFOA (mg/kg)
Perfluoro paper coating (not applied)	88 - 160
Popcorn bags	0.3
Muffin bag	0.5
Sub Sandwich wrapper	0.5 - 1.2
Hash brown potato bag	0.9

Migration of PFOA from microwave popcorn bags?

Migration of PFOA from microwave popcorn bags?

None detected into oil

T. H. Begley, et al., 2005, Perfluorochemicals: Potential sources of and migration from food packaging. *Food Additives and Contaminats*, 22 (10) 1023-1031.

Test for perfluorochemical migration from commercially produced paper

Typical structures of Perfluoro telomer based paper coatings

С

Test conditions for perfluorochemical migration

- Food simulating liquids/foods at 100 ℃
- Single-sided contact with paper
- Contact time 15 minutes
- LCMS analysis for perfluorochemical

Typical structures of Perfluoro telomer based paper coatings

Migration results for incidental contact, Coating <u>A</u>

Migration results for incidental contact, Coating <u>B</u>

Migration results for incidental contact, Coating <u>C</u>, paper produce in 1987

Potential Problem for Exposure Estimates?

Water and oil are not the extremes!

Typical Migration Results From a Polymer

Migration of Irganox 1076 from PP at 135°C

Migration into Emulsions

- Butter = water-in-oil Emulsion (20% / 80%)
- Non-ionic surfactant (polyoxyethylene sorbitan / oil / water)
- Ionic surfactant (lecithin / oil / water)

Migration from paper, 40°C 1 day

Migration of Fluorochemical is Kinetic to food at 40°C

Do Perfluoro telomer Paper Coatings Migrate Under Actual Conditions of Use?

Migration from microwave susceptor into oil

Results for migration of fluorotelomer from popcorn bags

Concentration in Popcorn Oil <u>before</u> Heating	1.4 mg/kg 4 μg/ dm²
Concentration in Miglyol <u>after</u> 2 min. microwave heating	2.1 mg/kg 7µg/ dm²

LCMS analysis of <u>Popcorn</u> for the Migration of Fluorotelomer from Popcorn bag

Migration of perfluorotelomer into microwave popcorn

<u>Brand</u>	<u>mg/kg</u>
A	1.2
B	0.8
С	3.8
D	1.2
Ξ	2.1

Conclusions of Migration Tests

- The food simulants <u>water</u> and <u>oil</u> are not the extremes for these fluorochemicals.
- The soy emulsifier (lecithin, 0.05%) can change oil into a potent solvent for migration.
- Fluorotelomers do migrate to food in the mg/kg (ppm) range.

Migration to oil = none

Migration to oil + emulsifier = huge

