

First International Conference on Tattoo Safety

Berlin 2013

Microencapsulation of Dyes and Pigments

Lars Dähne, Barbara Baude, Moritz Klickermann

Surflay Nanotec GmbH, Berlin Adlershof


Surface Layers → SURFLAY

Content

- 1. Layer by Layer (LbL) Technology
- 2. Encapsulation of Tattoo pigments
- 3. Biocompatibility
- 4. Possible solutions of Tattoo problems by LbL

Layer by Layer (LbL-technology)

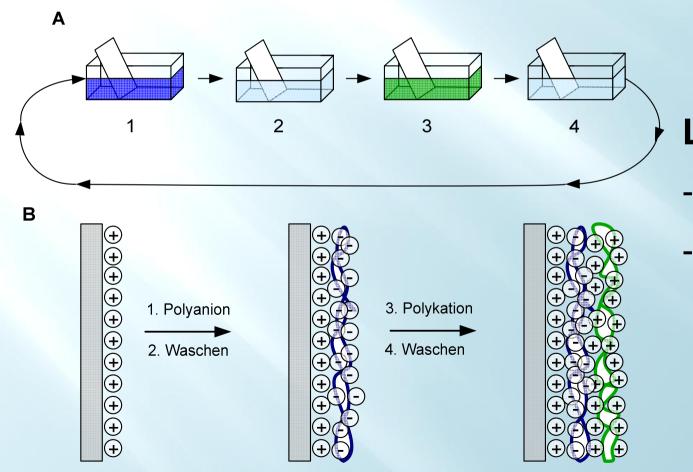
Charged Substrate (planar, surface structured, colloidal, porous)

Polycation in excess, aqueous solution 1g/l, Control of pH, ion strength

NA

Norte

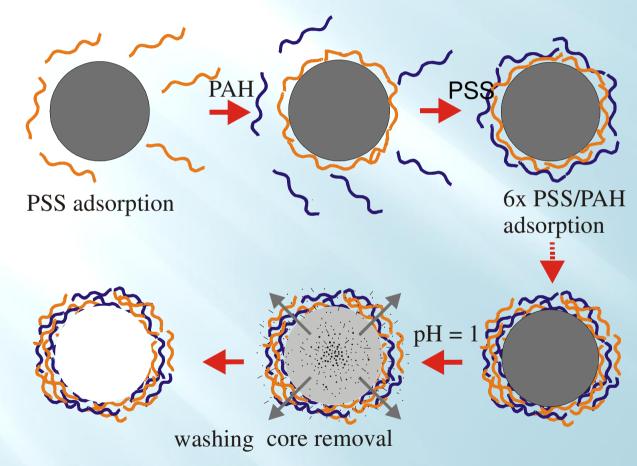
Self-limited adsorption, charge reversal $(\zeta$ -potential + 30-60 mV), removal excess polyelectrolyte


Polyanion in excess

Thickness per double layer **3 nm** for PAH/PSS, ζ -potential -30 til -60 mV

Layer by Layer (LbL) coated substrate

LbL-prozess



Large scale materials

- Dipping (minutes)
- Spraying (seconds)

Preparation of Microcapsules

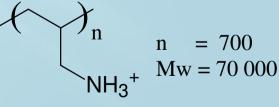
Colloidal materials

- Centrifugation
- Filtration
- Sedimentation
- Dielectric separation

E. Donath, G. Sukhorukov, F. Caruso, A. Davis, H. Möhwald Angew. Chem. 110 (1998), 2324

Coating materials Polyelectrolytes (synthetic, natural)

anionic: Polystyrenesulfonate (PSS), PMAA etc.
Alginate, DNA, Hyaluronic acid, ...
multivalent ions (phosphates, peptides)


n = 350Mw = 70 000

-cationic:Polydimethyldiallylamine,Polyallylamine (PAH)Chitosanmultivalent ions (peptides, iron)

- amphoteric: Proteins (enzymes, antibodies)

Mw 200 000 Quaternary amines pH independent

1_n

 SO_3

Primary amine pH dependent Coupling chemistry

Nanoparticle materials

Instead of Polyelectrolyte electrostatically stabilized (charged) Nanoparticles

(diameter 3-20 nm) alternating deposition with polyelectrolyte;

- biozide Ag, Au
- photoactive TiO₂
- magnetite Fe₃O₄
- catalytic Pd, Pt
- fluorescent CdSe, CdTe,

Advantages of LbL immobilized Nanoparticles

- Function mainly preserved
- stabilized against aggregation
- danger of nanoparticles removed by stable immobilization

Polyelectrolyte Functionalization

Polyelectrolyte coupling chemistry

e.g. via carboxylate -COOH, amino -NH₂, or glycidyl

Functions e.g.: • coloured, fluorescent,

- (bio)catalytic,
- (photo)reactive,
- sticking, selective adsorption
- releasing biozide, drugs, care materials
- hydrophobic, hydrophilic
- oligonucleotides (selective binding diagnostic)

Multifunctionality

Each layer

- different material
- different functionality
- Interference of functionalities avoidable by intermediate dummy layers
- Defined surface, independent of material underneath

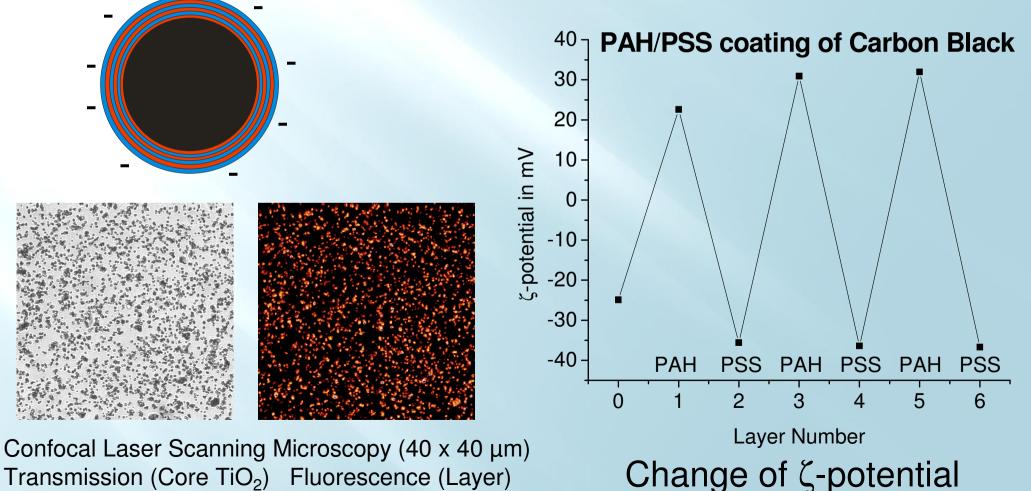
General properties of LbL-coatings

- Thickness: 1 5 nm (extreme 200 nm) controlled by
 - ion strength; polyelectrolyte material; layer number
- Structure: "spaghetti" type network
 - contain 20-60% water in wet state
 - mash size in nanometer range

- Stability: tunable from very stable to soluble depending on
 - polyelectrolyte material
 - ion strength, pH, chaotropic salts, surfactants

General properties of LbL-coatings

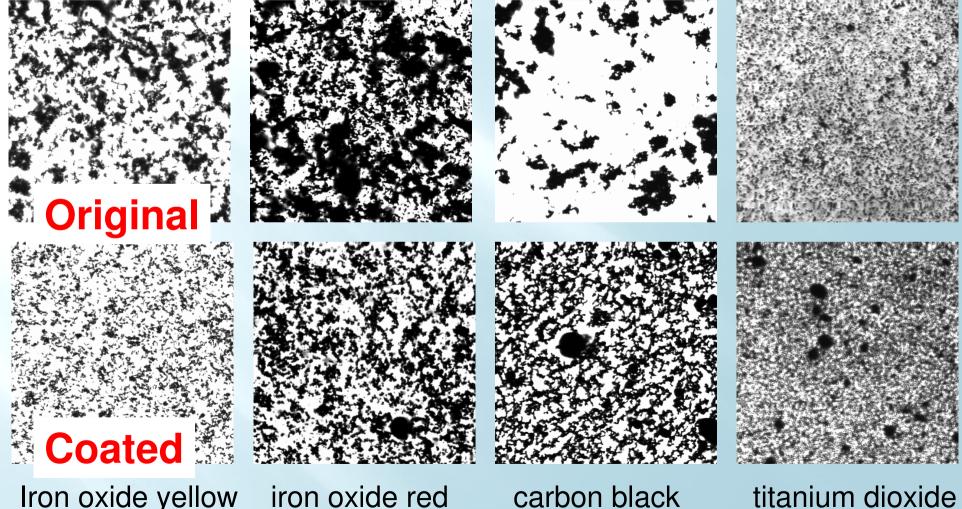
Charge:


Permeability:

- surface either positive or negative,
- interior usually neutral,
- upcharging by pH shift (weak polyelectrolytes)
- control of permeability (release properties)
- semipermeable, cut off controllable > 1 kD
- switching by external trigger possible
- water and monovalent salts go through
- impermeable for enzymes, nanoparticles, RNA
- **Nanoroughness:** surface fuzzy and rough (+/- 2 nm, dry state) - coupling especially efficient (enzymes, DNA)

2. Encapsulation of Tattoo pigments (MTDerm)

3 double layers Polyallylamine-Rho/ Polystyrene sulphonate



Unification of Surface potential by 4L coating Zeta-Potential, mV) Before coating after coating - 35 1. Titanium dioxide - 47 2. Iron oxide yellow - 29 - 34 3. Iron oxid red - 32 - 35 4. Iron oxid black - 29 - 37 5. Carbon black - 24 - 36 6. FD&C Yellow 6 lake - 18 - 31 7. D\$C Red 30 lake - 30 - 30 8. Pigment Red 5 - 25 - 31 9. FD&C Red 40 lake + 22- 36 10. Pigment Blue 15 - 30 - 32

Separation/Aggregation stability of Pigments

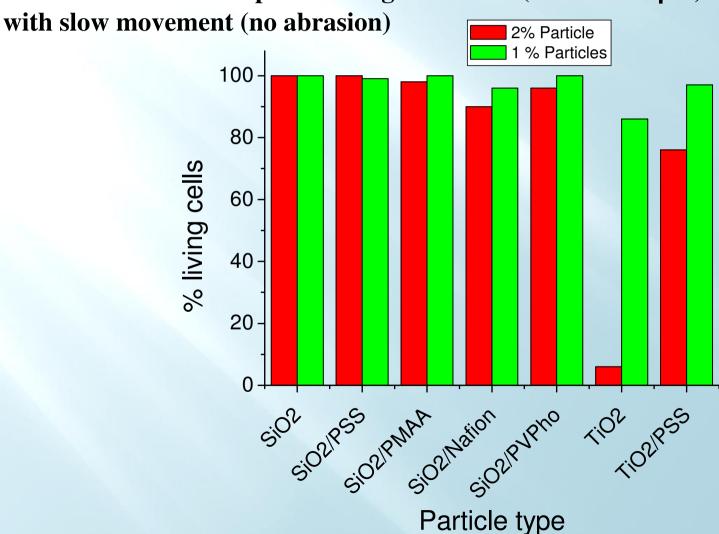
Iron oxide yellow iron oxide red Transmission image 40 µm x 40 µm titanium dioxide

3. Biocompatibility of LbL-coatings

RKO Cells 24 h in Suspension 20 g/l Particles (diameter 1 µm) without shaking

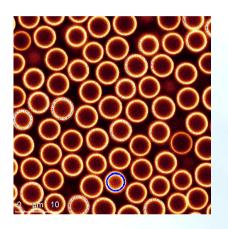
F

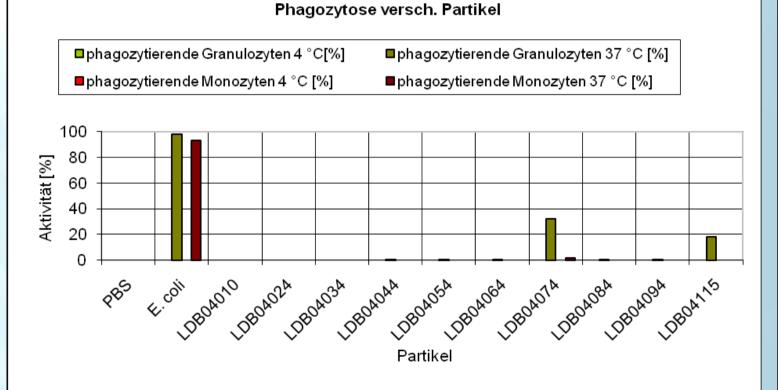
F


Number	Core / Coating	% cell survival
1 pure	TiO ₂	0
2	TiO ₂ /PAH/PSS/PAH/PSS	0
3	TiO ₂ /PAH/PSS/PAH/PMAA	0
4	TiO ₂ /PAH/PSS/PAH/Nafion	0
5	TiO ₂ /PAH/PSS/PAH/PVPho	0
6 cationic	TiO ₂ /PAH/PSS/PAH	0
7 pure	SiO ₂	99
8	SiO ₂ /PAH/PSS/PAH/PSS	92

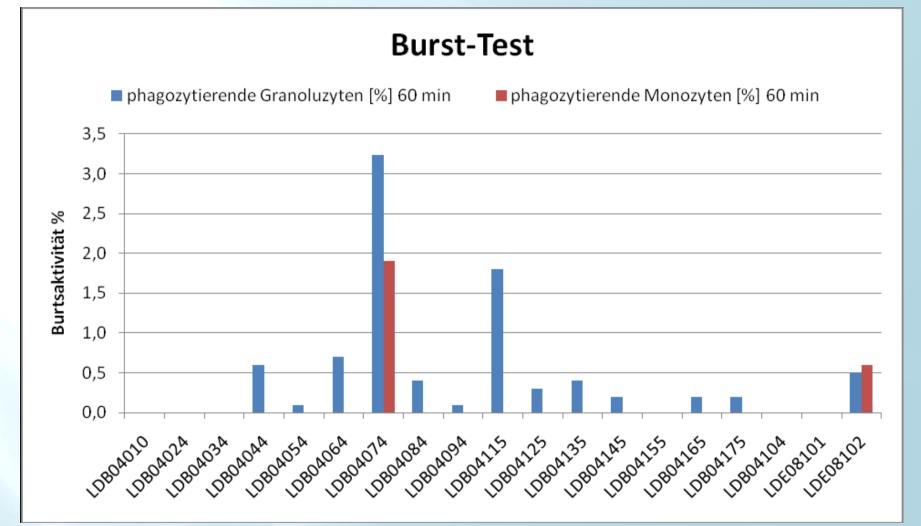
PAH:	Polyallylamine	
PSS:	Polystyrenesulphonate	
PMAA:	Polymethacrylic acid	
Nafion:	sulphonated Teflon	
	(perfluorated/hydrophob)	
PVPh:	Polyvinylphosphate	

Density $SiO_2 = 1.8 \text{ g/cm}^3$ Ti $O_2 = 4.3 \text{ g/cm}^3$ Cells are killed by pressure or by suffocating!


Cytotoxicity of LbL-coated particles


RKO Cells 24 h in Suspension 20 g/l Particles (diameter 1 μm)

Phagocyte-test


CLSM image 4.3 µm silica coated with different Polyelectrolytes 40 µm x 40 µm

074: PAH/PSS/PAH/Hyaluronic acid 115: PAH/PSS/PAH/PSS/PAH (cationic)

R. Georgieva, H. Bäumler, Inst. Transfusion Medicine Charite Berlin

Again Hyaluronic acid, PAH and Aminoguanidine largest activity

R. Georgieva, H. Bäumler, Inst. Transfusion Medicine, Charite Berlin

Possible Improvements by LbL Encapsulation

Preventing radical reaction with surrounding tissue:

Phototoxicity of TiO₂ (Anastas, Rutil)

Radicals are captured in LbL films

Enzymatic degradation of dye pigments:

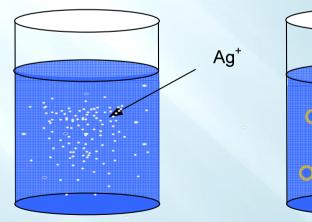
Prevention by LbL films: impermeable for enzymes

Fragmentation of pigments, release of Nanoparticles:

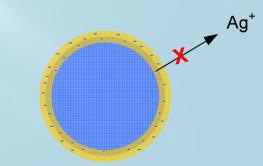
Nanoparticles can't leave the capsules; Tattoo removal might be hindered!

Bleaching:

protection by LbL hardly possible



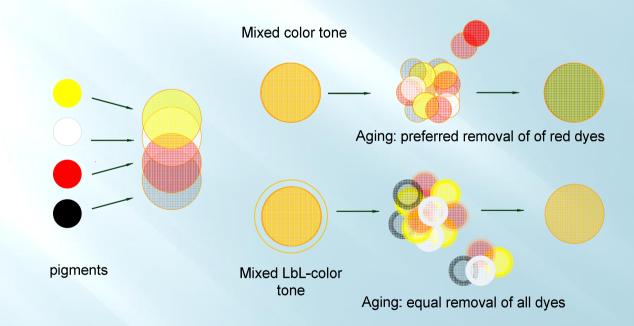
Possible Improvements by LbL Encapsulation


Prevention of poisson metal ion release?:

Experiment for safe immobilization of Silver nanoparticles:

- used as bacteriocides, high surface area \rightarrow releasing sufficient Ag⁺ ions,
- but NP dangerous due to entering cells;
- Idea: immobilization in LbL-films?
- same concentration but no effect to bacteria

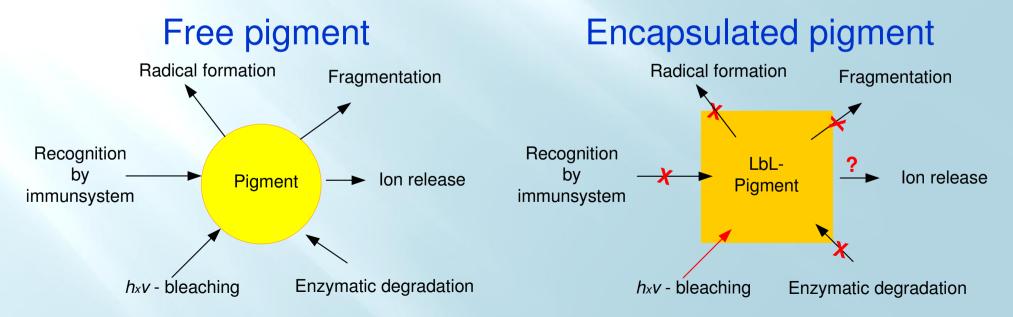
Free Ag-particles No Cell growth encapsulated Ag particles Normal cell growth


Possible mechanism Capturing of Ag⁺ ions Ag⁺ + PSS \rightarrow Complex ₂₀

Improvements by LbL Encapsulation

Recognition of immune system:

Lead to different removal from the skin (phagocytose) \rightarrow change of color tones


Ongoing project with MTDerm:

uniform surface coatings, same removal rate \rightarrow color tone remains Unsolved question: Which coating gives slowest removal?

Summary

- LbL- technology can be used for pigment encapsulation;
- Several advantages for tattoo pigments:
 - prevention of allergic reactions or inflammations
 - prevention of fast removal from skin

SURFLAY

Thanks

- Dr. Kluge, Dr. D. Lewe, MT Derm for collaboration and money
- Prof. H. Möhwald, MPI of Colloids and Interfaces for discussions
- Dr. M. Jugold, DKFZ Heidelberg for Cytotox investigations
- Prof. H. Bäumler, Dr. R. Georgieva, Charite

for Phagocytose and Burst Test

You for your attention