

Managing cyanobacterial harmful algae blooms

- CyanoHABs are a threat for drinking water supply
- Microcystis produces toxin microcystin (MC)
- Common management strategy is to reduce nutrient input
- Successful bloom control in both cases:
 - 1. dual reduction of nitrogen (N) and phosphrous (P) or
 - 2. more common P only reduction (e.g. Lake Erie)

But what about the toxins?

Conceptional model

- Previous assumption: toxins reduce proportionally to biomass
- But: 1. Communities consist of several toxin-producing or non toxin-producing strains
 2. Toxigenic strains produces varying amount of toxins
- P only reduction decreases biomass but releases resources as N and light

Evidence from lab studies

- High N and light availability increases
 MC cell quota
- Toxigenic strains benefit from high MC cell quota
- Higher NO3
 concentration
 correlate higher
 toxigenic fraction

Summary of lab studies

Evidence from modeling approach

- Mechanism implemented in an agent based model
- Application to Lake Erie
- Predicted that P only reduction increases MC concentrations
- Higher MC quota and toxigenic fraction counteract decreasing biomass
- Model critizised in scientific community
- To verify, application to eight other cases
- Good tool to develope hypothesis and understand mechanism
- Need for field data to support or refute mechanism

Management scenarios.

Evidence from field data

TP 2012 = TP 2007 = $0.52 \, \mu M$ 1.06 µM **TP**: log2(0.52/1.06) = -1.02

TN: log2(4.9/14.4) = -1.49

TN: log2(0.67/0.62) = 0.09

- Natioal Lakes Assessment: Large survey of US lakes
- Sampling frequency every five years
- Parameters include TP, TN, biomass, MC concentration, etc.

Change in TP vs. change in phytoplankton parameter

Change in TP vs. change in MC concentrations

- MC concentration increases when P only is reduced
- But: MC concentrations decrease along with biomass under dual nutrient reduction

Schampera et al., submitted, pre-print: Lake toxin concentrations increase when phosphorus is reduced | Research Square

2. Field data support model predictions

Thank you!

