

BMBF-Projekt AllerGen

Innovative nukleinsäurebasierte Methoden zur Allergenanalytik im Gewürzbereich

Hochschule Ostwestfalen-Lippe University of Applied Sciences

08.12.2010 M. Sc. Silvia Panter

Forschungsprojekt AllerGen

- Potentiell hohe Gefahr von Kreuzkontaminationen in der Gewürzverarbeitung
 - Viele Einzelsubstanzen und Gemische
 - Verwendung fast aller kennzeichnungspflichtigen Allergene
 - Herstellung in den gleichen Anlagen
 - Staubentwicklung

Foto: HS Ostwestfalen-Lippe

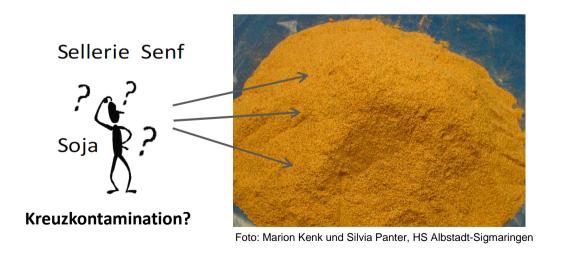


Foto: HS Ostwestfalen-Lippe

Forschungsprojekt AllerGen

- Forschungsprojekt AllerGen (seit Sept. 2008)
 - HS Albstadt-Sigmaringen, HS Ostwestfalen-Lippe, CVUA Sigmaringen, S.A.M., Rubinmühle, Schumann & Sohn, Metro Group, CONGEN
 - Projekttitel: Innovative Ansätze zur Analytik und Vermeidung allergener Kreuzkontaminationen in der Gewürzverarbeitung

Stand der Analytik im Gewürzbereich 2008

- Vergleichsmaterial für vergleichende Untersuchungen im Gewürzbereich fehlt
- Wenig Erkenntnisse über die Eignung der Nachweisverfahren (PCR/ELISA) in der Lebensmittelmatrix Gewürz
- Quantitative Nachweisverfahren fehlen
- Analyse authentischer Gewürzproben zur Abschätzung der Kreuzkontaminationsproblematik fehlt

Projekt AllerGen greift die Defizite auf

BMBF-Projekt AllerGen cont.

A.
Entwicklung eines
RisikomanagementKonzeptes für Allergene

Partner: Gewürzhersteller Verbände

Foto: HS Ostwestfalen-Lippe

B.
Gewürzspezifische
Überprüfung und Bewertung
verfügbarer Allergenanalytik

Partner: Untersuchungsamt Analytikanbieter

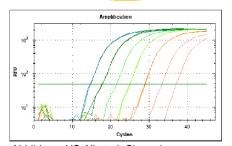


Abbildung: HS Albstadt-Sigmaringen

C.
Methodenentwicklung
sensitiver Real-Time PCR
mit neuartigen DNA-Targets

Partner:

Partner: PCR-Entwickler

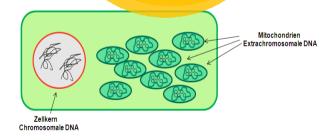
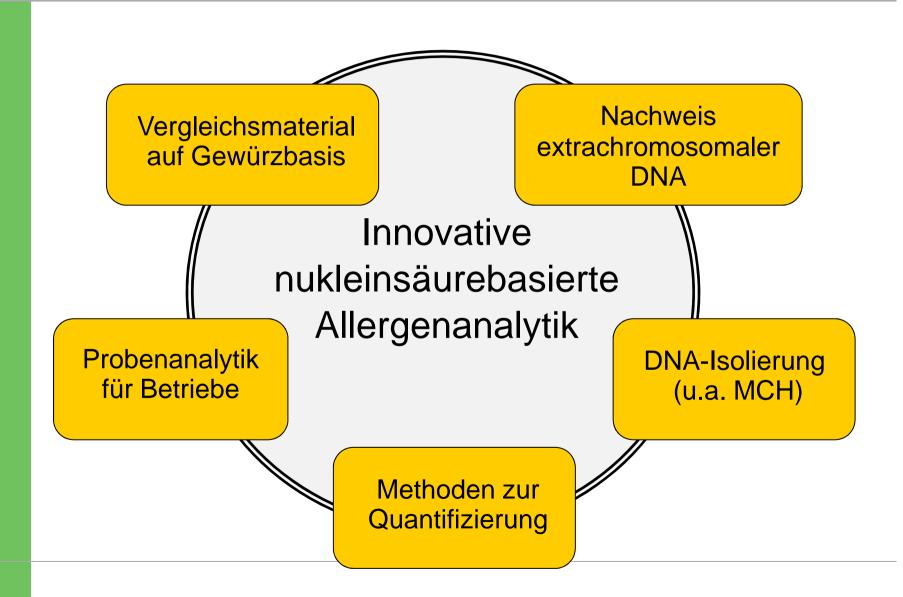



Abbildung: HS Albstadt-Sigmaringen

Teilprojekt Sigmaringen

Vergleichsmaterial auf Gewürzbasis

Allergenanalytik aktuell

- Viele verschiedene Methoden (Isolierung der DNA/Real-time PCR, Isolierung der Proteine/ELISA, usw.)
- Verschiedene kommerzielle Kits und Anbieter
- Labore wenden unterschiedlichste Methoden an bei der Analytik von Allergenen in Lebensmitteln
 - Vergleichbarkeit von Analysenergebnissen bei Anwendung unterschiedlicher Analysenmethoden?
 - Eignung der angewandten Analysenmethode für die zu untersuchende Lebensmittelmatrix?

Vergleichsmaterial für die Allergenanalytik

- Vergleichsmaterial notwendig für
 - Überprüfung und Bewertung von Methoden (Real-time PCR/ DNA-Isolierung, ELISA, usw.)
 - Methodenvergleich/-eignung bei unterschiedlichen Lebensmittelmatrices
 - Standardisierung der Allergenanalytik
- Prinzip: Allergenfreie Lebensmittelmatrix mit definierten Konzentrationen an Allergenen dotieren (z.B. 10, 20, 50 mg/kg)
- Aktuell 3 Forschungsprojekte die Vergleichsmaterial herstellen (z.B. Gewürze, Backwaren, Brühwurst, Schokolade, Eiscreme)

Herausforderung

Homogene Verteilung der allergenen Rohstoffe im Modellgewürz

Nachweis geringster Mengen Allergen

1 mg/kg= 1 ppm= 0,0001 %

250 mg Probeneinwaage für DNA-Isolierung

1/10 DNA-Extrakt für Real-time PCR

Foto: Marion Kenk und Silvia Panter, HS Albstadt-Sigmaringen

Herstellung Vergleichsmaterial - Plan

Allergenfreies Modellgewürz

Kochsalz (50 %) Hefeextrakt (10 %) Paprikapulver (10 %) Kyrosan® (10 %) Saccharose (10 %) Pfeffer, schwarz (5 %)

Zwiebelpulver (5 %)

Je 1 % allergene Rohstoffe (allergene Zutat)

10000 ppm (2 kg)

Serielle Verdünnung mit Modellgewürz

1000 ppm (5 kg)

Serielle Verdünnung mit Modellgewürz

100 ppm (5 kg)

Usw.

50, 20, 10, 5, 1 ppm (je 5 kg)

Erdnuss (entfettet)
Hühnereiweiß
Laktose
Magermilchpulver
Sellerieknollenpulver
Senfmehl
Sesam (entfettet)
Sojamehl (fettarm)
Weizenmehl

Herstellung Vergleichsmaterial - Mischen

- Methodenentwicklung notwendig zur Herstellung einer homogenen Mischung
- Erfolg abhängig von
 - physikalischen Eigenschaften der zu mischenden Stoffe (z.B. Partikelgröße und -form, Agglomerationsneigung, Dichteunterschiede, Fließeigenschaften, Konsistenz/Fettgehalt)
 - Mischprinzip und der Wirksamkeit der verwendeten Maschine

Doppelkonusmischer

Rhönradmischer

Überprüfung Vergleichsmaterial

- Überprüfung der Homogenität des Materials
- Analyse jeder Konzentrationsstufe (Thompson et al. 2006)
 - Aufteilung des Probenmaterials in 10 Portionen
 - Aus jeder Portion werden je zwei Proben aufgearbeitet
 - Einzelbestimmung der isolierten Proben in PCR/ELISA für
 - ausgewählte Allergene
 - Statistische Bewertung der Homogenität

Pure Appl. Chem., Vol. 78, No. 1, pp. 145–196, 2006. doi:10.1351/pac200678010145 © 2006 IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION*

INTERDIVISIONAL WORKING PARTY FOR HARMONIZATION OF OUALITY ASSURANCE SCHEMES

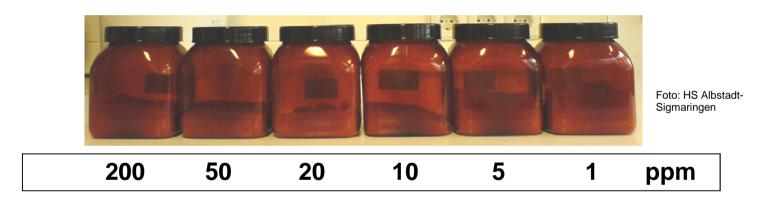
THE INTERNATIONAL HARMONIZED PROTOCOL FOR THE PROFICIENCY TESTING OF ANALYTICAL CHEMISTRY LABORATORIES

(IUPAC Technical Report)

Prepared for publication by MICHAEL THOMPSON¹, STEPHEN L. R, ELLISON^{2,‡}, AND ROGER WOOD³

Herstellung Modellgewürz

- Herstellung eines allergenfreien Modellgewürzes in einem gewürzverarbeitenden Betrieb
- Analytik: Modellgewürz wies eine Kreuzkontamination mit Senf auf und konnte nicht verwendet werden
- Relevanz und Notwendigkeit des Forschungsprojekts ersichtlich
- Herstellung eines zweiten Modellgewürzes (HS OWL)



Analytik: Zweites Modellgewürz wird verwendet für die Herstellung des Vergleichsmaterials

Vorversuch (Labormaßstab)

 Allergenfreies Modellgewürz dotiert mit den Allergenen Sojamehl, Sellerieknollenpulver und Senfmehl

 Überprüfung von zwei DNA-Isolierungsmethoden und unterschiedlichen Real-time PCR-Verfahren

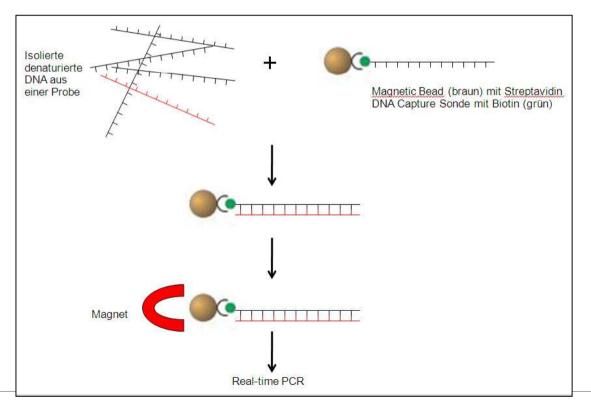
Vorversuch (Labormaßstab)

 Vergleich zweier Isolierungsmethoden (A/B) mit anschließender Sellerie Real-time PCR

Proben	Isolierung A	CT-Wert (Isol. A)	Isolierung B	CT-Wert (Isol. B)
Blank	0/3		0/3	
1 ppm	0/3		1/3	34,4
5 ppm	0/3		2/3	34,3/34,8
10 ppm	0/3		3/3	32,1/32,0/32,5
20 ppm	0/3		3/3	33,2/31,9/32,7
50 ppm	2/3	35,4/34,0	3/3	31,8/31,5/30,2
200 ppm	3/3	33,7/33,3/33,6	3/3	29,4/29,6/29,1
Extraktionsk	. 0/1		0/1	

 DNA-Isolierungsmethode entscheidend für sensitive Analytik im Modellgewürz (mit Isol. B 20-fach sensitiver)

Vergleichsmaterial unabdingbar für die Überprüfung der Eignung von Methoden



Magnetic Capture Hybridisierung

Magnetic Capture Hybridisierung (MCH)

 MCH: Sequenzspezifische Isolierung des Zielanalyten mittels Magnetpartikeln und Fängersonden

Theorie Magnetic Capture Hybridisierung

- Isolierung der gesamten spezifischen Ziel-DNA
- Theoretisch: Eliminierung von möglichen PCR-Inhibitoren, Hintergrund-DNA und Begleitstoffen (Fett, Proteine, Polysaccharide, etc.)

Hochreine DNA für sensitive Analytik

 MCH bisher noch nicht in der Allergenanalytik für Lebensmittel eingesetzt

Magnetic Capture Hybridisierung

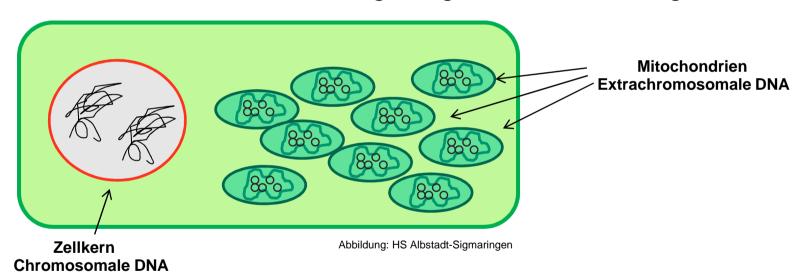
MCH-System für Haselnuss etabliert

1000 ppm Haselnuss in Lebensmittelmatrix (1 x isoliert, 4-fach gemessen)						
Isolierungsart	Positive Real-time	CT-Werte	Mittelwert der CT-			
isonei urigsai t	PCR Ergebnisse		Werte			
CTAB-Isolierung mit	414	22,68/23,51	00.00			
QIAquick-Aufreinigung	4/4	23,59/22,60	23,09			
CTAB-Isolierung mit	4/4	23,76/23,88	22.02			
anschließender MCH	4/4	24,34/23,71	23,92			

- Sequenzspezifische Isolierung funktioniert prinzipiell
- MCH vergleichbar mit klassischer Isolierungsmethode
- Weitere Optimierung des Systems (Salzkonzentration, Inkubationszeit, usw.)

DNA-Isolierung

- DNA-Isolierung enorm wichtig für die anschließende Analytik mittels Real-time PCR
- Ein Schwerpunkt des 3. Projektjahres liegt in der weiteren Optimierung von DNA-Isolierungsverfahren
- Methodenentwicklung/ -optimierung der DNA-Isolierung
 - Sensitive Allergenanalytik
 - Großes Spektrum an Lebensmittelmatrices abdecken
- Eignung der Verfahren für verschiedenste Produktgruppen anhand von Vergleichsmaterialien überprüfen


Nachweis von Soja anhand mitochondrialer DNA

Mitochondrialer Sojanachweis

Mitochondriale DNA liegt in Zellen in höherer
 Kopienzahl vor als genomische DNA

Theoretisch sollte sich eine Steigerung der Sensitivität ergeben

 Etablierung eines sondenbasierten Real-time PCR Systems zum Nachweis von Soja anhand mitochondrialer DNA

Mitochondrialer Sojanachweis

Eingesetzte Soja- Mittelwert der CT- Abweichung DNA-Menge Werte und Stabw der CT-Werte in 3 PCR's

- Serielle Verdünnung von Gesamt-Soja-DNA
- Doppelbestimmung in 3 unabhängigen Real-time PCR Läufen (n= 6)
- Aufgeführt sind die Konzentrationen bei denen alle Reaktionen positiv

waren

Mitochochondriales Nachweissystem

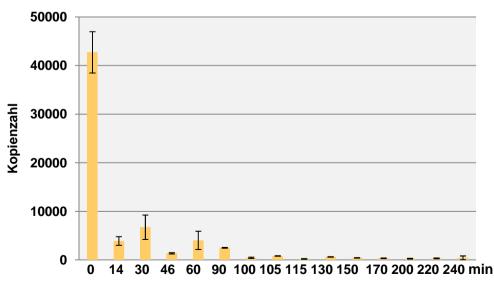
25000 pg	17,91±0,34	0,15
2500 pg	21,17±0,11	0,13
250 pg	24,56±0,34	0,09
25 pg	27,85±0,37	0,13
2,5 pg	31,32±0,43	0,38
0,25 pg	34,62±0,47	0,55

ca. 100-fach

Nukleäres Nachweissystem

•		
25 pg	35,50±0,45	0,63
250 pg	32,11±0,12	0,11
2500 pg	28,69±0,29	0,11
25000 pg	25,69±0,42	0,58

Steigerung der Sensitivität konnte bestätigt werden

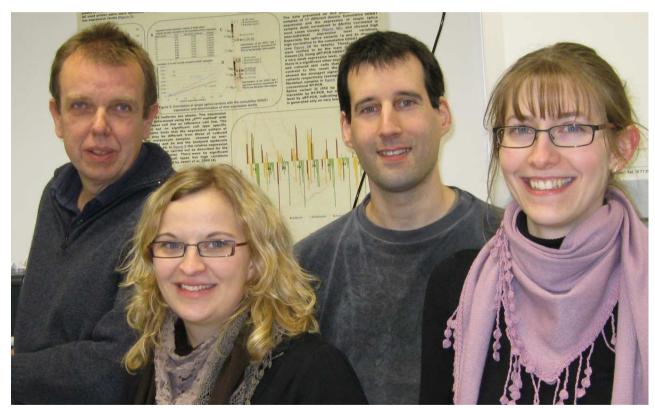

Mitochondrialer Sojanachweis

- Sensitivitätssteigerung um das ca. 100-fache im Vergleich zu einem kommerziellen Sojanachweissystem erreicht
 - Spurenbereich kann zuverlässig erfasst werden
 - Höhere Messgenauigkeit im Spurenbereich
 - Sehr gut einsetzbar zum Nachweis von Kreuzkontaminationen
- Nachweissystem ermöglicht z.B. in Betrieben Kreuzkontaminationen nachzuweisen und entsprechende Maßnahmen einzuleiten
- Betriebsversuch: Ist das durchgeführte Reinigungsprotokoll ausreichend bei einem Produktwechsel?

Praxisanwendung

- Produkt mit 1/3 Sojaanteil läuft über eine Anlage
- Reinigung: 240 min konstanter Spülvorgang mit sojafreiem Produkt
- Fragestellung: Ist der Reinigungsschritt ausreichend?

Nach ca. 90 min reguliert sich das Sojasignal auf ein Hintergrundrauschen



Ausblick

- Optimierung der DNA-Isolierung
- Quantifizierungsstrategien
- Probenanalytik für Betriebe zur Aufdeckung von Kreuzkontaminationen

Team AllerGen Sigmaringen

Prof. Dr. Jörg Bergemann M. Sc. Silvia Panter B. Sc. Tobias Bauer B. Sc. Marion Kenk

Es fehlen: Dr. Sven Hellwig (HS Sig), Oberchemierätin Elisabeth Burgmaier-Thielert (CVUA Sig) und Dr. Gabriele Engler-Blum (CVUA Sig)

Vielen Dank für Ihre Aufmerksamkeit!

Hochschule Ostwestfalen-Lippe University of Applied Sciences

Chemisches und Veterinäruntersuchungsamt Sigmaringen

