HUMAN SYSTEMIC EXPOSURE TO OXIDATIVE HAIR DYES

BfR
Berlin
15 October, 2009

Gerhard J. Nohynek, MSc, PhD, D.A.B.T., E.R.T.
L’OREAL R&D, Global Safety Evaluation
gnohyne@rd.loreal.com
International Agency for the Research of Cancer (IARC, 2008):

- Personal use of hair colorants: inadequate evidence (Class 3)
- Occupation as a hairdresser or a barber entails exposures that may be probably carcinogenic (Class 2A)

NB: In epidemiology, contact or profession are **SURROGATE ENDPOINTS for EXPOSURE**: If you work with the substance, you are (maybe?) exposed and (maybe?) systemically exposed

What is the human consumer and professional exposure to oxidative hair dyes?
Human skin penetration / systemic exposure to a $[^{14}\text{C}]-\text{PPD}$-containing hair dye *

- Eight male volunteers (female volunteers hard to find)
- Treatment with 70 mL of a commercial hair dye containing 1.3 grams of $[^{14}\text{C}]-\text{PPD}$ (contact: 30 minutes)
- Hair shampooed, washed, rinsed, dried, clipped, scalp washed after 24 hours
- $[^{14}\text{C}]$ in hair, water, blood, urine and faeces for 144 hours after treatment
- Study conducted under GCP and GLP

* Hueber-Becker et al., 2004
Human systemic exposure to a $[^{14}\text{C}]$-PPD-containing hair dye: results *

- Washing water: $81.7 \pm 2.2\%$ of radioactivity
- 24-Hour scalp wash: $0.41 \pm 0.10\%$
- Hair: $13.0 \pm 2.0\%$
- Urine: $0.50 \pm 0.21\%$ (mono- and di-acetylated PPD)
- Nearly quantitative excretion in 24 hours
- Total absorbed: $0.54 \pm 0.25\%$ (0.09 mg/kg)
- Urine: mono- and di-acetylated metabolites of PPD**

CONCLUSION: systemic exposure to hair dye components is minimal

* Hueber-Becker et al., 2004; ** Nohynek et al., 2005

GJN, Berlin, 15/10/2009
Plasma levels (ng 14C-equivalents/ml) in human volunteers after hair dyeing with a dark-shade $[^{14}$C]-PPD hair dye (2004, max. exposure conditions) *

$AUC_{0-10h} = 670 \text{ ng} \times \text{hrs} \times \text{ml}^{-1}$

* Dark shade dye / short hair (Meuling et al., 2003; Hueber-Becker et al., 2004)
Consumer Exposure Study (2008) to a $[^{14}C]$-PPD-Based Oxidative Hair Dye (N = 18)
2008/2009 results: consumer syst. exposure ([\(^{14}\)C]- plasma equiv.) after exposure to a [\(^{14}\)C]-PPD-labelled oxidative hair dye

Consumer Expo Study (1.0% PPD)

Mean AUC\(_{0-24\text{hrs}}\): 711.5 ± 411 ng PPD\(_{eq}\) x hrs/mL
Mean Cmax: 98.9 ± 59.7 ng PPD\(_{eq}\)/mL
Consumer syst. exposure vs. that of rats at oral NOEL or <NOAEL (4.0 or 6.45 mg/kg/day, respectively): TK-based MOS = 16 to 45x
p-Phenylenediamine (PPD) is N-acetylated in human skin and hepatocytes, no N-hydroxylation*

N.B.: skin and liver have different capacity but same specificity

*Nohynek et al, Toxicology Letters (2005)

N,N’-diacetyl-PPD (DAPPD), some N-monoacetyl-PPD (MAPPD)
HPLC of rat plasma after dermal treatment with $[^{14}\text{C}]$-p-phenylenediamine (PPD) for 24-hours under occlusion *1

N,N’-diacetyl-PPD (DAPPD) only

PPD absent!

DAPPD only metabolite found in human plasma (2009)

DETOXIFICATION? - GENETIC TOXICITY OF N-MONO- and N,N’-DIACETYL-PPD *¹

<table>
<thead>
<tr>
<th>TEST</th>
<th>PPD</th>
<th>MAPPD</th>
<th>DAPPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMES TEST</td>
<td>+ (+S9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MICRONUCLEUS TEST</td>
<td>+ (+/- S9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Human Lymphocytes)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ N-acetylation of arylamines generally results in de-toxification, but there are exceptions (benzidine!)

In contrast to the bladder carcinogen 2-aminofluorene (2-AF), human liver cells do not activate (N-hydroxylation) p-phenylenediamine (PPD) *

- Incubation of PPD with human hepatocytes, human S9, recombinant human P450 enzymes
- Positive control substance: 2-aminofluorene (2-AF = carcinogenic aromatic amine) * (Stanley et al., Toxicology 2005)
Commonly Used Oxidative Hair Dye Ingredients

X = No Evidence for Formation of Activated, N-Hydroxylated Metabolites *

- p-phenylenediamine
- 2,5-diaminotoluene
- p-aminophenol
- N,N-bis(2-hydroxyethyl)-p-phenylenediamine
- p-methylaminophenol
- 1-hydroxyethyl-4,5-diamino pyrazole
- 4-amino-2-hydroxytoluene (AHT)
- m-aminophenol
- 4-amino-m-cresol

* Skare et al., *Xenobiotica*, 1-15, 2009
CONCLUSION

Under maximum exposure conditions, human systemic exposure amounts to about 0.5% of the applied dye.

- Human systemic exposure agent from PPD-containing hair dyes (and other arylamine-type hair dye ingredients) is N,N’-diacylated PPD.
- Metabolism takes place in the skin (NAT1).
- Metabolites are non-genotoxic and, therefore, detoxified.
- Hair dye arylamines are unable to form potentially carcinogenic metabolites.
Little known about the exposure of hairdressers to oxidative hair dyes (2 published studies)

- Air levels of PPD in a hairdressing saloon (Gagliardi et al., 1992)
 - No PPD detected
 - Data insufficient evidence for exposure estimation

- Dermal exposure of hairdressers (Lind et al., 2005)
 - Non-controlled conditions (hairdressing salon)
 - Minute skin residues (ng/cm² range)
 - No difference in skin residues between glove-protected and non-protected hands (?)
 - No data on systemic exposure
OBJECTIVES AND METHODS

- Participants: 18 professional hairdressers with ample professional experience

- Application of a 14C-PPD-containing oxidative hair dye (commercial, dark-shade, containing 2% 14C-PPD / 1% resorcinol / 1% m-aminophenol on head).

- High quality training heads with natural human hair (length 30-35 cm, hair density similar to that of human hair)

- Study performed under GLP / GCP conditions after ethical review and receipt of informed consent
SAMPLES FOR $[^{14}\text{C}]-$MONITORING

Systemic exposure
- Blood samples: pre-study, 4 h (end of morning shift), 8 h (end of afternoon shift), 24 h after start of exposure
- Urine: quantitative, 4 samples up to 48 hours after start of exposure (urinary excretion = quantitative systemic exposure)

External exposure
- Hand washes: before and after each task
- Air: area and personal monitoring, nasal rinses

Mass-Balance (recovery)
- All tools/materials, washing/rinsing liquids
- Protective equipment (gloves, coats)
- Training heads (shaved at the end of the study + scalp extraction)
PHASE A: Preparation and coloring

- Hair dyeing phase
 - Weighing and mixing of dye and developer (without gloves)
 - Application of hair dye product on roots/length of hair (gloves)
 - Cleaning of used material (gloves)

Personal Air Sampling device
F: Filter (particles)
CC: Charcoal Cartridge (vapours)

GJN, Berlin, 15/10/2009
PHASE B: Rinsing, shampooing and conditioning

- Rinsing and shampooing of dyed hair (gloves)

- Application of conditioner, rinsing and drying of hair with absorbant paper (no gloves)
PHASE C: Hair cutting and styling

- Cutting of hair (no gloves)
- Drying with electric drier (no gloves)
- Brushing (no gloves)
RESULTS OF A WORKING DAY: INDIVIDUAL HAIR STYLES
SINKS OF RADIOACTIVITY
(mean recovery from 6 complete working days)

<table>
<thead>
<tr>
<th>COMPARTMENT</th>
<th>MEAN ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIXING BOWLS</td>
<td>2.88 ± 0.54</td>
</tr>
<tr>
<td>CUT HAIR</td>
<td>53.46 ± 4.06</td>
</tr>
<tr>
<td>RINSING WATER</td>
<td>45.47 ± 2.95</td>
</tr>
<tr>
<td>TOTAL RECOVERY</td>
<td>102.50 ± 2.2</td>
</tr>
</tbody>
</table>

- **Hair**
- **Water**
- **Bowl**
- **Other**
Blood at pre-exposure, 4 h (end of morning session), 8 h (end of afternoon session), and 24 h after start of exposure: no radioactivity detected above the limit of detection (<10 ng PPD_{eq}/mL) in any blood sample (n=72)

Perspective: 1 baby antipyretic (acetaminophen = skin metabolite of p-aminophenol) results in a C_{MAX} of about 10,000 ng/mL
INHALATION EXPOSURE

- **Vapours (charcoal filters)**
 - BLQ for all samples during washing phase; some samples above the LoQ, mainly during dyeing phase

- **Particles (acetate filters)**
 - BLQ for all samples during washing and cutting phases; some samples from dyeing phase above the LoQ
 - Air levels at least one order of magnitude below those in charcoal filters

- All nasal rinsings and ambient air samples were BLQ
EXPOSURE OF HANDS
(combined hand rinses per working day)

<table>
<thead>
<tr>
<th>Study Phase</th>
<th>% of applied radioactivity</th>
<th>Skin exposure (mg PPD_{eq})</th>
<th>Skin area exposure dose (µg PPD_{eq}/cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hair dye preparation/application</td>
<td>0.0002 ± 0.0001</td>
<td>0.005 ± 0.002</td>
<td>0.006</td>
</tr>
<tr>
<td>Rinsing/shampooing</td>
<td>0.003 ± 0.001</td>
<td>0.061 ± 0.013</td>
<td>0.071</td>
</tr>
<tr>
<td>Cutting/drying</td>
<td>0.006 ± 0.002</td>
<td>0.128 ± 0.047</td>
<td>0.148</td>
</tr>
</tbody>
</table>

- Skin exposure highest at cutting/drying phase (no gloves)
- Results suggest that standard occupational precautions adequately protect against induction of PPD-mediated contact allergy: several µg/cm^2 skin of extreme sensitisers required to induce sensitisation
Individual 0-48 hr Urinary Excretion after a single working day (μg 14C-PPD$_{eq}$)

- PREP. / DYEING
- RINSING / CONDITIONING
- CUTTING / DRYING

Total (0-48 hr) μg 14C-PPD$_{eq}$ excreted

LOQ

GJN, Berlin, 15/10/2009
SYSTEMIC EXPOSURE: $[^{14}\text{C}]-\text{URINARY EXCRETION IN PERSPECTIVE}$

- Cumulative exposure (A+B+C study phases combined): $<0.36 \mu g$ PPD$_{eq}$/kg bw/working day ($<0.0012\%$ of applied radioactivity)

- Worst case scenario:
 - 6 hair dyeing processes per day (heavy work load)
 - Darkest shade formulation, max. concentrations (the majority of US / EU shades used are blond!)
 - All BLQ-samples considered to be at LoQ

- It is improbable that such low exposure levels may produce significant systemic adverse health effects

- Corresponding to “low level of concern” - EU Food Safety Agency for most genotoxic carcinogens in food: daily human intake $< BMD_{10}/10.000$
Human Virtually Safe Doses of Carcinogens (µg/day using EFSA approach, calculated with TD_{10} values of CPDB, Berkely, 2006)

EFSA, 2005: a daily exposure to 0.36 µg/kg would be of « low concern » for most genotoxic carcinogens listed in the CPDB, when occurring in food.
CONCLUSION

Current epidemiological evidence suggests that hairdressers have no increased cancer risk *

- EVIDENCE that application of hair dye arylamines to the skin of humans, rats and pigs results in transformation to their acetylated metabolites, most likely by NAT1

- EVIDENCE that acetylated arylamines are detoxified

- EVIDENCE that acetylation is independent of human NAT2 status

OVERALL EVIDENCE: NO SYSTEMIC HUMAN HEALTH RISK

* Czene et al. (2004): 45000 hairdressers
Skin absorption of hair dyes: Do in vitro skin penetration data always reflect human systemic exposure? *

- Hydroxyanthraquinone aminopropyl methyl morpholinium methosulphate (HAM, COLIPA C117)
- Empirical Formula: C22H25N2O4 - CH3SO4
- MW: 492.5
- Melting Point: 215° C
- Soluble in water and ethanol (>100 g/L at 20° C)
- Log Po/w: -2

* Lademann et al., FCT, 2009
RESULTS IN VITRO

<table>
<thead>
<tr>
<th>COMPARTMENT</th>
<th>% OF APPLIED DOSE (Mean ± SD)</th>
<th>µg/cm² (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM APPLIED</td>
<td>-</td>
<td>98.53 ± 0.18</td>
</tr>
<tr>
<td>SURFACE EXCESS</td>
<td>103.6 ± 2.4</td>
<td>102.21 ± 2.30</td>
</tr>
<tr>
<td>STRATUM CORNEUM</td>
<td>1.52 ± 0.36</td>
<td>1.50 ± 0.36</td>
</tr>
<tr>
<td>EPIDERMIS + DERMIS</td>
<td>0.87 ± 0.34</td>
<td>0.86 ± 0.34</td>
</tr>
<tr>
<td>RECEPTOR FLUID</td>
<td><0.046 ± 0.03*</td>
<td><0.045 ± 0.028*</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>106.1 ± 2.1</td>
<td>104.4 ± 2.2</td>
</tr>
</tbody>
</table>

- « BIOAVAILABLE »
 (epidermis/dermis/receptor fluid)

 0.92 ± 0.32

 0.91 ± 0.32

 (SED = 0.63 mg!)

* Although 5/7 cell values were BLQ, presence at the LOQ was presumed
Results *in vivo*: skin rinsing appears to remove the dye from the treated skin site.
Application to human scalp skin *in vivo*

Light microscopy of human skin after application of HAM, followed by skin rinsing (a) and after five subsequent tape strips (b). Image (a) shows presence of dye in hair follicle openings and skin furrows. After tape stripping, visible dye residues remain in the follicular orifices (b).
Section (a) and topical view (b) of a cyanacrylate biopsy of the hair follicle opening (back and scalp).

Presence of fluorescence shows that HAM penetrates only into the upper part of the hair follicle orifices.
Overall skin residues: *in vitro* « absorbed » versus *in vivo* residues in non-living skin

![Graph showing in vitro and in vivo residues.]

N.B.: Values are similar or nearly-identical: *in vitro* artefacts
Combination of last-century mechanical method (skin stripping) with 21st-Century analytical methods...

- may produce artefactual residues that actually remain outside the living skin in vivo

- interpretation of such in vitro trace residues as a « Human Systemic Exposure Dose » may result in unnecessary in vivo animal tests on substances that produce no systemic exposure in humans

THEREFORE:

- For substances with low potential (phys./chem. properties) for significant skin penetration, residues in the epidermis/dermis compartments at <1.0 µg/cm² should be qualified as negligible

- Need for a reasoned « Treshold of Skin Absorption » (TSA) defining a cut-off level for negligible percutaneous absorption/penetration: <1.0 µg/cm²?
Final remark...

All models are wrong, some models are useful...

(George Box, 1959)

Useful when the interpretation of the model’s data take into account its inherent limits...
Further reading

Lack of evidence for metabolism of p-phenylendiamine by human hepatic cytochrome P450 enzymes
Lesley A. Stanley, Julie A. Skars, Edward Doyle, Robert Powis, Diane D’Angelo, Clifford R. Elenbe

Occupational exposure of hairdressers to [14C]para-phenylenediamine-containing oxidative hair dyes: A mass balance study

In vitro genotoxicity of para-phenylenediamine and its N,N-diacylated N'-acylated and N'-acylated N'-diacylated metabolites
Jean-Luc Garrigue, Mark Ballantyne, Tirumalakompondam Kumaran, Mel Lloyd, Gerhard J. Nohnenky, David Kirkland, Hervé Touzain
Metabolism of PPD in human epidermis and hepatocytes*

CONCLUSION: human liver and skin transforms PPD to N-mono- and N,N’-diacetyl derivatives (NAT1).

* Nohynek et al., Toxicology Letters, 2005

Is the organism exposed to PPD or hair dye reaction products at all?

* Nohynek et al., Toxicology Letters, 2005