Exposure assessment

“Exposure Assessment The qualitative and/or quantitative evaluation of the degree of intake likely to occur”

• Identify the exposure pathways via which resistance determinants on human pathogens reach humans and cause adverse health effects;
• Look at the frequency and magnitude of these exposures; and
• Design of monitoring programs
• Consider how changing the use of antimicrobials and other possible risk management actions (e.g. irradiation) would affect the exposure
General exposure pathways: origins

Food

Water

Humans

Animals
Exposure pathways: particular origins

- **Food**
 - Chicken
 - Turkey
 - Beef
 - Pork
 - Produce

- **Water**
 - Sewage
 - Litter

- **Humans**
 - Community
 - Hospital
 - Food worker

- **Animals**
 - Livestock
 - Pets
 - Wildlife
<table>
<thead>
<tr>
<th>Salmonella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Humans</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Animals</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Staphylococcus aureus

<table>
<thead>
<tr>
<th>Category</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Chicken, Turkey, Beef, Pork, Produce</td>
</tr>
<tr>
<td>Water</td>
<td>Sewage, Litter</td>
</tr>
<tr>
<td>Humans</td>
<td>Community, Hospital, Food worker</td>
</tr>
<tr>
<td>Animals</td>
<td>Livestock, Pets, Wildlife</td>
</tr>
</tbody>
</table>
Salmonella

Food
- Chicken
- Turkey
- Beef
- Pork
- Produce

Water
- Sewage
- Litter

Humans
- Community
- Hospital
- Food worker

Animals
- Livestock
- Pets
- Wildlife

Community

Hospital
Salmonella

Goal is to rank exposure pathways based on frequency and magnitude of exposures

<table>
<thead>
<tr>
<th>Category</th>
<th>Community Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td></td>
</tr>
<tr>
<td>Produce</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Sewage</td>
<td></td>
</tr>
<tr>
<td>Litter</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
</tr>
<tr>
<td>Food worker</td>
<td></td>
</tr>
<tr>
<td>Animals</td>
<td></td>
</tr>
<tr>
<td>Livestock</td>
<td></td>
</tr>
<tr>
<td>Pets</td>
<td></td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
</tr>
</tbody>
</table>
Salmonella

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Chicken, Turkey, Beef, Pork, Produce</td>
</tr>
<tr>
<td>Water</td>
<td>Sewage, Litter</td>
</tr>
<tr>
<td>Humans</td>
<td>Community, Hospital, Food worker</td>
</tr>
<tr>
<td>Animals</td>
<td>Livestock, Pets, Wildlife</td>
</tr>
</tbody>
</table>

Goal is to rank exposure pathways based on frequency and magnitude of exposures:
- prevalence of bacteria
- prevalence of resist. determinants
- bacterial load
- degree of interaction (consumption/contacts)
Salmonella

Food
- Chicken
- Turkey
- Beef
- Pork
- Produce

Water
- Sewage
- Litter

Humans
- Community
- Hospital
- Food worker

Animals
- Livestock
- Pets
- Wildlife

Community Hospital

Ranking of pathways by frequency and magnitude

Design of monitoring programs
Salmonella

Food
- Chicken
- Turkey
- Beef
- Pork
- Produce

Water
- Sewage
- Litter

Humans
- Community
- Hospital
- Food worker

Animals
- Livestock
- Pets
- Wildlife

Community Hospital

Risk management actions

Changes frequencies and magnitudes

New ranking of pathways

New monitoring programs
Exposure assessment

“Exposure Assessment” The qualitative and/or quantitative evaluation of the degree of intake likely to occur

- Identify the exposure pathways via which resistance determinants on human pathogens reach humans and cause adverse health effects;
- Look at the frequency and magnitude of these exposures; and
- Design of monitoring programs
- Consider how changing the use of antimicrobials and other possible risk management actions (e.g. irradiation) would affect the exposure