

"Towards a Risk Analysis of Antibiotic Resistance"

Berlin, Germany November 11, 2003

Definition of the Hazard

Human illness:

- Caused by an antimicrobial-resistant bacteria,
- Attributable to an animal-derived food commodity, and
- Treated with the human antimicrobial drug of interest

Definition of the Hazard

Resistance Gene Reservoirs:

- Commensal organisms, e.g., Enterococcus transferring resistance genes or determinants to human commensals or human pathogens
- ESBLs
- Co-selection and induction of resistance -e.g., tetracycline

Scope of the Problem

- Enteric zoonotic pathogens
- Commensal bacteria
- Proactive/Preventive approach rather than wait for conclusive evidence

Development of Antimicrobial Resistance in Humans

Veterinary use of antibiotics

Selection of resistant bacteria in animals

Food chain and/or direct contact

Cross resistance to human statistics Resistance transfer to human intestinal flora

Does antibiotic use in animals affect public health?

Lines of evidence that link resistant bacteria with food animals

- Deductions from the general epidemiology of foodborne infections
- Ecological studies of trends
- Outbreak investigations
- Case reports of farmers, their families, or other persons directly exposed to drug-resistant bacteria
- Subtyping of isolates

Evidence about transfer of resistance genes from food animals to humans

- Under selective pressure, foodborne pathogens and commensal bacteria become reservoirs of resistance genes
- Escherichia coli, Klebsiella, Enterobacter, enterococci, Salmonella, Bacterioides etc
- The public health dimensions of transfer of genes between commensals to pathogens are difficult to quantify
 - Routine diagnostics only look after pathogens
 - It is difficult to determine the direction of transfer
 - It is difficult to determine where a gene came from

Deductions from the general epidemiology of foodborne infections

	Foodborne
 Salmonella, nontyphi 	95%
 Campylobacter 	80%
E. coli	
Verocytotoxigenic	85%
Enterotoxigenic	70%
Other diarrhoeagenic	30%
Uropathogenic and invasive	?
(adapted from Mead et al, 1999)	

Person-to-person transmission of nontyphoid Salmonella and Campylobacter is rare

Evidence from outbreaks

- Outbreaks of Salmonella have linked antimicrobial resistant bacteria back to farms:
 - Holmberg et al., 18 patients with MDR S. Newport. Source: Hamburger from SD cattle fed chlortetracycline (N Engl J Med 1984)
 - Mølbak et al., 23 patients with DT104 ACSSuTNx, Danish pig farm, treatment failures (N Engl J Med 1999). No evidence of recent use of FQ at the farm
 - Walker et al., 86 patients with DT104 ACSSpSuTNx, milk from a dairy farm, FQs used at the farm in the month before the outbreak (Vet Rec 2000)
 - Fey et al., child living on a farm, ceftriaxone res. MDR
 S. Typhimurium (N Engl J Med 2000). Ceftiofur widely used in cattle

Analysis of 52 outbreaks, 1971 to 1983:

- Case-fatality rate in 17 outbreaks with resistant Salmonella 13/312 (4.2%)
- In 19 outbreaks with sensitive isolates the casefatality rate was 4/1912 (0.2%)
- In 16 outbreaks with unkown antibiogram the fatality was 4/1429 (0.3%)
 Holmberg et al. Science 1984;225:833-5

Studies of treatment failures

- A least 13 reports describing reduced efficacy of fluoroquinolones in treating Salmonella infections with isolates resistant to nalidixic acid, but MIC values against cipro < 4 mg/L
- **5** *S.* Typhi, 7 non-typhoid *Salmonella*
- Endpoints included
 - Failure to clear the pathogen
 - Prolonged fever
 - Death
- Antimicrobial Agents Chemother (Aarestrup et al.)

Scientific Evidence

Poor response to treatment

- Deaths reported in Denmark and Taiwan among patients with resistant Salmonella infections treated with fluoroquinolones
 - K Molbak et al. NEJM 1999
 - Emerging Infectious Diseases 2003
- Prolonged duration of diarrhea reported in Minnesota, Denmark, and US among patients with resistant *Campylobacter* infections
 - K Smith et al. NEJM 1999
 - J Engberg, et al. Submitted to journal
 - J Nelson, et al. Submitted to journal
 - J Neimann, et al., Submitted to journal

Scientific Evidence

Invasive infection and hospitalization

- Patients infected Salmonella resistant to clinically important agents including quinolones associated with increased likely of invasive infections and being hospitalized, and longer duration of hospitalization
 - Adjusted for serotype
 - J Varma, et al. In preparation.

Increased transmission as a result of the unrelated use of antimicrobial agents to which the pathogen was resistant

- Antimicrobial drugs cause a transient decrease in the resistance to infection upon exposure to a foodborne pathogen
 - Competetive effect (general)
 - Selective effect (specific advantage for the resistant pathogen)

Scientific Evidence

Deaths

- Patients infected quinolone-resistant Salmonella Typhimurium have marked increased risk of dying (than those infected with susceptible) in 2 years after infection
 - Adjusted for co-morbitity
 - M. Helms, et al. *Emerging Infectious Dis* 2002.
- Relatively similar findings in patients infected with quinolone-resistant *Campylobacter*
 - K. Molbak, et al. In preparation.

Excess mortality associated with resistance

- To determine mortality associated with gastrointestinal infections, while adjusting for co-morbidity
- S. Typhimurium strains from 2,047 patients, 1995 to 1999
- To determine the survival of these patients, the registry was linked to the Danish Civil Registry System (CRS)
- To determine the survival of non-exposed individuals, we randomly selected 10 persons from the CRS per case – matched for age, sex and county (20,456 referents)
- Data on co-morbidity were obtained from the national registry of patients

Helms et el, Emerg Inf Dis J, 2002;8:490-5

Two years mortality according to antimicrobial resistance:

Relative mortality*

- Pan-susceptible (953) 2.3 (95% CI 1.5 to 3.5)
- R-type ACSSuT + other 4.8 (95% CI 2.2 to 10.2)
 (283)
- R-type Nx + other (83) 10.3 (95% CI 2.8 to 37.8)
- R-type ACSSuTNx (40) 13.1 (95% CI 3.3 to 51.9)
- *all estimates compared with the general Danish population, and adjusted for co-morbidity

Risk of death or invasive illness associated with quinolone resistance in *Salmonella* Typhimurium and *Campylobacter* spp.

- Outcome: Death or invasive illness up to 90 days after diagnosis
 - survival data obtained from civil registry
 - data on complications obtained from the national discharge registry
- Used susceptible strains as reference
- Age was the underlying time-scale in the models
- Information on comorbidity obtained from the national discharge registry and the cancer registry

Campylobacter spp: (3,481 patients, 1995-2000, 13% comorbidity)

	Number of patients			
R-type:	Total	Invasive/death	Hazard ratio	* P
Quinolone	768	6 (0.8%)	6.4 (1.2-32.9)	0.0270
Erythomycin	109	4 (3.7%)	21.1 (0.9-470) ().0542
Quin. + ery.	96	2 (2.1%)	3.6 (0.2-88.1) (0.4278
Susceptible	2,508	9 (0.4%)		

* age underlying time scale, adjusted for comorbidity and sex

Salmonella Typhimurium: (1,346 patients, 1995-2000, 23% comorbidity)

	Number of patients			
	Total	Invasive/death	Hazard ratio* P	
Quinolone res. 0.0013	102	9 (8.7%)	5.2 (1.9-14.3)	
Pansusceptible	1,243	55 (4.4%)		

* age underlying time scale, adjusted for comorbidity and sex

This excess risk of adverse outcome was found to be independent of the outbreak in 1998, caused by a DT104 strain R-type ACSSuTNx

Conclusions

- The food chain contains an abundance of antimicrobial-resistant pathogens, including Salmonella and Campylobacter
- Growing evidence that this has significant public health consequences
- Hazards include increased risk of
 - Death
 - Invasive illness
 - Hospitalization
 - Increased duration of disease
 - Increased transmission due to enhanced receptivity
 - Increased risk of outbreaks in settings where antimicrobials are used

Recommendations

- Need to take a proactive/preventive approach rather than wait for conclusive evidence:
 - Reduce overall selection pressure from antimicrobial use by developing and adopting prudent drug use principles
 - Restrict FQ and 3rd generation cephalosporin use in animals to individual animal treatment and only if other treatments have failed
 - Improve animal production/animal husbandry practices to minimize need for antimicrobials

Recommendations, Cont'd

- Support and expand programs such as the WHO Global Salm-Surv to educate, train, and provide infrastructure to developing countries
- Ultimate goal is to restrict the use of antimicrobials in food-producing animals in the absence of a diagnosis of infectious disease, where there is evidence of a hazard to public health

Workgroup Members

- Awa Aidara-Kane
- Bitte Aspenstrom-Fagerlund
- Robin Bywater
- Uwe Frank
- Didier Guillemot
- Morten Helms
- Hans Kemmler
- Marita Langewische
- Petra Luber

- Holger Martens
- Kåre Mølbak
- Vincent Perreten
- Andreas Schroeter
- Jacob Simonsen
- Gertraud Suhren
- Linda Tollefson
- Helmuth Tschäpe
- Wilfrid Van Pelt
- Jochen Wieda