SCIENTIFIC OPINION

Scientific Opinion on the safety of “conjugated linoleic acid (CLA)-rich oil” (Clarinol®) as a Novel Food ingredient

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), 1, 2, 3

European Food Safety Authority (EFSA), Parma, Italy

This scientific output, published on 26 May 2010, replaces the earlier version published on 21 May 2010.

ABSTRACT

Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to carry out the additional assessment for Clarinol®, a conjugated linoleic acid (CLA)-rich oil, as a food ingredient in the context of Regulation (EC) No. 258/97. Clarinol® consists of approximately 80% of the two CLA isomers c9,t11:t10,c12 (1:1). Clarinol® is intended by the applicant as an ingredient in beverages, cereal products, dietary supplements, milk products and dry weight beverages for adult consumers. The applicant suggests a daily intake of 3 g CLA, corresponding to approximately 3.75 g Clarinol®. The available data from non-human studies do not indicate a risk for genotoxicity, reproductive toxicity, carcinogenicity or allergenicity. The extent of the effects of CLA on insulin resistance and on markers of cardiovascular risk appears to be species-dependent. Therefore the focus of this safety assessment relies mainly on the large number of available human studies. Based on the assessment of these studies, the Panel considers that CLA consumption does not appear to have adverse effects on insulin sensitivity, blood glucose control or liver function for up to six months, and that observed effects on blood lipids are unlikely to have an impact on cardiovascular risk. Long-term effects of CLA intake on insulin sensitivity and the arterial wall have not been adequately addressed in humans. The Panel concludes that the safety of Clarinol® has been established for the proposed uses at intakes of 3.75 g per day (corresponding to 3 g CLA), for up to six months. The safety of CLA consumption for periods longer than six months has not been established under the proposed conditions of use. The safety of CLA consumption by type-2 diabetic subjects has not been established.

3 Correspondence: nda@efsa.europa.eu
4 The EFSA Question number was corrected from EFSA-Q-2009-00745 to EFSA-Q-2008-745 and line numbers were deleted.

KEY WORDS
Conjugated Linoleic Acid, insulin sensitivity, blood lipids, novel food ingredient, Lipid Nutrition.

SUMMARY
Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to carry out the additional assessment for Clarinol®, conjugated linoleic acid (CLA)-rich oil as a food ingredient in the context of Regulation (EC) No. 258/97 taking account of the comments/objections of a scientific nature raised by the Member States.

Clarinol® is manufactured from safflower oil which is used directly or may be subjected to an enzymatic pre-processing to increase the linoleic acid content. Saponification and isomerisation (conjugation) are achieved by subsequent alkaline treatment under reaction conditions resulting in the formation of the c9,t11 and t10,c12-isomers in a ratio of 1:1. Following this isomerisation step, the mixture is diluted and acidified followed by washing, drying and distillation steps. The resulting free fatty acids are re-esterified with glycerol. The single steps of the process are procedures commonly applied in the isolation, refinement and modification of vegetable fats and oils.

Clarinol® is intended by the applicant for use as an ingredient in beverages, cereal products, dietary supplements, milk products and dry weight beverages. The intended target consumers are adults. The applicant suggests a daily intake of 3 g CLA, corresponding to approximately 3.75 g Clarinol®.

The average intake of naturally occurring CLA from food is estimated to be about 0.3 g/day in Europe. A supplementation of 3 g CLA would therefore lead to a 10-fold increase in CLA intake. However the most abundant CLA isomer naturally occurring in foods is the c9,t11 isomer, accounting for more than 90% of the dietary CLA intake. Thus an intake of 3 g CLA from Clarinol® with a c9,t11: t10,c12 ratio of 1:1 would lead to an approximately 6-fold increase of the intake of c9,t11 isomer, and a 50-fold increase of the t10,c12-isomer.

The applicant provided data from animal studies on absorption, distribution, metabolism and excretion. The metabolism follows standard pathways known for fatty acids consumed as triglycerides. A number of non-human studies have been provided on the acute, subchronic, chronic, geno-, reproductive, and developmental toxicity and carcinogenicity of CLA. The available data from non-human studies do not indicate a risk for genotoxicity, reproductive toxicity, carcinogenicity or allergenicity.

In addition non-human studies were provided on the effects of CLA on lipid metabolism parameters, hepatic lipid accumulation, liver function, markers of inflammation, insulin sensitivity and glucose metabolism. In vitro data suggest that the t10,c12 CLA isomer is involved in the regulation of fatty acid synthesis and mediating suppression of insulin sensitivity in mature human adipocytes. This isomer has also been reported to be responsible for undesirable effects on fat and glucose metabolism in vivo. Mice seem to be particularly sensitive to the effects of CLA on fat and glucose metabolism. However the extent of the effects of CLA on insulin resistance and also on markers of cardiovascular risk appears to be species-dependent. Therefore the focus of the safety assessment relies mainly on human studies.

The administration of the 1:1 isomer mixture of CLA to normal weight, overweight and obese non-diabetic subjects does not appear to have adverse effects on insulin sensitivity, blood glucose control or liver function at the proposed conditions of use up to six months. Effects of CLA consumption over periods longer than six months on insulin sensitivity and liver steatosis have not been adequately addressed in humans. With respect to type-2 diabetic subjects, the evidence provided does not establish the safety of CLA under the proposed conditions of use, since the CLA 1:1 isomer mixture
appears to adversely affect both static (HOMA-IR) and dynamic (ISI, OGIS) surrogate markers of insulin sensitivity as well as fasting blood glucose and no studies on blood glucose control (e.g., HbA1c) are available for periods of consumption beyond eight weeks. Under the proposed conditions of use, CLA has no effect on LDL-cholesterol concentrations or the LDL:HDL-cholesterol ratio, and the magnitude of the changes observed in HDL- and triglyceride concentrations are unlikely to have an impact on cardiovascular risk. However, the observed increase in plasma and urinary concentrations of isoprostanes, which may indicate an increase in lipid peroxidation, and the increase in some markers of subclinical inflammation (i.e., 15-keto-dihydroprostaglandin F_2 alpha and possibly C-reactive protein associated to CLA consumption, together with the limited data available on the effects of CLA on vascular function may indicate a potential for vascular damage (i.e., atherosclerosis) in the longer term. No data on effects of CLA intake on the arterial wall have been provided in humans.

The Panel considers that CLA consumption does not appear to have adverse effects on insulin sensitivity, blood glucose control or liver function for up to six months, and that observed effects on blood lipids are unlikely to have an impact on cardiovascular risk. Long-term effects of CLA intake on insulin sensitivity and the arterial wall have not been adequately addressed in humans. The evidence provided does not establish the safety of CLA consumption by type-2 diabetic subjects under the proposed conditions of use.

The Panel concludes that the safety of Clarinol®[®], an oil with approximately 80 % CLA 1:1 mixture of t9,c11 and t10,c12 isomers, has been established for the proposed uses at intakes of 3.75 g Clarinol®[®] per day (corresponding to 3 g CLA), for up to six months. The safety of CLA consumption for periods longer than six months has not been established under the proposed conditions of use. The safety of CLA consumption by type-2 diabetic subjects has not been established.
TABLE OF CONTENTS

Abstract .. 1
Summary .. 2
Table of contents ... 4
Background as provided by the European Commission .. 6
Terms of reference as provided by the commission ... 7
Assessment ... 8
1. Specification of the Novel Food (NF) ... 8
2. Effect of the production process applied to the NF ... 11
3. History of the organism used as the source of the NF .. 11
4. Anticipated intake/extent of the use of the NF ... 11
5. Information from previous exposure to the NF or its source ... 13
6. Nutritional information on the NF ... 14
7. Microbiological information on the NF ... 14
8. Toxicological information on the NF .. 15

8.1. Non-human Studies .. 15
 8.1.1. Studies on absorption, distribution, metabolism, and excretion (ADME) 15
 8.1.2. Acute toxicity studies .. 15
 8.1.3. Subchronic and chronic toxicity studies ... 15
 8.1.4. Genotoxicity ... 18
 8.1.5. Reproductive and developmental toxicity studies ... 18
 8.1.6. Allergenicity ... 18
 8.1.7. Risks for generation of cancer .. 18
 8.1.8. Additional in vitro and animal studies ... 19
 8.1.8.1. Lipid metabolism parameters .. 19
 8.1.8.2. Hepatic lipid accumulation ... 19
 8.1.8.3. Markers of inflammation ... 19
 8.1.8.4. Insulin sensitivity and glucose metabolism .. 20

8.2. Human studies .. 21
 8.2.1. Absorption, distribution, metabolism, and excretion (ADME) 22
 8.2.2. Effects on insulin sensitivity and glucose metabolism 22
 8.2.2.1. Insulin sensitivity .. 22
 8.2.2.2. Surrogate markers of insulin sensitivity ... 23
 8.2.2.3. Blood glucose control .. 25
 8.2.2.4. Conclusions on insulin sensitivity and glucose metabolism 25
 8.2.3. Effects on blood lipids and lipoproteins .. 25
 8.2.3.1. Blood lipids .. 25
 8.2.3.2. Lipoproteins .. 26
 8.2.4. Markers of lipid peroxidation .. 27
 8.2.4.1. F2 alpha isoprostanes ... 27
 8.2.4.2. Other markers of lipid peroxidation .. 28
 8.2.4.3. Conclusion on markers of lipid peroxidation ... 29
 8.2.5. Markers of systemic (subclinical) inflammation and adipokines 29
 8.2.6. Vascular function ... 29
 8.2.7. Vascular damage ... 30
 8.2.8. Liver function and liver steatosis ... 30
 8.2.9. Impact on milk secretion and content .. 31
 8.2.10. Adverse events .. 31

Discussion .. 32
Conclusions ... 32
Documentation provided to EFSA .. 33
References .. 33
BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION

On 23 November 2007, Cantox on behalf of Lipid Nutrition submitted a request under Article 4 of the Novel Food Regulation (EC) No 258/97 to place on the market ‘CLA-rich Oil’ as a novel food ingredient.

On 9 May 2008, the competent authority of Ireland forwarded to the Commission its initial assessment report, which had reached the conclusion that it did not have concerns about the safety of this ingredient.

On 26 May 2008, the Commission forwarded the initial assessment report to the other Member States. Several of the Member States submitted additional comments and some Member States raised objections. The concerns of a scientific nature can be summarised as follows:

- Types of enzymes used are not defined. No details on enzyme residues in the finished product.
- The stability of the novel food ingredient in the intended foods should be demonstrated.
- The proposed applications and the contribution from natural sources could lead to an intake which is significantly higher than the dose level tested in the clinical studies.

 The safety concerns for children and teenagers need to be further evaluated.
- Consumption of the recommended amount of CLA would lead to an increased intake of 5g fat or 45 kcal/day; the implications of additional fat consumption require further consideration by the applicant in the light of obesity in the population.
- An additional intake of CLA of 3-6 g/day would have a significant effect on the population intake of n-6 polyunsaturated fatty acids and appears to contradict present recommendations.
- The EFSA stated on CLA: “There is some evidence of adverse effects on lipid and glucose metabolism and on insulin sensitivity of supplemental CLA in humans for the CLA t10,c12 isomer. However these effects were observed only at intake levels one or two magnitudes higher than those corresponding to intake from foods”. Based on this statement an additional safety assessment of EFSA is considered necessary.
- The aspect of oxidative stress in relation to CLA has not been considered for the particular ingredient.
- The contradictory study results require further clarification of the effect of CLA preparations on relevant parameters like HDL cholesterol levels, lipid and glucose metabolism, insulin sensitivity as well as inflammation values with special consideration for overweight persons. The risk for cardiovascular diseases or generation of cancer needs to be addressed.
- There is clear evidence that CLA t10,c12 provokes insulin resistance in both animals and humans.
- Although the information on the effect of CLA on the metabolism of lipids is limited, it seems that the isomers 9c,11t and 10c,12t have opposite effects.
- The toxicological evaluation of the novel food may not deny the effects observed in mice, models which are more sensitive than rats (in the mouse the administration of doses supplemented to 1 % of CLA involves a total disappearance of the fat mass, associated with hypertrophy and a hepatic steatosis).
- Although published experimental data indicate that CLA induces lipid accumulation in mouse liver, there is no direct reference that this will not have the same effects in human liver.
- The applicant suggests that the results of animal data can be dismissed because fat deposition differs in humans and animals. This is not agreed upon because there are numerous mouse and rat models of human obesity where very high levels of fat deposition are observed.
The toxicological analysis is limited to the studies carried out with the 50/50 mixture of two isomers of CLA and does not consider studies performed with single isomers.

In consequence, EFSA is asked to carry out the additional assessment and to consider the elements of scientific nature in the comments raised by the other Member States in accordance with Article 7, paragraph 1 of Regulation (EC) No 258/97.

TERMS OF REFERENCE AS PROVIDED BY THE COMMISSION

In accordance with Article 29 (1) (a) of Regulation (EC) No 178/2002, the European Food Safety Authority is asked to carry out the additional assessment for ‘CLA-rich Oil’ in the context of Regulation (EC) N° 258/97.

EFSA is asked to carry out the additional assessment and to consider the elements of scientific nature in the comments raised by the Member States.
Assessment

The novel food ingredient has been allocated to class 2.1 (complex non-GM novel food ingredient, the source having a history of food use in the Community), as defined in the SCF recommendations concerning the assessment of novel foods (European Commission, 1997). It is noted that the novel ingredient, the novel food ingredient CLA-rich oil Clarinol®, is intended to be added to foods for normal people as part of their weight management and weight loss regimes. This assessment concerns only risk that might be associated with consumption of the novel food ingredient CLA-rich oil Clarinol®, and is not an assessment of the efficacy with regard to any claimed benefit.

1. Specification of the Novel Food (NF)

Clarinol® is an oil rich in conjugated linoleic acid (CLA) manufactured from safflower oil via (i) isomerisation (conjugation) of linoleic acid by alkaline treatment, (ii) liberation of the free CLA from the formed soap by acid treatment, and (iii) lipase-catalyzed re-esterification of the CLA with glycerol.

The chemical structures of the two principal CLA isomers contained in Clarinol® are depicted in Figure 1.

![Chemical structures of principal CLA isomers](image)

Figure 1: Principal CLA isomers contained in Clarinol® CLA-rich oil

Table 1 shows compositional data provided for three non-consecutive batches of Clarinol® CLA-rich oil (batch 5263, date of manufacture 29/06/05; batch 6503, date of manufacture 13/12/06; batch 7131, date of manufacture 26/03/07) and the specification proposed by the applicant.

Table 1: Specification of Clarinol® CLA-rich oil proposed by the applicant and data provided for three batches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>batch 5263</th>
<th>batch 6503</th>
<th>batch 7131</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA (total, %)</td>
<td>≥ 78</td>
<td>79.8</td>
<td>78.2</td>
<td>78.9</td>
</tr>
<tr>
<td>CLA (c9,t11 + t10,c12 isomers) (%)</td>
<td>≥ 74</td>
<td>74.6</td>
<td>74.3</td>
<td>74.5</td>
</tr>
<tr>
<td>CLA c9,t11 isomer (%)</td>
<td>≥ 36</td>
<td>36.7</td>
<td>36.5</td>
<td>36.8</td>
</tr>
<tr>
<td>CLA t10,c12 isomer (%)</td>
<td>≥ 36</td>
<td>37.9</td>
<td>37.9</td>
<td>37.7</td>
</tr>
<tr>
<td>Trans fatty acids a) (%) (excl. CLA)</td>
<td>≤ 2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Free fatty acids (%)</td>
<td>≤ 1</td>
<td>0.91</td>
<td>0.77</td>
<td>0.81</td>
</tr>
<tr>
<td>Diglycerides (%)</td>
<td>≤ 25</td>
<td>20.8</td>
<td>24.9</td>
<td>21.4</td>
</tr>
<tr>
<td>Monoglycerides (%)</td>
<td>≤ 1</td>
<td>0.9</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Water (%)</td>
<td>≤ 0.1</td>
<td>0.01</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>Peroxide Value (meq O2/kg)</td>
<td>≤ 1</td>
<td>0.8</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>p-Anisidine value</td>
<td>N/A</td>
<td>12.7</td>
<td>10.1</td>
<td>6.7</td>
</tr>
<tr>
<td>Sum of dioxin-like PCBs only (WHO-TEQ, pg/g)</td>
<td>-</td>
<td>0.139</td>
<td>0.153</td>
<td>0.138</td>
</tr>
</tbody>
</table>
Comparisons of the fatty acid profiles (Table 2), of the total unsaponifiable matter and the sterol composition (Table 3) and of heavy metal contents (Table 4) of crude safflower oil used as starting material for the novel food and of three batches of Clarinol® CLA-rich oil have been provided.

Table 2: Fatty acid profiles of crude safflower oil and of three batches of Clarinol® CLA-rich oil

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Composition of total fatty acids (%)</th>
<th>safflower oil</th>
<th>Batch 5263</th>
<th>Batch 6503</th>
<th>Batch 7131</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0, myristic</td>
<td>0.1</td>
<td><0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>C16:0, palmitic</td>
<td>6.3</td>
<td>4.0</td>
<td>4.4</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>C16:1, palmitoleic</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>C17:0, margaric</td>
<td>0</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>C18:0, stearic</td>
<td>2.3</td>
<td>2.2</td>
<td>2.3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>C18:1, trans (sum of isomers)</td>
<td>0</td>
<td>0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>C18:1, oleic</td>
<td>12</td>
<td>11.4</td>
<td>12.1</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>C18:2, trans</td>
<td>0.1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>C18:2, linoleic (LA)</td>
<td>77.9</td>
<td>1.1</td>
<td>1.8</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>C18:2, CLA c9,t11</td>
<td>0</td>
<td>36.7</td>
<td>36.5</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>C18:2, CLA t10,c12</td>
<td>0</td>
<td>37.9</td>
<td>37.9</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td>C18:2, CLA c9,c11</td>
<td>0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>C18:2, CLA c10,c12</td>
<td>0</td>
<td>1.1</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>C18:2, CLA 11,13 (stereochemistry unspecified)</td>
<td>0</td>
<td>1.0</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>C18:2 CLA t, t</td>
<td>0</td>
<td>2.0</td>
<td>1.3</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>C18:2, oxidised CLA (unspecified)</td>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>C18:3 (n-3), α-linolenic acid (ALA)</td>
<td>0.1</td>
<td>n.p.</td>
<td>n.p.</td>
<td>n.p.</td>
<td></td>
</tr>
<tr>
<td>C20:0, arachidic</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>C20:1, eicosenoic</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>C22:0, behenic</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>C24:0, lignoceric</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Fatty Acids</td>
<td>99.8</td>
<td>99.9</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>C18:2, CLA total c9,t11 + t10, c12</td>
<td>0</td>
<td>74.6</td>
<td>74.3</td>
<td>74.5</td>
<td></td>
</tr>
<tr>
<td>C18:2 CLA total</td>
<td>0</td>
<td>79.8</td>
<td>78.2</td>
<td>78.9</td>
<td></td>
</tr>
<tr>
<td>Total saturated fatty acids (SAFA)</td>
<td>9.6</td>
<td>6.8</td>
<td>7.3</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Total monounsaturated fatty acids (MUFA)</td>
<td>12.3</td>
<td>11.8</td>
<td>12.4</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>Total polyunsaturated fatty acids (PUFA)</td>
<td>78.1</td>
<td>81.1</td>
<td>80.2</td>
<td>80.0</td>
<td></td>
</tr>
</tbody>
</table>

n.p. (not provided)
Safety of conjugated linoleic acid (CLA)-rich oil (Clarinol®)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>safflower oil</th>
<th>batch 5263</th>
<th>batch 6503</th>
<th>batch 7131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total unsaponifiable matter (wt. %)</td>
<td>0.47</td>
<td>0.30</td>
<td>0.34</td>
<td>0.47</td>
</tr>
<tr>
<td>Total sterols (wt. %)</td>
<td>0.4</td>
<td>0.16</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Cholesterol (%)</td>
<td>6.6</td>
<td>1.5</td>
<td>3.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Brassicasterol (%) (%)</td>
<td>0.7</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>∆-5-Campesterol (%) (%)</td>
<td>9.7</td>
<td>15.2</td>
<td>10.8</td>
<td>14</td>
</tr>
<tr>
<td>Stigmastanol (%) (%)</td>
<td>6.1</td>
<td>8.3</td>
<td>6.4</td>
<td>7.0</td>
</tr>
<tr>
<td>β-Sitosterol (%) (%)</td>
<td>51.1</td>
<td>56.8</td>
<td>62.0</td>
<td>56.9</td>
</tr>
<tr>
<td>∆-5-Avenasterol (%) (%)</td>
<td>24.6</td>
<td>15.8</td>
<td>13.9</td>
<td>17.7</td>
</tr>
<tr>
<td>∆-7-Sitosterol (%) (%)</td>
<td>0.3</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>∆-7-Avenasterol (%) (%)</td>
<td>0.9</td>
<td>1.4</td>
<td>2.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 4: Contents of heavy metals in safflower oil and in three batches of Clarinol® CLA-rich oil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>safflower oil</th>
<th>batch 5263</th>
<th>batch 6503</th>
<th>batch 7131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (mg/kg)</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>< 0.10</td>
</tr>
<tr>
<td>Lead (mg/kg)</td>
<td>< 0.06</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Cadmium (mg/kg)</td>
<td>< < 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Mercury (mg/kg)</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Iron (mg/kg)</td>
<td>< 0.92</td>
<td>< 0.05</td>
<td>0.14</td>
<td>0.29</td>
</tr>
<tr>
<td>Copper (mg/kg)</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Nickel (mg/kg)</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Tin (mg/kg)</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
</tbody>
</table>

Stability

The stability of Clarinol® CLA-rich oil has been monitored by measuring the parameters shown in Table 5 for a batch stored under nitrogen at 25°C over 42 months. Typical quality indicators, such as colour, free fatty acids peroxide value, did not change significantly.

Table 5: Stability of Clarinol® CLA-rich oil stored under nitrogen at 25°C over 42 months

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Storage time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>CLA (c9,t11 + t10,c12) (%)</td>
<td>75.0</td>
</tr>
<tr>
<td>CLA c9,t11 (%)</td>
<td>37.2</td>
</tr>
<tr>
<td>CLA t10,c12 (%)</td>
<td>37.8</td>
</tr>
<tr>
<td>Diglycerides (%)</td>
<td>18</td>
</tr>
<tr>
<td>Monoglycerides (%)</td>
<td>0.4</td>
</tr>
<tr>
<td>Free fatty acids (%)</td>
<td>1.06</td>
</tr>
<tr>
<td>Peroxide value (meqO₂/kg)</td>
<td>1.5</td>
</tr>
<tr>
<td>Water (%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Colour (Lovibond 5 ¼˝ Red)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

According to the applicant, Clarinol® CLA-rich oil is stable in air for approximately one month if stored in the dark. For long-term storage it should be kept in the dark under nitrogen atmosphere. Stored under dry conditions in the unopened orignal packaging, at temperatures between 10 and 20°C.
C, and protected from direct sunlight, Clarinol®, CLA-rich oil is reported to be stable for at least 36 months.

The applicant provided data on the stability of various products (chocolate milk, soy milk, whole meal cookies, protein bars) enriched with Clarinol® CLA-rich oil at the upper end of the proposed use levels. Assessment of the taste/flavour profiles and analysis of the CLA isomers at regular time intervals did not reveal negative effects over the proposed shelf-life.

The stability of Clarinol® CLA-rich oil can be improved by addition of antioxidants. According to the applicant, they are added in compliance with Directive 95/2/EC (EU, 1995).

According to the applicant, the assessment of the stability of CLA-rich oil is also based on experience gained from a decade of production of commercial material mainly used in food supplements.

The applicant suggests labelling of CLA-rich oil-containing food products similar to that foreseen for food products containing DHA-rich oil from Schizochytrium sp. (EC, 2003).

2. Effect of the production process applied to the NF

The starting material used for the manufacturing of Clarinol® CLA-rich oil is food grade safflower oil (linoleic acid ≥ 76 %). The oil is used directly or may be subjected to an enzymatic pre-processing to increase the linoleic acid content. Saponification and isomerisation (conjugation) are achieved by subsequent alkaline treatment under reaction conditions resulting in the formation of the c9,t11 and t10,c12-isomers in a ratio of 1:1. Following this isomerisation step, the mixture is diluted and acidified; after washing and drying, the CLA are isolated as free fatty acids via distillation under reduced pressure. The free fatty acids are re-esterified with glycerol using a lipase as catalyst. After removal of the enzyme by filtration, the reaction mixture is distilled under reduced pressure to yield the crude CLA-rich oil. The crude oil is bleached, deodorised and dosed with an antioxidant; the resulting Clarinol® CLA-rich oil is stored in air-tight drums.

The single steps of the process are procedures commonly applied in the isolation, refinement and modification of vegetable fats and oils. Information on key process parameters, e.g. type of enzymes employed or temperature condition was provided in the dossier. According to the applicant, the production process is conducted in accordance with the principles of Good Manufacturing Practice and controlled by an HACCP system.

3. History of the organism used as the source of the NF

The starting material for the manufacture of Clarinol® CLA-rich oil is safflower oil meeting the general specifications laid down in the Codex Standard for Named Vegetable Oils Codex-Stan 210. Safflower oil species have been obtained by conventional breeding more than 20 years ago. The oil is widely used as replacement of or in combination with sunflower oil in various products.

4. Anticipated intake/extent of the use of the NF

As proposed by the applicant, the intended target daily dose for adults is 3 g of CLA per day and a serving may contain up to 1.5 g of CLA. The food-uses and use levels proposed by the applicant for CLA from Clarinol® CLA-rich oil are summarised in Table 6.

Estimates for the intake of CLA were based on the use-levels proposed by the applicant and on food consumption data collected as part of the United Kingdom National Diet and Nutrition Survey (NDNS) program. Calculations for the mean and high-levels (90th, 95th and 97.5th percentile) all-person and all-user intakes, and percent consuming were performed for each of the individual
proposed food-uses for CLA. Similar calculations were used to determine the estimated total intake of CLA from all proposed food-uses combined.

Table 6: Food-uses and use levels of CLA from Clarinol® CLA-rich oil proposed by the applicant

<table>
<thead>
<tr>
<th>Food Category</th>
<th>Food Use</th>
<th>Use Level (g/serving)</th>
<th>Serving Size (g), (ml)</th>
<th>Use Level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beverages</td>
<td>Fruit juice and vegetable juice</td>
<td>1.5</td>
<td>250</td>
<td>0.6</td>
</tr>
<tr>
<td>Cereal and Cereal Products</td>
<td>Cereal bars, energy bars, and slimming biscuits</td>
<td>1.5</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Dietary Supplements</td>
<td>Liquid nutritionally complete supplement drinks</td>
<td>1.5</td>
<td>250</td>
<td>0.6</td>
</tr>
<tr>
<td>Milk and Milk Products</td>
<td>Flavoured milk drinks</td>
<td>1.5</td>
<td>250</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Skimmed and low fat milk</td>
<td>1.5</td>
<td>250</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Soya milk</td>
<td>1.5</td>
<td>125</td>
<td>1.2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Dry weight beverages for slimming purposes</td>
<td>1.5</td>
<td>20</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 7: Estimated daily intake of CLA from all proposed food categories in the U.K. (g/person) based on NDNS Data

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Age Group (Years)</th>
<th>% User</th>
<th>Actual # of Total Users</th>
<th>All-Person Intake<sup>b</sup> Mean (g)</th>
<th>Percentile (g)</th>
<th>All-Users Intake<sup>c</sup> Mean (g)</th>
<th>Percentile (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>1½ - 4½</td>
<td>54.6</td>
<td>899</td>
<td>0.38</td>
<td>1.08</td>
<td>1.47</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young People</td>
<td>4-10</td>
<td>66.5</td>
<td>557</td>
<td>0.43</td>
<td>1.20</td>
<td>1.64</td>
<td>2.04</td>
</tr>
<tr>
<td>Female Teenagers</td>
<td>11-18</td>
<td>63.9</td>
<td>285</td>
<td>0.47</td>
<td>1.34</td>
<td>1.89</td>
<td>2.29</td>
</tr>
<tr>
<td>Male Teenagers</td>
<td>11-18</td>
<td>59.4</td>
<td>247</td>
<td>0.55</td>
<td>1.60</td>
<td>2.26</td>
<td>2.93</td>
</tr>
<tr>
<td>Female Adults</td>
<td>16-64</td>
<td>57.7</td>
<td>553</td>
<td>0.51</td>
<td>1.41</td>
<td>1.84</td>
<td>2.33</td>
</tr>
<tr>
<td>Male Adults</td>
<td>16-64</td>
<td>54.2</td>
<td>415</td>
<td>0.53</td>
<td>1.44</td>
<td>2.04</td>
<td>2.54</td>
</tr>
</tbody>
</table>

^a Office for National Statistics, 2005; UKDA, 1995; UKDA, 2001

^b All-Person Intake refers to the estimated intake averaged over all individuals surveyed regardless whether they consumed products in which Clarinol® is proposed for use

^c All-user Intake refers to the estimated intake by those individuals consuming food products in which Clarinol® is proposed for use

Table 8: Estimated daily intake of CLA from all proposed food categories in the U.K. (mg/kg body weight) based on NDNS Data

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Age Group (Years)</th>
<th>% User</th>
<th>Actual # of Total Users</th>
<th>All-Person Consumption Mean (mg/kg BW)</th>
<th>Percentile (mg/kg BW)</th>
<th>All-Users Consumption Mean (mg/kg BW)</th>
<th>Percentile (mg/kg BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>1½ - 4½</td>
<td>54.6</td>
<td>899</td>
<td>27</td>
<td>77</td>
<td>105</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young People</td>
<td>4-10</td>
<td>66.5</td>
<td>557</td>
<td>17</td>
<td>46</td>
<td>64</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Safety of conjugated linoleic acid (CLA)-rich oil (Clarinol®)

13

EFSA Journal 2010; 8(5):1601

Female Teenagers

<table>
<thead>
<tr>
<th>Age Range</th>
<th>CLA (mg/kg bodyweight per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-18</td>
<td>63.9</td>
</tr>
<tr>
<td>16-64</td>
<td>57.7</td>
</tr>
</tbody>
</table>

Male Teenagers

<table>
<thead>
<tr>
<th>Age Range</th>
<th>CLA (mg/kg bodyweight per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-18</td>
<td>59.4</td>
</tr>
<tr>
<td>16-64</td>
<td>54.2</td>
</tr>
</tbody>
</table>

Female Adults

<table>
<thead>
<tr>
<th>Age Range</th>
<th>CLA (mg/kg bodyweight per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-64</td>
<td>553</td>
</tr>
<tr>
<td>11-18</td>
<td>52</td>
</tr>
</tbody>
</table>

Male Adults

<table>
<thead>
<tr>
<th>Age Range</th>
<th>CLA (mg/kg bodyweight per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-64</td>
<td>415</td>
</tr>
<tr>
<td>11-18</td>
<td>32</td>
</tr>
</tbody>
</table>

* The applicant indicated to the Food Safety Authority of Ireland (FSAI) that foodstuffs containing added Clarinol® would be labelled to advise pregnant or lactating women and children less than five years of age not to consume these products.

Of the individual population groups, male teenagers were determined to have the greatest mean and 97.5th percentile all-person intake of CLA at 0.55 and 2.93 g per person per day, respectively, as well as the greatest mean and 97.5th percentile all-user intakes of CLA at 0.92 and 3.12 g/person/day on an absolute basis, respectively. Children displayed the lowest all-person mean intake of CLA with a value of 0.38; however, the lowest 97.5th percentile all-person intake of CLA was observed among young people, with a value of 2.04 g per person per day. Additionally, the lowest estimated mean and 97.7th percentile all-user intakes also were calculated to occur in young people with values of 0.65 and 2.33 g per person per day, respectively.

On a body weight basis, children were identified as having the highest estimated mean and 97.5th percentile all-person (27 and 141 mg/kg bodyweight per day, respectively) and all-user (49 and 177 mg/kg bodyweight per day, respectively) intakes of CLA of any population group. Male adults, displayed the lowest mean and 97.5th percentile all-person intakes of CLA at 6 and 32 mg/kg bodyweight per day, respectively, as well as the lowest estimated all-user mean and 97.5th percentile intakes, respectively, of 11 and 40 mg/kg bodyweight per day, respectively.

This type of intake methodology is generally considered to be “worst case” as a result of several conservative assumptions made in the consumption estimates. For example, it is often assumed that all food products within a food category contain the ingredient at the maximum specified level of use. In addition, it is well established that the length of a dietary survey affects the estimated consumption of individual users. Short-term surveys, such as the 4-day children’s survey, may overestimate consumption of food products that are consumed relatively infrequently, particularly when weighted to seven days (Gregory et al., 1995).

A post market surveillance study from Spain conducted in 2006 showed that the CLA intake of consumers of CLA-rich oil supplemented dairy and juice products was up to four daily servings, with 1.5 g CLA per serving (i.e. 6 g CLA-rich oil per day). Less than 1 % consumed more than four daily servings (6 g CLA-rich oil per day) (Anadón et al., 2006).

5. Information from previous exposure to the NF or its source

According to the applicant, commercial CLA-rich oil has been available on the EU market since 1995, mainly in food supplements. Typically these deliver a dose of up to 3 g of CLA per daily serving.

According to the information provided by the applicant, the mean sales over the last three years (2006 - 2008) in Europe were approximately 85 - 90 tons Clarinol® (approx. 80 % CLA) per year. The total sales of CLA would be up to 180 ton, considering the applicants’ information to hold about 50 % of the market share in Europe.

Information provided by the applicant on the estimated background intake of CLA isomers occurring naturally in foods, such as milk or meat, is summarised in Table 9.

Table 9: Estimated intake of CLA in humans from background diet (McGuire and McGuire,
The average intake of naturally occurring CLA from food is estimated to be about 0.3 g/day in Europe (EFSA, 2004). A supplementation of 3 g CLA from Clarinol® would therefore lead to a 10-fold increase of CLA. While the most abundant CLA isomer naturally occurring in foods is the c9,t11 isomer, accounting for more than 90 % of the dietary CLA intake (Bhattacharya et al., 2006), there is evidence that unfavourable effects such as impairment of the peripheral insulin sensitivity, blood glucose and of the serum lipid concentrations can be attributed to the t10,c12-isomer (EFSA, 2004; Riserus et al. 2002, 2004a and b, see section 8.2.4). Thus an intake of 3 g CLA from Clarinol® with a c9,t11: t10,c12 ratio of 1:1 would lead to an approximately 6-fold increase of the intake of c9,t11 isomer, and a 50-fold increase of the t10,c12-isomer.

6. Nutritional information on the NF

As demonstrated in animal studies, a large proportion of the ingested CLA is oxidised by the body, so that CLA is assumed to provide 9 kcal/g as other fatty acids. The energy content of 3 g CLA is not considered to have a big impact on long-term energy balance.

7. Microbiological information on the NF

Considering the production process and the composition of Clarinol® CLA-rich oil, in particular the water content < 0.1 %, microbiological contaminations is expected to be minimal and microbes growth impossible. Microbiological data provided for three batches are shown in Table 10.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Batch 1213</th>
<th>Batch 1354</th>
<th>Batch 1423</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total viable count (cfu/g)</td>
<td>≤ 3000</td>
<td>≤ 100</td>
<td>≤ 100</td>
</tr>
<tr>
<td>Yeasts and moulds (cfu/g)</td>
<td>≤ 300</td>
<td>≤ 10</td>
<td>≤ 10</td>
</tr>
<tr>
<td>Escherichia coli (cfu/g)</td>
<td>not detected</td>
<td>not detected</td>
<td>absent</td>
</tr>
<tr>
<td>Salmonella (cfu/25g)</td>
<td>not detected</td>
<td>not detected</td>
<td>absent</td>
</tr>
</tbody>
</table>
8. Toxicological information on the NF

8.1. Non-human Studies

8.1.1. Studies on absorption, distribution, metabolism, and excretion (ADME)

The metabolism of CLA has been widely studied and follows standard pathways known for fatty acids consumed as triglycerides.

8.1.2. Acute toxicity studies

According to the applicant an acute oral toxicity study in rats (strain unspecified) was performed using commercial beadlets of CLA methyl esters of unknown purity (Berven et al., 2002). The authors concluded that oral administration of CLA methyl esters was “non-toxic” based on an LD$_{50}$ value of >2 g/kg body weight.

8.1.3. Subchronic and chronic toxicity studies

The applicant presented a subchronic (13-week) feeding study in male and female Wistar outbred (Crl: WI)WU BR) rats (20 rats/sex/group) using Clarinol®G80 (O’Hagan and Menzel, 2003). The test material contained approximately 79 % CLA isomers, including equal amounts of the 9cis,11trans and 10trans,12cis CLA isomers, in the form of glycerides.

Control groups were administered either a high-fat (HF; 15 % w/w safflower oil) or a low-fat (LF; 7 % w/w safflower oil) basal diet. Test groups received the HF basal diet supplemented with 1, 5 or 15 % of the CLA-rich oil for 13 weeks, resulting in CLA intakes of approximately 0.48, 2.4 and 7.2 g/kg body weight per day for males and of 0.54, 2.7 and 8.2 g/kg body weight per day for females. Total added safflower oil and/or CLA-rich oil in all test diets was 15 %. The HF-diet was also supplemented with 10 % higher levels of protein, L-cysteine, cellulose, choline-bitartrate, minerals and vitamins to compensate for reduced food intake in rats fed a high calorie diet and to maintain a normal level of nutrient intake. At the end of the 13-week study period, recovery groups of 10 rats of each sex from each control group and from the high-level (15 %) CLA group were observed for further 4 weeks. Rats in the control groups were maintained on their respective diets, whereas rats in the 15 % CLA group were switched to the HF control diet.

The Panel notes that adverse effects on haematological parameters, liver enzyme activities, blood lipid concentrations and other clinical-chemistry parameters, organ weights and organ morphology have been already described in relation to the sub-chronic administration of high-fat diets to rats, and therefore considers that only changes in the CLA intervention groups in relation to the HF control diet are likely to be meaningful for the evaluation of CLA-related toxicity in this study.

According to the authors, there were no clinical signs or effects on survival attributed to CLA administration and ophthalmologic examinations did not reveal any treatment-related ocular changes. Food consumption was reported to be significantly decreased during days 7 to 14 of the treatment period in the 15 % CLA group, which was attributed by the authors to reduced palatability of the diet. As a result, statistically significant decreases in body weight were observed in rats of both sexes in the 15 % CLA group at day seven and in females at day 14. Throughout the study, animals treated with high-dose CLA had consistently lower body weights than control animals and this effect was more pronounced in females. Feed conversion efficiency was unaffected. Water consumption was significantly lower in males and females consuming the high-dose CLA at week 12 relative to both control groups. According to the authors there was no indication of any effect on renal function in this group. Urinalyses revealed no treatment-related changes in urinary volume or density (data not provided).
According to the publication, there were no changes in haematological parameters considered by the authors to be an adverse effect related to CLA treatment. Mean erythrocyte cell volume was lower in females consuming the high-dose CLA compared with both control groups. As this was an isolated finding among the haematological parameters assessing red blood cell status, it was not considered toxicologically relevant. In males of the high-dose CLA group, white blood cell counts were statistically significantly lower compared with both control groups. The Panel notes that in the absence of further information the toxicological relevance of this finding remains unsolved.

With respect to liver function tests, increased activities of alkaline phosphatase (ALP) and alanine aminotransferase (ALAT) throughout the treatment period in males treated with 15% CLA compared to both control groups were reported. The activity of aspartate aminotransferase (ASAT) was not significantly different from the HF control throughout the study. For female animals the situation was comparable though not fully consistent. Activity of sorbitol dehydrogenase (SD) was also increased in females receiving high-dose CLA at week 13 relative to both control groups. After a 4-week recovery period the changes in ALP, ALAT and ASAT were reversed in males with respect to both control groups, and those in ALAT and ASAT activities were reversed relative to the HF in the high-dose CLA females.

Compared with both control groups, plasma total cholesterol levels were significantly decreased in high-dose CLA males throughout the treatment period, while plasma triglyceride levels were significantly increased in females of the high-dose CLA group. In addition, both males and females in the high-dose CLA group were reported to have increased plasma albumin levels and an increased albumin:globulin ratio. The changes in plasma cholesterol, triglycerides and albumin were reported to be reversed at the end of the recovery period.

Males in the high-dose CLA group had decreased blood glucose concentrations at week 13 compared to both control groups, and increased insulin concentrations at week four (compared to both control groups) and week eight (compared to HF control), but not at week 13. Plasma glucose concentrations did not differ significant in females between CLA and control groups; however, insulin was increased at weeks eight and 13 relative to both control groups. At the end of the recovery period blood glucose concentrations were significantly lower in high-dose CLA males compared with high-fat controls with no differences in insulin concentrations between groups, whereas no significant differences between groups were reported in females for either blood glucose or insulin concentrations.

A number of changes in organ weights were observed. Compared to both control groups, male animals in the high-dose CLA group had a statistically significant increase in absolute and relative liver weights. In the mid-dose CLA group relative weights were increased in relation to both control groups, and absolute weights only in relation to the HF control group. Increased relative liver weights were observed in females of the high-dose CLA group in relation to both control groups and in the mid-dose CLA group in relation to the HF controls. After the recovery period these effects were reversed in males but females in the high-dose CLA group still had significantly increased relative liver weights compared with both control groups. In the high-dose CLA group absolute and relative spleen weights were increased in males and relative spleen weights in females compared to both control groups. The increase in absolute spleen weight in males in relation to the HF controls was no longer significant after the recovery period. In addition, increased relative adrenal weights were observed in the high-dose CLA males compared to both control groups. No differences in adrenal weights in females or in pancreas weight in both sexes were reported in the high-dose CLA group relative to the HF group. Histopathological examination of the liver revealed hepatocellular vacuolation in males of all groups, which was most frequent in the HF control, the low- and mid-dose CLA groups. A relatively high incidence of hepatocellular hypertrophy was observed in high-dose CLA female rats (12/20 rats) and was almost completely reversed (2/20 rats) after the recovery period. According to the authors there were no histopathological changes in any other organ.
The authors suggested that the observed liver enlargement and hepatocellular hypertrophy were adaptive effects in response to the consumption of the CLA-rich oil. Based on these effects and on the effects on blood insulin concentrations, the authors considered the NOAEL to be 5 % CLA-rich oil in the diet, equivalent to 2433 and 2728 mg/kg body weight per day for males and females, respectively.

The Panel notes that the increase in blood concentrations of triglycerides, glucose, insulin and liver enzyme activities (particularly ALAT), and in the weight and morphology of some organs (particularly the liver) observed in the highest dose of CLA-rich oil (Clarinol™) compared to the HF control groups despite the reduction in total body weight (and probably body fat) observed in the high-CLA groups relative to the HF controls suggests that administration of the high dose of the CLA-rich oil induced a number of adverse (and metabolically related) effects which cannot be attributed to the administration of a high-fat diet per se but to the specific characteristics of this CLA-rich oil.

In a 36-week study (Scimeca, 1998) male weanling Fischer 344 rats (20 per group) were fed diets containing 0 % (control) or 1.5 % of a synthetic CLA preparation containing 85.5 % of a 50:50 % mixture of c9,t11 or t9,c11 and t10,c12 isomers, 4.3 % other CLA isomers, 7.1 % linoleic acid and 3.1 % other constituents (not specified). The intake of CLA was reported to range from 1970 to 467 mg/kg body weight per day from week 1 to week 36 (mean of 1218.5 mg/kg body weight per day). Animals fed CLA were reported not to show any clinical signs of toxicity, nor were there any differences in body weight gain or food consumption relative to the control group. Organ weight determinations showed statistically significantly reduced absolute and relative (i.e. in relation to body weight as well as brain weight) thymus weights and increased adrenal weights in the treatment group. According to the author, there were no significant treatment-related histopathological changes in the organs examined (including thymus and adrenal glands) or changes in haematological parameters. Therefore the NOAEL for CLA was determined to be 1218.5 mg/kg body weight per day, the only dose tested. The Panel considers that the relevance of this examination is limited because only one CLA dose was tested (in male rats only) and clinical-chemistry parameters were not examined.

The effects of long-term feeding of CLA were examined in Fischer 344 rats (Park et al., 2005). Weanling male rats were administered either a control diet (n=10) or a diet containing 1 % CLA (41.9 % c9,t11 and 43.5 % t10,c12; n=11; level of intake equivalent to a dose of approximately 1000 mg CLA/kg body weight per day), which was added to the diet at the expense of corn oil for a period of 18 months. Three animals of the CLA group and four animals of the control group died or were sacrificed in extremis before completion of the study. Despite a lower food consumption in the CLA-fed group, weight gain was not statistically significantly different in the CLA-fed group compared to controls. After 12 weeks three rats from each group were randomly selected to measure body fat distribution. There were no significant differences between groups in percentage body fat, empty carcass weight or percentage body water. Blood analyses at week 69/70 showed that blood glucose concentrations were significantly lower, and mean corpuscular volume was significantly higher, in the CLA-fed group compared to controls. Blood urea nitrogen and cholesterol concentrations were elevated beyond the normal range in both groups, but were not significantly different between groups. At necropsy there were no significant differences between the groups in organ weights. Microscopic analysis showed that all animals from both groups had chronic renal diseases (chronic interstitial nephritis, nephrosis, and/or glomerulosclerosis). The chronic renal disease was explained by the authors as a side effect of the high protein content of the diets and was not considered to be CLA-related. One of the CLA-fed animals had an enlarged spleen, which was diagnosed as granular cell lymphoma. The incidences of pituitary or testicular tumors, prostatitis, lymphoma and other disorders were not significantly different between the groups. The Panel considers that the use of male animals only, the testing of a single dose of CLA, the limited number of animals available for the specific toxicological examinations, and the occurrence of severe renal disease in all animals greatly limits the relevance of this study to the evaluation.

In another study Beagle dogs were fed with CLA for 11 months. The test material incorporated into the diet at a level of 0.5 % was described as a product consisting of about 60 % of a 1:1 mixture of
c9,t11 and t10,c12 CLA, minor amounts of other CLA isomers and about 40 % regular fatty acids. Groups of three male and five female dogs each received the diet containing CLA corresponding to a dose of approximately 65 – 85 mg/kg body weight per day or a control diet. According to the author administration of CLA had no effect on feed intake, growth and zoometric parameters of the dogs. Plasma concentrations of total cholesterol, HDL and LDL cholesterol, triglycerides and glucose did not differ between the groups on most occasions and a treatment trend was not apparent (Montaño Rivera, 2006).

8.1.4. Genotoxicity

The results of genotoxicity tests were summarised in a scientific publication (O’Hagan and Menzel, 2003). Clarinol® G-80 (the same test material as in the subchronic rat feeding study) was tested in five strains of Salmonella enterica Typhimurium (TA98, TA100, TA1535, TA1537 and TA102) in the presence and absence of metabolic activation (S9). According to the authors Clarinol® G-80 was not mutagenic up to the highest concentration of 5000 μg/plate. In a second study the CLA-rich oil was tested in human peripheral blood lymphocyte cultures in the presence and absence of metabolic activation. According to the authors Clarinol® G-80 did not induce chromosome aberrations at concentrations up to 300 μg/ml.

The Panel notes that the full study reports have not been provided and that the usual battery of tests is incomplete since a test on gene mutations in mammalian cells is lacking. However, the studies conducted provide no indications that Clarinol® G-80 is genotoxic.

8.1.5. Reproductive and developmental toxicity studies

Reproductive and developmental toxicity studies in rats and pigs demonstrated a lack of adverse effects on maternal food consumption and body weight, litter size, or offspring growth and development following exposure to CLA (0.25 to 2 % in the diet) throughout gestation, lactation, and/or during a post weaning-period (Bee, 2000; Chin et al., 1994; Poulos et al., 2001). Pup growth, as evidenced by increased body weights, was reported to be enhanced in rats fed 0.25 and 0.5 % CLA (Chin et al., 1994). Chin et al. (1994) reported significant uptake of CLA in maternal mammary gland tissue and milk; however, this was not accompanied by any adverse effects.

8.1.6. Allergenicity

According to the applicant, the purification and refinement steps involved in the production of Clarinol® CLA-rich oil ensure that only minor amounts (< 30 mg/kg) of lipases or other proteins (from safflower) are present in the final product. For three batches protein contents of 9, 19 and 28 mg/kg, respectively, have been reported.

Safflower is not known as a source associated with allergenic proteins. The Panel considers it unlikely that Clarinol® CLA-rich oil elicits allergic reactions.

8.1.7. Risks for generation of cancer

Numerous studies have investigated potential carcinogenicity of CLA mixtures or pure isomers in animal models or cell cultures (Wahle et al., 2004; Kelley et al., 2007). A complex picture arises, depending on the cancer site and the model: both isomers reduced breast and forestomach tumorigenesis; the c9-t11 isomer did not affect the development of spontaneous intestinal or breast tumours, inhibited the cyclo-oxygenase pathway and had no effect on apoptosis, whereas the t10,c12 isomer increased the development of genetically induced mammary and intestinal tumors (though inhibiting in vitro the growth of most cancer cell types), inhibited the lipoxigenase pathway and induced the expression of apoptotic genes. In an in vitro Caco-2 model (human intestinal cancer cell
line), the t10,c12 isomer had an impact on 918 genes involved in cell cycle, cell proliferation and DNA metabolism, whereas the c9-t11 isomer had no effect on gene expression (Murphy et al., 2007). The relevance of these experimental findings for the safety assessment is unclear. In a cohort of Swedish women, CLA intake from natural sources was not associated with breast cancer after 17 years follow-up. The levels of intake of the naturally occurring c9-t11 isomer in this study are not comparable to those proposed in this application (Larsson et al., 2009).

Taken together with the results of toxicological studies, the Panel concludes that, based on the available evidence, CLA consumption does not raise a concern for cancer risk.

8.1.8. Additional in vitro and animal studies

The applicant presented an overview on additional in vitro and animal studies which identified areas of discussion in relation to effects observed for CLA.

8.1.8.1. Lipid metabolism parameters

There are several studies on the effects of a 50:50 CLA mixture and the individual c9,t11 and t10,c12 CLA isomers on lipid biology in mice. Wargent et al. (2005) observed a transient rise in triglycerides in mice fed CLA, which normalised after 5 weeks of treatment. Several studies revealed that the c9,t11 isomer either has no effect or significantly decreases serum triglycerides and that the t10,c12 CLA isomer appears to have variable, strain-dependent effects on serum triglycerides in mice (Degrace et al., 2003; Roche et al., 2002; de Roos et al., 2005).

In rabbits a reduction of total and LDL-cholesterol, triglycerides and atherosclerosis was reported after administration of a 50:50 CLA mixture (0.5 g CLA per rabbit per day) for 22 weeks (Lee et al., 1994). Other animal studies suggest that CLA administration inhibits cholesterol-induced atherosclerosis in rabbits (Kritchevsky et al., 2000; Kritchevsky, 2003).

In hamsters 50:50 CLA mixtures did not exhibit consistent effects on lipid metabolism.

8.1.8.2. Hepatic lipid accumulation

In a 90-day toxicological study in rats using 15 % ClarinolTM in the diet, an increase in serum hepatic enzymes (alkaline phosphatase and alanine aminotransferase) was reported throughout the treatment period, that was reversible during the recovery period; this effect was not seen with the 1 % or the 5 % dose (O’Hagan & Menzel, 2003).

Several studies report that feeding high concentrations of CLA to mice results in reduced adipose tissue accompanied by increased hepatic lipid accumulation (Tsuboyama-Kasaoka et al., 2000; Clement et al., 2002). The proposed mechanisms include (i) activation of peroxisome-proliferator-activated receptor (PPAR) regulated genes, (ii) increased plasma insulin and/or reduced leptin concentrations, and (iii) uptake of CLA into fat stores of the liver.

8.1.8.3. Markers of inflammation

Studies in animals demonstrate that CLA mixtures or individual isomers reduced inflammatory mediators, including TNF-α concentrations in rats (Sisk et al., 2001), decreased mRNA expression of the pro-inflammatory cytokines IL-6 and TNF-α in pigs (Changhua et al., 2005) and attenuated the development of inflammatory lesions in pigs (Hontecillas et al., 2002).
8.1.8.4. Insulin sensitivity and glucose metabolism

Various in vitro studies suggest that the t10,c12 CLA isomer is responsible for the loss of body fat and inhibits PPAR-\(\gamma\), resulting in numerous downstream events leading to the down-regulation of genes related to insulin secretion and action (Granlund et al., 2003; Kang et al., 2003; Kennedy et al., 2005). Chung et al. (2005) observed in co-cultured human adipocytes and stromal vascular cells that the t10,c12 CLA-mediated suppression of insulin-stimulated glucose uptake at 24 h was associated with decreased total and plasma membrane glucose transporter 4 proteins. The authors showed that t10,c12 CLA promotion of NFkappa-B activation and subsequent induction of IL-6 were at least in part responsible for t10,c12 CLA-mediated suppression of PPAR-\(\gamma\) target gene expression and suppression of insulin sensitivity in mature human adipocytes.

Animal studies in rodents and pigs have documented varying effects of both, 50:50 CLA isomer mixtures and the single isomers on insulin sensitivity and glucose tolerance.

Poirier et al. (2005) administered a 1 % isomeric mixture of CLA by gavage to C57BL/6J female mice (approximately 1500 mg/kg body weight per day) for two to 28 days. Concentrations of leptin and adiponectin were reported to sharply decrease after two days of CLA feeding, whereas adipose tissue mass only decreased after six days. Hyperinsulinemia developed at day six and worsened up to day 28, in parallel with increases in hepatic lipid content.

Ohashi et al. (2004) examined the plasma concentrations and mRNA expression levels of several adipocytokines thought to be involved in the regulation of insulin sensitivity in normal C57BL, mildly obese/diabetic KK and morbidly obese/diabetic KKAy mice. CLA oil, 0.5 % (approximately 750 mg/kg body weight per day) and consisting of approximately 60 % of the 1:1 mixture (c9,t11:t10,c12) was administered by gavage for four weeks. An increase in liver weight with excess accumulation of triglycerides and insulin resistance associated with hyperglycaemia and hyperinsulinaemia in the CLA groups compared to placebo were reported. The authors concluded that feeding CLA promotes insulin resistance in obese/diabetic mice compared to normal control mice by inverse regulation of leptin, adiponectin and TNF\(\alpha\).

Bhattacharya et al. (2005) examined the effects of a low concentration of either safflower oil as control (0.5 %) or mixed isomers of CLA (0.4 % or approximately 600 mg/kg body weight per day) for 14 weeks along with treadmill exercise on body composition in male Balb/Cmice fed a high-fat diet (20 % corn oil). CLA consumption reduced fat mass and the fat mass decreased further with CLA and exercise. The effect was accompanied by decreased serum leptin concentrations and lower leptin mRNA expression in peritoneal fat. Serum insulin, glucose, TNF\(\alpha\) and interleukin-6 were lower in CLA-fed mice than in controls. No increase in insulin resistance was observed in this study.

Tsuboyama-Kasaoka et al. (2000) investigated the effect of CLA on plasma leptin and insulin concentrations in female C57BL/6J mice. Mice were fed a low-fat control (n=14) diet (containing safflower oil) or a low-fat diet supplemented with CLA (1 % or 1500 mg/kg body weight per day; n=14) for up to eight months. Oral glucose tolerance testing conducted after 17 weeks of CLA supplementation revealed no difference in blood glucose concentrations compared to controls; however, after nine weeks marked insulin resistance was observed.

Clement et al. (2002) investigated the effects of CLA on plasma insulin and leptin concentrations in female C57BL/6J mice. Mice were fed a basal diet (control) or basal diet supplemented with c9,t11- or t10,c12-CLA isomers (0.4 %) for four weeks. Plasma leptin and insulin concentrations were unaffected by c9,t11-CLA treatment. However, plasma leptin concentration was reduced by approximately 47 % and plasma insulin concentration was increased by approximately 900 % in t10,c12-CLA-treated mice. Neither c9,t11 nor t10,c12-CLA-treatments altered the blood glucose concentrations.
Stangl (2000) looked at the effects of 1 %, 3 % and 5 % CLA compared to sunflower oil as control in male Wistar rats for five weeks and found that glucose concentrations were unaffected in the 1 % and 3 % CLA mixtures, but were elevated at the 5 % level compared to control. These data are in accordance with the results obtained by O’Hagan and Menzel (2003) who found that levels of the 50:50 CLA mixture at 15 % raised serum glucose concentrations in rats.

Bouthegourd et al. (2002) reported that the administration of a purified diet augmented with c9,t11 CLA isomer to 0.6 % or 50:50 CLA to 1.2 % to male Syrian hamsters for a period of six or eight weeks resulted in significantly higher plasma glucose concentrations in the group receiving the CLA mixed isomers compared with the other groups. Plasma insulin did not differ significantly between the groups.

Stangl et al. (1999) reported that the administration of basal diets containing 1.0 % of a CLA preparation containing 34.6 % c9,t11 CLA and 18.4 % t10,c12 CLA for a period of six weeks to adult female pigs resulted in non-significant increases in plasma insulin concentrations. Ramsay et al. (2001) found that the administration of 0.25 %, 0.5 %, 1.0 % and 2.0 % CLA preparations (25 % of the c9,t11 CLA and 35 % of the t10,c12 CLA isomer) to male and female crossbred grower pigs (Yorkshire x Landrace) had no effect on serum glucose and insulin concentrations.

Studies in mice using 0.5 % in the diet of either each purified isomer or a CLA mixture also show that t10,c12, but also the CLA mixture, induced insulin resistance, whereas the c9-t12 isomer prevented an increase of insulin resistance (Halade et al., 2009).

In conclusion, studies on the effects of CLA on insulin and glucose metabolism have been conducted both in vitro and in animal models. In vitro data suggest that the t10,c12 CLA isomer is involved in the regulation of fatty acid synthesis, the reduction of fat in adipocytes and the reduction of insulin sensitivity. Mice seem to be particularly sensitive to the effects of CLA on fat metabolism and are also a sensitive species with regard to insulin sensitivity. The extent of the effects of CLA on insulin resistance and also on markers of cardiovascular risk appears to be species-dependent, and at present results are difficult to extrapolate from animal studies to humans. Therefore the focus of the safety assessment needs to rely mainly on human studies and should include those parameters which were most affected in animal studies.

8.2. Human studies

Dyslipidemia (elevated LDL-cholesterol/elevated total:HDL-cholesterol ratio), hypertension, obesity, and diabetes are well-established and diet-related risk factors for CVD. Individuals with the "metabolic syndrome" or the "insulin resistance syndrome", characterised by hyperglycemia (or diagnosis of type 2 diabetes), abdominal obesity, dyslipidemia (elevated triglyceride and low HDL-cholesterol concentrations) and hypertension are at higher risk of CVD. The pathophysiologic mechanisms known to increase CVD risk in individuals with insulin resistance include formation of advanced glycation end products, hypertension, pro-inflammatory and prothrombotic states, dyslipidemia, and subclinical inflammation. Emerging risk factors for CVD are associated with many different biological systems such as those regulating platelets, coagulation, fibrinolysis, endothelial function, and the inflammatory response (Graham et al., 2007. In addition, enhanced oxidative stress and increased lipid peroxidation occurring either locally in the vessel wall or systemically as been implicated in the pathogenesis of atherosclerosis in humans. Determination of plasma concentrations and urinary excretion of some F(2)-isoprostanes (by immunochemical assays or by mass-spectrometry), has been demonstrated to be a reliable approach to the assessment of lipid peroxidation, and therefore of oxidative stress in vivo. F2-isoprostanes are increased in association with a number of atherosclerotic risk factors, including cigarette smoking, hypercholesterolemia, diabetes mellitus, and obesity, among others. Recent evidence suggests their quantification may represent an independent marker of atherosclerotic risk. A reduction in cardiovascular risk factors is associated with a decrease in F2-isoprostanes formation in humans (Minuz et al., 2006; Patrignani et al., 2005; Morrow, 2005).
Several intervention studies have been conducted in humans to investigate the effects of CLA intake on body weight and body fat, which have also assessed the impact of CLA administration on traditional and emerging risk factors for type 2 diabetes and cardiovascular disease such as insulin sensitivity, blood lipids, markers of inflammation, lipid peroxidation and vascular function, are described in the following sections to evaluate the safety of CLA consumption in humans.

8.2.1. Absorption, distribution, metabolism, and excretion (ADME)

Differences in the metabolism and effects of CLA between animal and human studies may be due to methodological differences, CLA dose and nature of the isomers, and species specificity (Plourde et al., 2008).

The few human studies that deal with CLA metabolism confirm a different metabolism of the two major CLA isomers. Only the c9,t11 isomer is found above the detection limit in plasma of healthy subjects consuming 1.4 g per day of a CLA 50:50 mixture for six months. The serum concentrations were slightly higher, with a large overlap, than the concentrations of this isomer in the serum of regular consumers of dairy products. In addition, CLA supplementation reduces the percentage of saturated fatty acids (34.1 % as compared to 38.6 %) in the plasma of control subjects not consuming dairy products or CLA supplements and the percentage of n-6 fatty acids (26.5 % and 32.1 % respectively), decreasing the n-6/n-3 ratio from 7.8 to 7.24 (Zlatanos et al., 2008).

8.2.2. Effects on insulin sensitivity and glucose metabolism

8.2.2.1. Insulin sensitivity

The hyperinsulinemic euglycemic glucose clamp test directly assesses whole body insulin-mediated glucose utilisation and is considered the gold standard method to assess changes in insulin sensitivity in intervention studies.

Three studies have assessed the effects of the CLA isomers c9-t11 and t10,c12, either alone or in combination, using the hyperinsulinemic euglycemic glucose clamp test (Risérus et al., 2004a; Risérus et al., 2002a; Syvertsen et al., 2007). All three studies have been conducted in obese individuals two of them in subjects with metabolic syndrome.

A randomised, double-blind, placebo-controlled trial (Risérus et al., 2004a) for 12 weeks with insulin sensitivity as primary end point was performed in 25 abdominally obese men with signs of the metabolic syndrome, including insulin resistance, receiving daily supplementation with either placebo (3.4 g olive oil, n=12) or CLA (3.4g c9,t12, isomer, n=13). Insulin sensitivity was assessed using the euglycaemic hyperinsulinemic clamp technique. It was calculated that 13 subjects per group would be needed to detect a mean difference between groups in insulin sensitivity index (M/I) of 1 unit with a power of 0.80 at a significance level of 0.05 with the use of the unpaired t test. In the c9,t12 CLA isomer group, compared to placebo, baseline-adjusted insulin sensitivity was significantly decreased (-14 %), whereas fasting plasma glucose and insulin did not change significantly.

A randomised, double-blind, placebo-controlled trial (Risérus et al., 2002a) for 12 weeks with change in serum cholesterol as primary end point was performed in 57 abdominally obese men with signs of the metabolic syndrome, including insulin resistance, receiving daily supplementation with either placebo (3.4 g olive oil, n=19), CLA (3.4 g t10,c12 isomer, n=19) or CLA (3.4 g of a 50:50 mixture of c9-t11 and t10,c12 as 4.5 g CLA oil, n=19). Insulin sensitivity was assessed using the euglycaemic hyperinsulinemic clamp technique. The Panel notes that, based on the calculations above (Risérus et al., 2004a), sample size is adequate to detect a mean difference between groups in insulin sensitivity index (M/I) of 1 unit with a power of 0.80 at a significance level of 0.05. There was no significant effect on baseline-adjusted stimulated insulin sensitivity or fasting plasma glucose, insulin or HbA1c
in the CLA-mix group compared to placebo. In the t10,c12 CLA isomer group, compared to placebo, baseline-adjusted insulin sensitivity was decreased and fasting plasma glucose was increased. Plasma insulin and HbA1c were unaffected. An additional publication on this study (Risérus et al., 2004b) shows that the intervention with the t10,c12 CLA isomer increased proinsulin, proinsulin/insulin ratio and C-peptide concentrations compared to controls and that changes in pro-insulin correlated with impaired insulin sensitivity (r = -0.58) independently of insulin changes, C-peptide, glucose, adiponectin and BMI. Hyperproinsulinemia also correlated with adiponectin concentrations. The Panel notes that hyper-proinsulinemia has been proposed as an independent predictor of diabetes and CVD.

As part of a randomised, double-blind, placebo-controlled trial (Syvertsen et al., 2007) with changes in body composition as primary end point in 118 overweight or obese adults receiving daily supplementation with either placebo (4.5 g olive oil) or CLA (3.4 g of a 50:50 mixture of c9-t11 and t10,c12) for 6 months, a sub-population of 49 subjects participated in an euglycemic hyperinsulinemic clamp study at baseline and after six months of intervention (26 CLA, 23 placebo). No significant differences in baseline-adjusted insulin sensitivity were observed between the CLA and placebo groups. No effect on fasting serum insulin or glucose concentrations, on HOMA values or on HbA1c and insulin C-peptide were observed. The authors concluded that 3.4 g CLA (mixture of 2 isomers) did not affect glucose metabolism or insulin sensitivity in overweight or obese subjects.

The Panel notes that 3.4 g/CLA given as isomolar combination of the c9-t11 and t10,c12 does not appear to significantly affect insulin sensitivity for up to three months in insulin-resistant men (Riserus et al., 2002a) and for up to six months in overweight/obese men and women (Syvertsen et al., 2007). The Panel also notes that both the c9-t11 (Risérus et al., 2004a) and the t10,c12 isomers (Risérus et al., 2002a; Risérus et al., 2004b) given alone at doses of 3.4 g per day, could have an adverse effect on insulin sensitivity in obese males with insulin resistance. These changes in insulin sensitivity do not appear to induce changes in fasting plasma glucose or blood glucose control (HbA1c) in the short-term in these non-diabetic subjects. No data are available on the effects of the single isomers on insulin sensitivity in obese women and in normal weight subjects of both sexes, neither on the long-term effects of the CLA mixture.

8.2.2.2. Surrogate markers of insulin sensitivity

Most of the available RCTs on the effects of CLA on insulin-mediated glucose disposal have used surrogate indexes for insulin sensitivity/resistance that are derived from blood insulin and/or glucose concentrations either under fasting conditions (steady state), such as the quantitative insulin sensitivity check index (QUICKI) or the homeostasis model assessment (HOMA), or during an OGTT or a standardized meal test (e.g., insulin sensitivity index (ISI)). Whereas steady state indices are quick, inexpensive and reliable for use in large population studies, they all suffer from important limitations, including poor precision, which limits their use in intervention studies. Dynamic tests offer at the same time information about insulin secretion and insulin action.

Surrogate markers of insulin sensitivity using dynamic tests

Besides the study by Syvertsen et al., 2007 discussed above, two studies investigated the effects of CLA on dynamic surrogate markers of insulin-mediated glucose disposal (Eyjolfson et al., 2004; Moloney et al., 2004). The randomised, double-blind, placebo-controlled trial by Eyjolfson et al. (2004) investigating the effects of CLA (3.0 g of a 50:50 mixture of c9-t11 and t10,c12, n=10) and placebo (3 g safflower oil, n=6) for eight weeks in 16 non-diabetic sedentary subjects could not be evaluated by the Panel because no direct comparison between intervention (CLA) and control groups was reported with respect to outcome variables.

A randomised, double-blind, placebo-controlled trial (Moloney et al., 2004) for eight weeks was performed in 32 overweight, diet-controlled diabetic type 2 subjects receiving daily supplementation
with either placebo (3.0 g palm oil/soybean oil blend, n=16) or CLA (3.0 g of a 50:50 mixture of c9-t11 and t10,c12, n=16). Sample size was estimated by the ability to detect a 20-30 % difference in triacylglycerol concentrations assuming a type I error of 0.05 and a power of 0.9. Insulin sensitivity was assessed by using an oral glucose tolerance test and different insulin sensitivity indexes were calculated from fasting glucose and insulin concentrations (QUICKI, HOMA-IR) and from glucose and insulin concentrations at different time points during the OGTT (ISI composite, oral glucose insulin sensitivity index (OGIS)). Baseline-adjusted fasting blood glucose and basal insulin resistance (HOMA-IR) were increased at the end of the CLA treatment, whereas baseline-adjusted stimulated oral glucose insulin sensitivity (OGIS) and ISI were reduced compared to placebo. Fasting serum insulin, basal insulin sensitivity measured as QUICKI and HbA1c remained unchanged.

The Panel notes that insulin sensitivity assessed by dynamic tests (ISI composite and OGIS), which offer at the same time information about insulin secretion and insulin action, may be decreased primarily due to an increase in fasting plasma glucose without compensatory increases in insulin concentrations in type 2 diabetic subjects on treatment with CLA. The Panel also notes that the length of the intervention (eight weeks) is too short to assess changes in blood glucose control using the HbA1c, and that no studies using surrogate markers of insulin sensitivity assessed by dynamic tests are available in normal weight, non-diabetic individuals.

Other surrogate markers of insulin sensitivity

Several studies in normal weight, overweight and obese subjects have assessed the effects of the CLA mixture or the two CLA isomers alone on fasting blood glucose and insulin concentrations, and on the HOMA-IR index derived from them. The Panel notes that, whereas the HOMA-IR index is quick, inexpensive and reliable for use in large population studies, it suffers from important limitations, including poor precision, which greatly limits its use in intervention studies.

A randomised, double-blind, placebo-controlled trial over 16 weeks (Raff et al., 2009) was performed in 81 healthy postmenopausal women (primarily normal weight, but also including some overweight and obese) receiving daily supplementation with either 4.5 g CLA (1:1 mixture of both isomers, n=25), 4.7 g of the c9-t11 isomer (n=24) or placebo (olive oil, n= 26). No significant treatment-related differences were observed between groups in fasting serum glucose or insulin, or calculated HOMA-IR. Post hoc-analyses showed that fasting serum insulin concentrations were greater in the CLA-mix group (34 %) than in the control group (P = 0.02) in subjects with the highest waist circumference tertile only. The Panel notes the small number of subjects per sub-group in the post hoc-analyses.

In another study by Taylor et al (2006), a total of 40 overweight subjects (BMI >27 kg/m2) were randomised to receive 4.5 g per day of an isomeric mixture of CLA or 4.5 g per day olive oil for 12 weeks following a double-blind design. No significant treatment-related differences were observed between groups in fasting serum glucose or insulin, or calculated HOMA-IR.

In a further double-blind, placebo-controlled 13-week study, 92 overweight subjects with hypercholesterolemia were randomly allocated to one of three treatment groups which received a placebo dairy product or the same product enriched with 3 g c9, t11 CLA-isomer or 3 g t10, c12 CLA-isomer. No differences between the control and treated groups were noted with regard to changes in fasting blood glucose, insulin or the HOMA-IR values calculated from them (Naumann et al., 2006).

Further studies with CLA administration for 6 – 24 months do not show changes in fasting plasma glucose and insulin concentrations, the calculated HOMA-IR, or in HbA1c concentrations between intervention and control values. The doses used in these studies vary from about 3.4 to 6 g per day CLA and the number of subjects from about 40 to 180 subjects of both sexes, with up to 60 subjects per study group (Gaullier et al., 2004, 2005, 2007) and generally less than 20 subjects per group (Watras et al., 2006; Whigham et al., 2004; Larsen et al., 2006). In two studies, insulin and C-peptide
were measured in addition to insulin and glucose. Also these parameters remained unaffected by the CLA treatment (Gaullier et al., 2005, 2007).

A meta-analysis assessed the effect of the 1:1 CLA mixture on fasting blood glucose (16 studies) and insulin (15 studies) concentrations, and on the HOMA-IR index (seven studies), in RCT published between 2000 and 2008 conducted in normal-weight, overweight and obese subjects (Herrmann, 2009). Most of the studies described above were included in the meta-analysis. No significant differences between the CLA and control groups on fasting blood glucose or insulin concentrations were observed, neither on the HOMA-IR.

The Panel notes that the data in normal weight and obese, non-diabetic subjects do not support an effect of CLA on fasting blood glucose or insulin concentrations, neither on basal insulin resistance.

Besides the study by Moloney et al. (2004), only one RCT (cross-over design) has investigated the effects of CLA (6.4 g per day, n=16) on blood glucose and insulin concentrations, and on the HOMA-IR index derived from them, in 32 type-2 diabetic subjects. The intervention lasted 16 weeks and safflower oil was used as control (n=16). Fasting glucose concentrations as well as the HOMA-IR significantly increased in the CLA group compared to controls, whereas fasting insulin concentrations did not differ between groups (Norris et al., 2009). The Panel notes that the dose of CLA used in this study is double than proposed by the applicant.

8.2.2.3. Blood glucose control

Some of the studies described in the previous sections report the effects of CLA (1:1 mixture) on blood concentrations of HbA1c, which is a reliable marker of long-term blood glucose control, and show no effect of CLA on HbA1c. However, most studies have been conducted in non-diabetic subjects and for periods of less than three months. The Panel considers that these studies are insufficient to exclude an adverse effect of CLA on long-term blood glucose control, particularly in type-2 diabetic subjects.

8.2.2.4. Conclusions on insulin sensitivity and glucose metabolism

The administration of a 1:1 isomer mixture of CLA to normal weight, overweight and obese non-diabetic subjects does not appear to have medium-term adverse effects on insulin sensitivity and blood glucose control at the proposed conditions of use. For the observed adverse effects on insulin sensitivity in relation to either isomer when administered alone in males with abdominal obesity, the available evidence does not provide an explanation for this observation. With respect to type-2 diabetic subjects, the Panel considers that the evidence provided does not establish the safety of 3-6 g per day of CLA in type 2 diabetic subjects under the proposed conditions of use, since the CLA mixture appears to show an adverse effect on both static (HOMA-IR) and dynamic (ISI, OGIS) surrogate markers of insulin sensitivity as well as on fasting blood glucose compared to the control fat and no studies on long-term blood glucose control (e.g., HbA1c) are available.

8.2.3. Effects on blood lipids and lipoproteins

8.2.3.1. Blood lipids

Many studies using the proposed CLA mixture investigated the effect of CLA on blood lipids in different target populations (normal weight, overweight, obese, metabolic syndrome) with CLA intakes ranging from 0.7 to 6.8 g/day and duration of the intervention ranging from 4 weeks to 2 years.
A recent meta-analysis of RCT on the effects of the 1:1 CLA mixture on blood lipids (search from 1965 to April 2006) included 25 studies published between 2000 and 2008 with a total of 646 subjects in the CLA group and 517 subjects in the control group (sample sizes between 16 and 180 subjects, age between 19 and 65 years) with a duration of the intervention between four and 52 weeks and CLA doses between 1.1 g per day and 4.5 g per day (Herrmann, 2009). Only three studies included subjects with BMI < 25 kg/m², whereas 12 studies included only subjects with BMI > 27 kg/m². Most of the studies used olive oil (n=9), safflower oil (n=3), or sunflower oil (n=4) as control fat. The overall effect of CLA on HDL-concentrations (19 studies) was neither significant in the total population nor in the 12 studies in subjects with BMI > 27 kg/m². When only the eight studies using olive oil as placebo were considered, HDL-concentrations were significantly lower in the CLA group. Blood concentrations of triglycerides were also higher in the CLA group compared to placebo in the overall population (n =18), in subjects with BMI > 27 kg/m², and in the studies using olive oil as placebo. No significant differences were observed for changes in LDL-cholesterol concentrations. Dose-response relationships were not assessed in this meta-analysis.

The Panel notes that the results of the two meta-analyses above show no effect of the 1:1 CLA mixture on LDL-cholesterol concentrations or the LDL:HDL-cholesterol ratio at the proposed conditions of use.

The Panel also notes that a significant (although modest) HDL-cholesterol lowering effect and a significant (although modest) triglyceride raising effect of the 1:1 CLA mixture cannot be excluded.

It could be argued that oleic acid has been shown to increase HDL-cholesterol concentrations and to decrease blood concentrations of triglycerides in the meta-analysis by Mensink et al. (2003) and therefore the use of oleic acid as placebo could have been responsible for the observed effects of CLA on blood lipids. However, the Panel notes that the comparison nutrient in that meta-analysis was carbohydrates, which although they appear to have no effect on LDL-cholesterol concentrations, tend to decrease HDL-cholesterol and to increase triglycerides to a certain extent, whereas most fatty acids increase HDL-cholesterol and decrease triglyceride concentrations compared to carbohydrates (Mensink et al., 2003). Changes in HDL- and triglyceride concentrations (in the CLA group compared to control fats) of the magnitude reported in the meta-analyses by Herrmann (2009) are unlikely to have an impact on coronary heart disease risk (Briel et al., 2009), but these changes in the lipid profile are typically associated with the insulin-resistance syndrome, supporting the notion that long-term changes in insulin sensitivity associated to the chronic administration of CLA cannot be excluded.

The Panel considers that consumption of the 1:1 CLA mixture under the proposed conditions of use has no significant effect on LDL-cholesterol concentrations, and that the magnitude of the changes observed in HDL- and triglyceride concentrations is unlikely to have an impact on coronary heart disease risk.

8.2.3.2. Lipoproteins

In a long-term study, Gaullier et al. (2004) reported a slight but significant increase in lipoprotein(a) concentrations, from 0.24 g/L to 0.28 g/L after 12 months 3 g per day CLA, and 0.30 g/L after 24 months (Gaullier et al. 2005). The Panel notes that the values remain below the generally accepted cut-off value of 0.30 g/L. Gaullier et al. (2007) also noted an increase in lipoprotein(a) from 0.364 g/L to 0.386 g/L in 55 subjects taking 3.4 g per day CLA for six months; a rise of similar magnitude was observed in the control group (+ 0.023 g/L as compared to + 0.028 g/L in the treated group).
8.2.4. Markers of lipid peroxidation

8.2.4.1. F$_{2\alpha}$ isoprostanes

Enhanced oxidative stress and increased lipid peroxidation occurring either locally in the vessel wall or systemically is implicated in the pathogenesis of atherosclerosis in humans. Determination of plasma concentrations and urinary excretion of some F(2)-isoprostanes (by immunometric assays or by mass-spectrometry), has been demonstrated to be a reliable approach to the assessment of lipid peroxidation, and therefore of oxidative stress in vivo. F$_{2\alpha}$-isoprostanes are increased in association with a number of atherosclerotic risk factors, including cigarette smoking, hypercholesterolaemia, diabetes mellitus, and obesity, among others. In addition, recent evidence suggests their quantification may represent an independent marker of atherosclerotic risk. A reduction in cardiovascular risk factors is associated with a decrease in F$_{2\alpha}$-isoprostanes formation in humans. The potential contribution of these compounds to the pathophysiology of the vascular damage and atherosclerosis has not yet been defined (Minuz et al., 2006; Patrignani et al., 2005; Morrow, 2005).

Nine RCTs have assessed the effects of CLA (given as the only intervention and compared to a placebo fat) on lipid peroxidation using plasma (Taylor et al., 2006; Basu et al., 2000b) or urinary F$_{2\alpha}$-isoprostanes (Basu et al., 2000a; Basu et al., 2000b; Etzdorf, 2008; Risérus et al., 2002b; Risérus et al., 2004c; Raff et al., 2008; Tholstrup et al., 2008). Most of the studies have used radioimmunoassay for analysis of F$_{2\alpha}$-isoprostanes with a reported very low cross-reactivity (usually <1%) with other metabolites of arachidonic acid.

Plasma F$_{2\alpha}$ isoprostanes

Basu et al. (2000b) performed a RCT to investigate the effects of consuming the 1:1 CLA isomer mix (4.2 g per day) on plasma 8-iso-prostaglandin F$_{2\alpha}$ in 28 healthy men using olive oil as placebo (n=25) for three months. Data were available only in 34 out of the 53 subjects completing the study. Plasma 8-iso-prostaglandin F$_{2\alpha}$ significantly increased in the CLA groups compared to controls. In another study, a total of 40 overweight subjects (BMI >27 kg/m2) were randomised to receive 4.5 g per day of an isomer mixture CLA or 4.5 g per day olive oil for 12 weeks following a double-blind design. Plasma F$_{2\alpha}$-isoprostanes significantly increased after CLA supplementation compared to olive oil (Taylor et al., 2006).

Urinary F$_{2\alpha}$ isoprostanes

In the study by Risérus et al. (2004a), 25 abdominally obese men with the metabolic syndrome were randomised to consume either 3 g per day of the c9,t12 CLA isomer or placebo (olive oil) for 12 weeks. Urinary 8-iso-prostaglandin F$_{2\alpha}$ was used as a marker of nonenzymatic lipid peroxidation, whereas urinary 15-keto-dihydroprostaglandin F$_{2\alpha}$, a major metabolite of prostaglandin F$_{2\alpha}$, was used as a marker of enzymatic lipid peroxidation. 15-keto-dihydroprostaglandin F$_{2\alpha}$ is also a powerful marker of systemic inflammation. Urinary 8-iso-prostaglandin F$_{2\alpha}$ and 15-keto-dihydroprostaglandin increased significantly in the CLA group compared to placebo. In another study from the same group (Risérus et al., 2002b), a total of 60 abdominally obese men with the metabolic syndrome were randomised to consume either 3.4 g/day CLA (isomer mixture), 3.4 g/day of the purified CLA isomer t10,c12, or placebo (olive oil) for 12 weeks. Urinary isoprostanes (8-iso PGF$_{2\alpha}$ and 15-keto-dihydroprostaglandin F$_{2\alpha}$) significantly increased in the CLA groups compared to placebo, and the increase was significantly higher in the CLA isomer t10,c12 group than in the group receiving the CLA isomer mixture. Changes in urinary 8-iso PGF$_{2\alpha}$ significantly correlated with changes in insulin resistance and with changes in C-reactive protein even after adjustment for all other variables including smoking. Similarly, in a study by Basu et al. (2000a), a significant increase of both 8-iso-prostaglandin F$_{2\alpha}$ and 15-keto-dihydroprostaglandin F$_{3\alpha}$ in urine was observed after one month of daily CLA intake (4.2 g per day, n=14) as compared to the control group (olive oil, n=10) in middle
age men. The same group (Basu et al., 2000b) performed another RCT to investigate the effects of consuming the 1:1 CLA isomer mix (4.2 g per day) on urinary 8-iso-prostaglandin F₂α and 15-keto-dihydroprostaglandin F₂α in 28 healthy men using olive oil as placebo (n = 25) for three months. A significant increase was observed in both urinary 8-iso-prostaglandin F₂α and 15-keto-dihydroprostaglandin F₂α in the CLA group compared to placebo. In the study by Raff et al., (2008), 38 healthy young men were randomised to consume either 115 g per day of CLA-butter (5.5 g per day of CLA oil, both isomers) or CLA-free butter for 5 weeks. Urinary 8-iso-prostaglandin F₂ was used as a marker of nonenzymatic lipid peroxidation and significantly increased in the CLA group compared to placebo. Tholstrup et al. (2008) assessed the effects of 5.5 g per day of either the CLA mixture (4.6 g per day CLA), the CLA c₉,t₁₁ isomer (5.1 g per day) or olive oil for 16 weeks in 75 postmenopausal women (about 25 per group). Urinary 8-iso-prostaglandin F₂α significantly increased in the CLA groups compared to placebo, and significantly more in the CLA mix group than in the c₉,t₁₁ CLA isomer group.

The mechanism by which CLA could increase plasma and urinary concentrations of F₂α isoprostanes has been investigated in vitro (Stuchwiesa et al., 2008) and in vivo (Smedman et al., 2004). Smedman et al., (2004) randomised 60 men and women to take a cyclooxygenase (COX)-2 inhibitor (rofecoxib, 12 mg per day), alpha-tocopherol (200 mg per day) or no treatment (control) for two weeks. The three groups were subsequently randomised to consume either the 1:1 CLA mix (3.4 g per day) or the t₁₀,c₁₂ CLA isomer (4 g per day) for four weeks in addition to the basal treatment. Plasma and urinary concentrations of 8-iso-prostaglandin F₂α and 15-keto-dihydroprostaglandin F₂α significantly increased after CLA administration, with a significantly larger increase in the t₁₀,c₁₂ CLA isomer group than in the CLA mixture group. The increase of plasma 8-iso-prostaglandin F₂α was significantly higher with the t₁₀,c₁₂ CLA isomer than with the 1:1 CLA mix (3.4 g per day). Plasma concentrations of isoprostanes were not affected by the supplementation with alpha-tocopherol, but no increase was observed when both the CLA mix and the t₁₀,c₁₂ CLA isomer were consumed together with the COX-2 inhibitor. Treatment with the COX-2 inhibitor significantly suppressed the increase of 15-keto-dihydroprostaglandin F₂α in the t₁₀,c₁₂ CLA isomer group. No other changes were observed due to either COX-2 inhibitor or alpha-tocopherol treatment in any of the CLA groups with respect to urinary isoprostanes.

The Panel notes that plasma and urinary F₂-isoprostanes consistently and markedly increase with the administration of the CLA mixture in humans. An increase in markers of nonenzymatic (8-iso-prostaglandin F₂α) lipid peroxidation could partly result from a reduced catabolism of isoprostanes (i.e., 8-iso-prostaglandin F₂α) in peroxisomes due to a competition with CLA (Iannone et al., 2009). However, the extent to which this mechanism may contribute to increased plasma and urinary concentrations of isoprostanes in subjects consuming CLA has not been quantified in humans. A contribution of CLA to increased lipid peroxidation and systemic inflammation (i.e, 15-keto-dihydroprostaglandin F₂α) is suggested by the data presented.

Plasma concentrations of 8-iso-prostaglandin F₂α isoprostanes observed after CLA administration in the studies described are generally > 1.0 nmol/mmol creatinine (Basu et al., 2000a and 2000b; Risérus et al., 2002b; Smedman et al., 2004) or > 1.0 µg/L (Tholstrup et al., 2008; Raff et al., 2008), which is clearly above mean basal values recently reported in 588 healthy subjects from three EU countries including smokers (from 0.17 to 0.28 nmol/mmol creatinine) (Basu et al., 2009), where only eight subjects had values > 0.60 nmol/mmol creatinine and only two subjects has values > 1.0 nmol/mmol creatinine.

8.2.4.2. Other markers of lipid peroxidation

As stated by the applicant, CLA supplementation in animal models has not been shown to affect other measures traditionally used to assess lipid peroxidation, such as TBARS, MDA, oxidation lag time of LDL particles, ex vivo or muscle antioxidant enzymes (e.g., catalase, glutathione peroxidase).
However, the Panel considers that, when used alone, and not simultaneously with urinary F-2 isoprostanes, TBARS, MDA, oxidation lag time of LDL particles \textit{ex vivo} or muscle antioxidant enzymes are not reliable markers of lipid peroxidation (EFSA, 2010).

In humans, Basu et al., (2000b) did not observe a statistically significant change in MDA assessed by HPLC and fluorescence detector after CLA administration, and Etzdorf (2008) did not observe an increase in serum concentrations of oxidised LDL measured by the ELISA method. The Panel notes that the data presented on markers of lipid peroxidation in humans other than isoprostanes are too limited to draw any conclusions.

8.2.4.3. Conclusion on markers of lipid peroxidation

The Panel considers that the data presented suggest an increase in lipid peroxidation as a result of cyclo-oxygenase-mediated inflammation and oxidative stress associated with the consumption of the 1:1 CLA mixture in humans at the conditions of use proposed by the applicant.

8.2.5. Markers of systemic (subclinical) inflammation and adipokines

A consistent increase in cyclooxygenase-mediated inflammation (i.e., assessed by concentrations of 15-keto-dihydroprostaglandin F$_{2\alpha}$ in urine) has been observed in association to CLA consumption in humans (see section 8.2.4).

Increased concentrations of CRP were observed in a few studies (Risérus et al., 2002b; Smedman et al., 2005; Watras et al., 2006; Gaullier et al., 2007) but not in other studies with similar CLA exposure (Moloney et al., 2004; Tricon et al., 2004; Naumann et al., 2006; Ramakers et al., 2005; Song et al., 2005). In the study by Risérus et al. (2002b) CRP was increased significantly in subjects ingesting the t10, c12 CLA-isomer (3.4 g per day) but only insignificantly in subjects consuming the 1:1 mix of the c9, t11 and t10, c12 CLA-isomers. No effects of the t10, c12 CLA-isomer (up to 2.5 g per day) on CRP were observed by Tricon et al. (2004).

In a recent meta-analysis (Herrmann, 2009), the 1:1 CLA mixture showed a significant increase in CPR concentrations compared to the control group (six studies considered). Five of the studies were performed in subjects with BMI $>$ 27 kg/m2. In that meta-analysis, the effects of CLA on other markers of systemic (namely TNF-alpha, IL-6) and endothelial (namely ICAM-1, VCAM-1) inflammation could not be assessed due to the small number of studies available, from which the results were inconsistent.

Adiponectin was unaffected by CLA treatment (Gaullier et al., 2007; Taylor et al., 2006). TNF-alpha and IL-6 were generally not affected by CLA treatment (Moloney et al., 2004; Risérus et al., 2002b; Taylor et al., 2006; Watras et al., 2006; Gaullier et al., 2007; Smedman et al., 2005).

The Panel notes that none of these studies has been designed to address the effects of CLA on subclinical inflammation and that the results are inconsistent. However, an increase in 15-keto-dihydroprostaglandin F$_{2\alpha}$ and possibly in CRP concentrations has been observed following CLA intake.

8.2.6. Vascular function

The vascular endothelium is a key regulator of vascular homeostasis and it plays a central role throughout the atherosclerotic disease process. Few studies evaluated a limited number of markers of endothelial function (Taylor et al., 2006; Raff et al., 2006; Watras et al. 2007; Pfeuffer et al., 2007).
One study investigated the effects of CLA on endothelial function by flow-mediated dilation (FMD) measurements (Taylor et al., 2006). A total of 40 overweight subjects (BMI >27 kg/m²) were randomised to receive 4.5 g per day of an isomeric mixture CLA or 4.5 g per day olive oil for 12 weeks in a double-blind design. A 2-tailed P value <0.025 was considered significant for FMD measurements after Bonferroni correction (secondary outcome). FMD significantly decreased in the CLA group compared to placebo.

Another study presented by the applicant addressed the effects of CLA-rich butter (5.5 g per day CLA oil, both isomers, 4.6 g pre day CLA, n=15), vaccenic acid (VA)-rich butter (3.6 g per day, n=21)) and butter low in VA and CLA (n=19) for five weeks in healthy men (Raff et al., 2006). Changes in isobaric arterial elasticity measured by an oscillometric method were not different between groups. The Panel notes that CLA was compared in this study with vaccenic acid (a trans fatty acid) and with butter (rich in saturated fatty acids), whose effects on endothelial function and arterial compliance are not neutral (Mozaffarian et al., 2004 and 2009; Siddiqui et al., 2008; Harvey et al., 2008).

The Panel considers that the data presented suggest a possible adverse effect of the CLA 1:1 isomer mixture on vascular function.

8.2.7. **Vascular damage**

Possible adverse effects of CLA consumption on lipid peroxidation, subclinical inflammation and vascular function have been described in sections 8.2.4, 8.2.5., and 8.2.6, respectively.

Impaired endothelial function, subclinical inflammation, and increased lipid peroxidation have all been associated with an increased risk of CVD (Graham et al., 2007; Minuz et al., 2006; Patrignani et al., 2005; Morrow, 2005). Although the potential contribution of these factors to the pathophysiology of vascular damage and atherosclerosis has not been defined yet, any adverse effects on the arterial wall are to be expected in the long-term.

No data on the effects of CLA intake on vascular damage and atherosclerosis have been provided in humans.

8.2.8. **Liver function and liver steatosis**

As stated in section 8.1.6.2, an increase in serum liver enzymes and increased fat accumulation in the liver have been described in rats (O’Hagan & Menzel, 2003) and mice (Tsuboyama-Kasaoka et al., 2000; Clement et al., 2002) following the administration of feedings containing high doses of CLA. The proposed mechanisms for these effects include the activation of PPAR-regulated genes, an increase in plasma insulin and/or reduced leptin concentrations, and the uptake of CLA into the liver fat stores.

A case report of a severe toxic hepatitis, confirmed by elevated serum transaminases and liver biopsy, occurring in a healthy woman, without prior antecedent, 14 days after starting CLA supplementation (mixture of c9, t11 and t10, c12, 3x3 g daily) has been published (Ramos et al., 2009); serum enzymes returned to normal within two months after CLA discontinuation. After elimination of viral and other possible toxic causes, the causality by CLA was scored as probable. The Panel notes that the subject consumed three times the proposed dose and that this is the only report that has been published more than ten years after the commercialisation of CLA dietary supplements with annual sales in Europe which have been reported to be 170 – 180 tons CLA for the years 2006 - 2008 (Lipid Nutrition, 2010).

A human RCT investigating the effects of the CLA isomers c9-t11 and t10,c12 consumed alone at doses of 1.5 g per day and 3 g per day each for four months compared to a high oleic sunflower oil (3 g per day, placebo) on body composition in overweight males and females (15 subjects in the placebo
and the two CLA t10,c12 randomisation arms, 18 subjects in the two CLA c9-t11 randomisation arms) reports no changes in any of the study groups in liver size or liver ultrastructure during the intervention assessed by ultrasound (Malpuech-Brugere et al., 2004). In a more recent study by Iwata et al. (2007), 60 overweight and obese volunteers were randomised to consume 3.5 g per day of the CLA mixture, 6.8 g per day of the CLA mixture or placebo (safflower oil, 10.8 g per day) for 12 weeks. Liver steatosis was assessed by ultrasound and no significant changes were observed between groups during the study. The Panel notes that, whereas ultrasonography is an established screening technique for detecting moderate or severe fatty infiltration of the liver, it is not a reliable method for the quantification of fat stores.

Some human intervention studies report on the effects of CLA on hepatic enzymes. Out of seven studies including measures of liver function (Gaullier et al., 2004 and 2005; Berven et al., 2000, Whigham et al., 2004; Watras et al., 2006, Malpuech-Brugere et al., 2004), only Gaullier et al. (2004 and 2005) reported a significant increase in ASAT in the CLA group compared to the control group. In the study by Gaullier et al. (2005) with up to 24 months of CLA consumption (3.4 g per day), two out of the 134 subjects had above normal increased activities of both transaminases (ASAT and ALAT) at the end of the study, which returned to baseline levels four weeks after of ending the consumption of CLA. In the publication by Iwata et al. (2007) described above, ALAT concentrations significantly increased in the 6.8 g per day CLA group compared to placebo, and GGT significantly increased in the 3.5 and 6.8 g per day CLA groups compared to placebo when only subjects with normal enzyme activities at baseline were taken into account. The Panel notes the post-hoc nature of the analysis and the small number of subjects included.

The Panel notes that most of the intervention studies with CLA conducted in humans do not report adverse effects on liver function enzymes at the proposed conditions of use.

The Panel considers that, whereas no acute or mid-term (up to six months) effects can be expected in humans in relation to the consumption of CLA on markers of liver function.

8.2.9. Impact on milk secretion and content

Some studies in pigs (Harrell et al., 2002, Poulos et al., 2004) and one human study in 9 lactating women (Masters et al., 2002) raised concern that CLA can decrease milk fat content. Due to the cross over design of the human study (CLA effect was not studied during the same period of lactation) and the low number of subjects, the relevance of such a finding is unclear. More recent studies performed either with CLA mixtures (Mosley et al., 2007; 50:50 CLA 2 or 4 g per day) in 36 lactating women or with pure isomers in 12 lactating women (Hasin et al., 2005; 750 mg per day of each isomer) showed no effect on milk composition. Using naturally occurring CLA in cheese Ritzenthaler et al. (2005) also found no effect on milk in a study enrolling 36 lactating women for three weeks, but the doses (160 or 346 mg per day of the c9-t11 isomer) were lower than those proposed by the applicant. Total CLA content of milk fat is increased with CLA consumption both in animals and in women (Moutsouilis et al., 2008). In animal studies, CLA in milk did not result in impairment of the growth of the progeny (Poulos et al., 2004).

8.2.10. Adverse events

Clinical studies, generally performed in a small number of subjects, only showed rare and moderate adverse events, with the same frequency in the control and treated groups. Some of these events, especially, in the gastrointestinal tract, have been attributed to the ingestion of the gelatine capsules rather than to CLA itself. In a post-market survey on CLA containing foods, consumers in Spain reported adverse effects in approximately 2 % (25 cases among 1235 consumers), mostly digestive symptoms such as diarrhoea, nausea and dyspepsia (Anadón et al., 2006). Owing that most consumers
were under pharmacological treatment for different conditions at the time of CLA supplementation, causality remains unclear.

DISCUSSION

The applicant provided sufficient information regarding the production, the composition, the stability, and the estimated intake of Clarinol® CLA-rich oil.

In vitro data suggest that the \(t_{10},c_{12} \) CLA isomer is involved in the regulation of fatty acid synthesis and mediating suppression of insulin sensitivity in mature human adipocytes. This isomer has also been reported to be responsible for undesirable effects on fat and glucose metabolism *in vivo*. Mice seem to be particularly sensitive to the effects of CLA on fat and glucose metabolism. However the extent of the effects of CLA on insulin sensitivity, but also on hepatic fat accumulation and markers of cardiovascular risk appears to be species-dependent. The focus of the safety assessment therefore relies mainly on human studies. The available data from non-human studies do not indicate a risk for genotoxicity, reproductive toxicity, carcinogenicity or allergenicity.

The administration of the 1:1 isomer mixture of CLA to normal weight, overweight and obese non-diabetic subjects does not appear to have adverse effects on insulin sensitivity, blood glucose control or liver function at the proposed conditions of use for up to six months. Effects of CLA consumption over periods longer than six months on insulin sensitivity and liver steatosis have not been adequately addressed in humans. With respect to type-2 diabetic subjects, the evidence provided does not establish the safety of CLA under the proposed conditions of use, since the CLA 1:1 isomer mixture appears to adversely affect both static (HOMA-IR) and dynamic (ISI, OGIS) surrogate markers of insulin sensitivity as well as fasting blood glucose and no studies on blood glucose control (e.g., HbA1c) are available for periods of consumption beyond eight weeks. Under the proposed conditions of use, CLA has no effect on LDL-cholesterol concentrations or the LDL:HDL-cholesterol ratio, and the magnitude of the changes observed in HDL- and triglyceride concentrations are unlikely to have an impact on CVD risk. However, the observed increase in plasma and urinary concentrations of isoprostanes, which may indicate an increase in lipid peroxidation, and the increase in some markers of subclinical inflammation (i.e., 15-keto-dihydroprostaglandin F\(_2\alpha\) and possibly CRP) associated with CLA consumption, together with the limited data available on the effects of CLA on vascular function may indicate a potential for vascular damage (i.e., atherosclerosis) in the longer term. No data on effects of CLA intake on the arterial wall have been provided in humans.

The Panel considers that CLA consumption does not appear to have adverse effects on insulin sensitivity, blood glucose control or liver function for up to six months, and that observed effects on blood lipids are unlikely to have an impact on CVD risk. Long-term effects of CLA intake on insulin sensitivity and the arterial wall have not been adequately addressed in humans. The evidence provided does not establish the safety of CLA consumption by type-2 diabetic subjects under the proposed conditions of use.

CONCLUSIONS

The Panel concludes that the safety of Clarinol®, an oil with approximately 80% CLA 1:1 mixture of \(r_{9},c_{11} \) and \(t_{10},c_{12} \) isomers, has been established for the proposed uses at intakes of 3.75 g Clarinol® per day (corresponding to 3 CLA), for up to six months. The safety of CLA consumption for periods longer than six months has not been established under the proposed conditions of use. The safety of CLA consumption by type-2 diabetic subjects has not been established.
DOCUMENTATION PROVIDED TO EFSA

1. Letter from the European Commission to the European Food Safety Authority with the request for an opinion on the safety of ‘CLA (Conjugated Linoleic Acid) - rich Oil’ as food ingredient (Lipid Nutrition). SANCO E4/AK/bs (2008) D/540490.

3. Initial assessment report carried out by Ireland: Initial Assessment of the Application for the Authorisation of Clarinol® CLA-Rich Oil under Article 4 of the Novel Food Regulation (EC) No. 258/97

4. Member States’ comments

5. Response to by the applicant to the initial assessment report and the additional Member States comments

REFERENCES

EFSA (European Food Safety Authority), 2010. Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 8(2):1489, 63 pp. Available online: www.efsa.europa.eu

Safety of conjugated linoleic acid (CLA)-rich oil (Clarinol®)

Safety of conjugated linoleic acid (CLA)-rich oil (Clarinol®)

Lipid Nutrition, (2010). Written communication by e-mail from the applicant to EFSA (12.10.2009).

Stangl GI, 2000. High dietary levels of a conjugated linoleic acid mixture alter hepatic glycerophospholipid class profile and cholesterol-carrying serum lipoproteins of rats. J Nutr Biochem 11, 184-191

GLOSSARY AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAT</td>
<td>Alanine Aminotransferase</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ASAT</td>
<td>Aspartate Aminotransferase</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CLA</td>
<td>Conjugated Linoleic Acid</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclo-Oxygenase</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reactive Protein</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>FMD</td>
<td>Flow-Mediated Dilation</td>
</tr>
<tr>
<td>FOB</td>
<td>Functional Observational Battery</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma-Glutamyl Transferase</td>
</tr>
<tr>
<td>GM</td>
<td>Genetically modified</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analysis Critical Control Points</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HF</td>
<td>High-fat</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostatic Model Assessment of Insulin Resistance</td>
</tr>
<tr>
<td>ICAM</td>
<td>Inter-Cellular Adhesion Molecule 1</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukine</td>
</tr>
<tr>
<td>ISI</td>
<td>Insulin Sensitivity Index</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No Observed Adverse Effect Level</td>
</tr>
<tr>
<td>OGIS</td>
<td>Oral Glucose Insulin Sensitivity Index</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral Glucose Tolerance Test</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome-Proliferator-Activated Receptor</td>
</tr>
<tr>
<td>QUICKI</td>
<td>Quantitative Insulin Sensitivity Check Index</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>SCF</td>
<td>Scientific Committee on Food</td>
</tr>
<tr>
<td>SD</td>
<td>Sorbitol Dehydrogenase</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric Acid Reactive Substances</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>UHT</td>
<td>Ultra-High Temperature</td>
</tr>
<tr>
<td>VA</td>
<td>Vaccenic Acid</td>
</tr>
<tr>
<td>VCAM</td>
<td>Vascular Cell Adhesion Molecule</td>
</tr>
</tbody>
</table>