Cosmetics Industry Remains Confident: Exposure to Aluminium from Cosmetic Products is Negligible

BfR Symposium – 26 & 27 November 2014

1. Background on Aluminium and Cosmetics
2. How Antiperspirants Work
3. Existing Skin Absorption Data (SCCS / BfR Opinions)
4. New Study in Progress

Aluminium Consortium – IKW – Cosmetics Europe
Authoritative assessments see no plausible evidence to link consumer exposure to aluminium with Alzheimer's disease or cancer.

- Several Decades of Concern and Scientific Scrutiny.
- No evidence of harm at current levels of consumer exposure.
- Recent Authoritative Expert Reviews:

 Opinions on Dietary Exposure
 - **EFSA 2008**: European Food Safety Authority
 - **JECFA 2008 and JECFA 2011**: World Health Organisation

 Opinions on Cosmetic Exposure
 - **BfR 2014**: German Federal Institute for Risk Assessment
 - **SCCS 2014**: EU Scientific Committee on Consumer Safety
Why is ill health implausible?

- Daily Exposure from cosmetics is **very low** (micrograms)
- It is a **minor** contribution to overall consumer exposure

Why is there still controversy?

- **Skin absorption** is crucial to the risk assessment
- The small exposure from cosmetics is **difficult** to distinguish from other sources of aluminium exposure
- Need to **strengthen** the **scientific basis** of the skin absorption data
Public Health (11-04-2014)

Scientific Opinion on Aluminium in cosmetic products published today

Today, the Commission's independent Scientific Committee on Consumer Safety (SCCS) published its Opinion on Aluminium in cosmetics such as lipstick, deodorants and toothpastes.

Aluminium is a known systemic toxicant at high doses. Following reports and concerns raised, the SCCS was requested to assess the possible risk for human health due to the presence of aluminium in cosmetics, in particular in products such as antiperspirants and deodorants, lipstick and toothpastes, considering the exposure from other sources such as food and food supplements.

In case the estimated exposure of aluminium caused concern, the SCCS was further asked to recommend safe concentration limits for the presence of aluminium in cosmetics.

After studying the available literature on exposure to, and health risks from aluminium in cosmetic products, the SCCS expressed several considerations. For example:
• Aluminium in the levels reached with cosmetic use is unlikely to be carcinogenic.
• There is no evidence that using antiperspirants can lead to levels of aluminium that would be harmful to health.
• There is no plausible evidence that the use of aluminium containing cosmetics and skin care products can increase the risk of breast cancer or Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases.

Regarding safe concentration limits, SCCS concluded that there was too little data to draw conclusions, and that internal exposure to aluminium after skin application could be better determined with a human exposure study under real-life conditions.

To read the full Opinion:

For more information on the SCCS:
http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm

Follow @EU_Health
Scientific Opinion on Aluminium in cosmetic products published today

Today, the Commission’s independent Scientific Committee on Consumer Safety (SCCS) published its Opinion on Aluminium in cosmetics such as lipstick, deodorants and toothpastes.

Aluminium is a known systemic toxicant at high doses. Following reports and concerns raised, the SCCS was requested to assess the possible risk for human health due to the presence of aluminium in cosmetics, in particular in products such as antiperspirants and deodorants, lipstick and toothpastes, considering the exposure from other sources such as food and food supplements.

In case the estimated exposure of aluminium caused concern, the SCCS was further asked to recommend safe concentration limits for the presence of aluminium in cosmetics.

After studying the available literature on exposure to, and health risks from aluminium in cosmetic products, the SCCS expressed several considerations. For example:

- Aluminium in the levels reached with cosmetic use is unlikely to be carcinogenic.
- There is no evidence that using antiperspirants can lead to levels of aluminium that would be harmful to health.
- There is no plausible evidence that the use of aluminium containing cosmetics and skin care products can increase the risk of breast cancer or Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases.

Regarding safe concentration limits, SCCS concluded that there was too little data to draw conclusions, and that internal exposure to aluminium after skin application could be better determined with a human exposure study under real-life conditions.

To read the full Opinion:

For more information on the SCCS:
http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm
The contribution from aluminium containing ingredients in cosmetics to consumer exposure is very low

• Aluminium containing ingredients are present in several types of cosmetic products.

• The majority of products use aluminium containing ingredients that are *insoluble*, which means they are not free to be absorbed across the skin e.g.
 – insoluble *pigments* or naturally occurring *clays* and *minerals* (aluminium is the third most abundant element in the earth’s crust).

• Some products (e.g. lipstick and toothpaste) may be ingested in small quantities, but amount is small compared to the diet.

• Antiperspirants are the principal use of *soluble* aluminium containing ingredients (aluminium salts) in cosmetics. Therefore, it is important to understand how much is absorbed.
Skin is a Barrier: Protein Complexes Reduce Skin Absorption

Many metal salts form complexes with proteins*

Formation of protein complexes in the stratum corneum minimises absorption across the skin **

Structure of the skin Illustration from Anatomy & Physiology, Connexions. http://cnx.org/content/col11496/1.6/ By OpenStax College [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)] via Wikimedia Commons
Skin Absorption

Mode of Action of Antiperspirants Containing Aluminium Salts
Aluminium salts from antiperspirant form insoluble plugs in the sweat duct *

Soluble aluminium salts **diffuse** into quiescent sweat ducts...

...bicarbonate in sweat **neutralises** aluminium salts so that they **precipitate** as **insoluble polymeric** (high molecular weight) aluminium hydroxide gel plugs...

... and interact with **mucopolysaccharide** duct lining...

... an insoluble **plug** is formed in the **duct**, which prevents sweat from reaching the skin surface until...

...the plugs are **ejected** as upper layers of the skin is worn off.

High molecular weight, insoluble substances cannot penetrate the epidermis and are generally **not bioavailable**. Therefore **precipitated** aluminium hydroxide gel plugs are **unlikely** to be **systemically bioavailable**.

Skin Absorption

Summary of Existing Data
Flarend (2001): First Human Study Found Very Low Skin Absorption from Radiolabelled Antiperspirant Aluminium Salt

Aqueous aluminium salt antiperspirant (ACH) labelled with rare ^{26}Al radioisotope

Pilot study using 2 subjects

Single dose

Mass balance attempted, occlusion & tape stripping

0.012% of applied dose was absorbed

- Good sensitivity and specificity
- Too few subjects.
- Would more or less be absorbed during daily use?
- Occlusion (covered skin) often increases absorption.
- Tape stripping led to severe irritation and broken skin in one subject and mild irritation in the other
- Must be interpreted conservatively

PMIC (2008): In vitro Skin Absorption Study

- A relatively **standard in vitro** skin a using **ex vivo** human skin
 ✓ OECD / GLP / SCCS compliant method

- Assessed absorption of **non-radioactive** 27Al from 3 antiperspirant products ± tape strip damage

- Measured the abundant 27Al stable isotope
 ✗ High background = poor sensitivity

- Large variability in **sample measurement**
 ✗ Standard Deviations were large (63% of mean value)
 ✗ Mass Balance varied from 51±10% to 141±29% (not valid study)
 ✗ Study not a valid study by SCCS criteria

- **No significant increase** in aluminium in the **receptor fluid**.

PMIC (2008): In Vitro Skin Absorption Study – Model Limitations

- Given the way that antiperspirants work, *ex vivo* skin is a poor model
 - *Ductal plugs unlikely to be formed*
 - *Active sweat glands are required for pH neutralisation and precipitation*
 - *No sweat flow* so fast diffusion down sweat ducts, aided by gravity
 - *Slow pH neutralisation leaving soluble salts in duct lumen*
 - *Protective mucopolysaccharide duct lining integrity is uncertain*

- Observed residues in the upper layers of the skin are not surprising due to potential *protein binding* of Al-ions and formation of *insoluble precipitates*.

- **No significant increase** in aluminium in the *receptor fluid*.

- Dead skin is a *poor model* for *living* and *sweating* skin for the assessment of skin absorption of an antiperspirant.
Summary of Existing Data on Skin Absorption

- The in vitro study (PMIC) is not a suitable basis for risk assessment due to model limitations
 - no significant increase in aluminium in the receptor fluid
- The Flarend clinical study and knowledge about aluminium chemistry help inform the Risk Assessment
- However, BfR and SCCS both conclude that the
 - The available studies are inadequate
 - More robust skin absorption data is needed to reduce uncertainty in the exposure assessment.
- Based on previous attempts, aluminium absorption is difficult to assess and requires a state-of-the-art study.
Skin absorption

New Clinical Study

Currently underway at a respected independent research institute
- Study Designed
- Ethics Approval Received
- Test Material Prepared
- Volunteers Recruited
- Clinical Phases in Progress
- Chemical Analysis
- Study Report
- Submission to Authorities

Results will be available in the second half of 2015
The Study Will..

... show the **amount absorbed** (absolute bioavailability) following skin exposure to a typical antiperspirant formulation,

... show whether **shaving** alters the amount of aluminium absorbed,

... determine absorption in a **daily use** scenario with realistic consumer use,

... use method capable of **detecting** the **very low** levels of aluminium that might be absorbed, and

... allow exposure to aluminium from antiperspirants to be assessed in the **context** of **total** aluminium exposure.
How is this study better?

Like Flarend, this study:

• Uses small quantities of 26Al radioisotope to be confident the antiperspirant was the source of exposure... **Good Sensitivity**
 ✓ Rare in nature (27Al 100% : 26Al < 0.0000000000001%)
 Very low endogenous background
 ✓ Accelerator mass spectrometry (AMS)

• Accurately measure very low levels in blood and urine
 – samples taken over hours, days & weeks to estimate total absorbed
How is this study better?

Unlike Flarend, this study:

• Includes more volunteers:
 ✓ 12 volunteers similar to standard pharmaceutical studies

• Applies more radiolabel to increase sensitivity,
 ✓ Still well within ethical guidelines

• Mimics real life exposure
 ✓ Uses a roll-on like antiperspirant formulation
 ✓ Tests at high level consumer use levels (90th percentile)
 ✓ 26Al is homogenously incorporated, meeting commercial specification
 ✓ Armpits are not tape stripped or occluded with bandages
 ✓ Shows whether normal daily product use alters skin absorption
 ✓ Shows whether normal regular shaving affects skin absorption
Study Design:

Four Phases with 12 Volunteers

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
</table>
| Single Exposure | Similar to **Flarend Study**
 | Single dose of 26Al antiperspirant
 | No other antiperspirant use. No shaving. |
| Daily Use | **Daily antiperspirant use** including a single dose of 26Al antiperspirant. No shaving. |
| Daily Use + Shaving | **Daily antiperspirant use** including a single dose of 26Al antiperspirant.
 | **Regular under arm shaving.** |
| IV Dose | Small intravenous dose of 26Al to allow absolute bioavailability to be calculated.
 | Each volunteer is their own **control** |
Study Design: Four Phases with 12 Volunteers

- **Single Exposure**
 - Week 1
 - Week 2
 - Week 3
 - Week 4
 - Week 5

- **Daily Use**
 - Week 6
 - Week 7
 - Week 8
 - Week 9
 - Week 10

- **Daily Use + Shaving**
 - Week 11
 - Week 12
 - Week 13
 - Week 14
 - Week 15

- **IV Dose**
 - Week 16
 - Week 17
 - Week 18
 - Week 19
 - Week 20
 - Week 21

Actions
- Daily Antiperspirant (without 26Al)
- Regular Shaving
- Antiperspirant test material (with 26Al)
- Intravenous dose of 26Al
Study Design:
Randomised cross over design of study phases

- Daily Use
- Single Exposure
- Daily Use + Shaving
- IV Dose
Conclusion

• No **credible evidence** to link cosmetic exposures to ill health

• Cosmetics’ **contribution** to total consumer exposure to aluminium is **very low**.

• The Cosmetics Industry has commissioned a **study**, using the most **robust scientific techniques** to increase strength in the scientific basis in the **exposure** assessment of aluminium from antiperspirant products.

• Based on the available science, we are confident that our products are **safe for consumers to use**.
Cosmetics Industry remains confident: Exposure to Aluminium from Cosmetic Products is Negligible

Dr Dagmar Bury and Dr David Mason, Cosmetics Europe / Aluminium Consortium

Aluminium is present in a number of cosmetics. The majority of these products use aluminium containing ingredients that are practically insoluble, so the aluminium is not free to be absorbed across the skin; these include insoluble pigments or naturally occurring clays and minerals (aluminium is the third most abundant element in the earth’s crust). Some aluminium may also be ingested in lipstick or toothpaste residue; however these residues are very small compared to the total aluminium found in the diet. Antiperspirants contain soluble aluminium salts, however, as these form insoluble complexes with sweat on the surface of the skin, exposure is negligible.

Aluminium salts are a crucial ingredient in antiperspirants and have been used for many years. They form an insoluble gel when the aluminium salt mixes with sweat on the skin’s surface, forming temporary plugs within sweat ducts. The formation of insoluble gel means that absorption across the skin is negligible since the soluble antiperspirant is rendered practically insoluble by the neutral pH of sweat or tissue fluid.

Safety risk assessments for antiperspirants have drawn together the evidence from detailed reviews of hazard data by the World Health Organisation (WHO 2011) and the European Food Safety Authority (EFSA 2008); together with estimates of internal (systemic) exposure from a clinical study by Flarend et al. (2001). This demonstrates that antiperspirants make only a very small contribution to the aluminium absorbed from a normal healthy diet.

Some years after the Flarend clinical study, a routine skin absorption study was conducted using dead skin from human donors. The full report is not publically available, although some of the results have been published in the scientific literature (Pineau et al. 2012). The study found that no aluminium had passed across the skin, although it did find increased levels of aluminium in the upper layers of the skin due to the fact that aluminium like other metal ions binds to proteins. However, the study is not relevant to human risk assessment; the study is not valid as it does not meet the recognised standards, the behaviour of antiperspirants on dead non-sweating skin is likely to be vastly different compared to living skin, and methodological flaws mean that comparison between samples is not scientifically valid.

Recent assessments by the German and European authorities (BfR 2014, SCCS 2014) have confirmed that the weight of evidence suggests that antiperspirant use is not associated with cancer (see Mirick et al. 2002) or neurodegenerative disease. Both reviews note the limitations in the assessment of skin absorption, acknowledging the difference in results in the studies by Flarend and Pineau, and highlight the limitations in both; thus a more robust study to measure dermal bioavailability under real-life conditions will be carried out. This is not a simple task as it requires a unique study design and rare isotope of aluminium.

We represent a Consortium of companies, working with Cosmetics Europe- the European Cosmetics Trade Association, and have initiated this new clinical skin absorption study. The study is in progress at a well respected independent research organisation. It addresses the limitations of earlier studies and will provide a strong scientific basis for the exposure assessment of aluminium from antiperspirant products, allowing a more precise risk assessment.
References

EFSA (2008) Safety of aluminium from dietary intake - Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC)

Priest ND (2004). The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J. Environ. Monit. 6, 375-403.

SCCS (2014) Scientific opinion on the safety of aluminium in cosmetic products, EU Scientific Committee on Consumer Safety, SCCS/1525/14

Kosmetikindustrie weiter überzeugt: Exposition gegenüber Aluminium aus kosmetischen Mitteln vernachlässigbar

Dr. Dagmar Bury und Dr. David Mason, Cosmetics Europe / Aluminium Consortium

Aluminiumsalze sind ein wichtiger Inhaltsstoff von Antitranspirantien und werden bereits seit vielen Jahren verwendet. Sie bilden ein unlösliches Gel, wenn sich das Aluminiumsalz mit dem Schweiß auf der Hautoberfläche vermischt. Dadurch werden die Schweißkanäle vorübergehend verschlossen. Da das lösliche Antitranspirant durch den neutralen pH-Wert des Schweißes oder der Gewebeflüssigkeit in eine praktisch unlösliche Form überführt wird, ist die Aufnahme von Aluminium über die Haut vernachlässigbar.

bei beiden. Aus diesem Grund wird derzeit eine aussagekräftigere Studie durchgeführt, um die dermale Bioverfügbarkeit unter realistischen Bedingungen zu bestimmen. Dies ist eine nicht zu unterschätzende Aufgabe, da sowohl ein einzigartiges Studiendesign als auch ein seltenes und schwer zugängliches Aluminiumisotop benötigt wird.

Literatur

SCCS (2014) Scientific opinion on the safety of aluminium in cosmetic products, EU Scientific Committee on Consumer Safety, SCCS/1525/14
