Carry over of PAs to milk and other animal derived products

Patrick Mulder

BfR-Forum Verbraucherschutz, 3 December 2015 Pyrrolizidinalkaloide in Lebens-und-Futtermitteln – eine unterschätzte Gefahr?

Human exposure to PAs: food sources

- Cereals and other arable crops
- Honey and related products
- > (Herbal) teas and supplements
- Animal derived products
 - Milk and milk products (yoghurt, cheese, pudding)
 - ≻ Eggs
 - > Meat, liver and meat products

RIKILT WAGENINGEN UR

PAs – Animal feed monitoring 2006-2012

Occurrence of PAs in feedstuffs. Classification according to EU regulation 575/2011/EC

				Average	concentratio	n of main	PA types (µg/kg)	Maximum	Perce	ntage
Cat.	Commodity	No of samples	% Positive	Senecionine	e Echimidine	Heliotrine	Crotaline	Total	(µg/kg)	Tertiary amine	N-oxide
1	Cereal grains	14	7.1	0.0	2.1	0.0	0.0	2.1	29.6	100	0
2	Oil seeds and fruits (soya)	71	26.8	3.4	7.8	0.0	0.3	11.5	342.7	37.9	62.1
3	Legume seeds	13	15.4	0.0	0.0	9.8	0.0	9.8	112.6	14.4	85.6
4	Tubers and roots	1	0	0.0	0.0	0.0	0.0	0.0	0.0		
5	Other seeds and fruits	5	40.0	0.0	7.3	8.6	0.0	15.9	43.1	36.1	63.9
6	Forages and roughage (silage, hay, alfalfa)	302	58.9	232.2	37.8	0.0	0.0	269.9	22753	57.1	42.9
7	Other plants (herbal supplements)	32	62.5	26.7	69.4	219.8	0.0	315.9	3209	8.2	91.8
All		438	51.4	162.5	32.5	16.4	0.0	211.5	22753	51.6	48.4

Forages present largest risk, followed by herbal supplements

Both PA free bases and PANOs are relevant

RIKILT

Animal feedstuffs: Alfalfa (lucerne)

	2006	2007	2008	2009	2010	2011	2012	2013	2014
No of samples	6	13	12	17	51	50	51	48	50
Positive	83%	85%	83%	88%	92%	86%	90%	92%	68%
Average content (µg/kg)	1440	225	716	621	225	265	356	1007	157
Max (µg/kg)	3439	1409	6219	4507	2418	2027	4169	15751	1498
Samples >1000 µg/kg	3 (50%)	1 (8%)	1 (8%)	2 (12%)	4 (8%)	4 (8%)	6 (12%)	9 (19%)	2 (4%)
		ucorno i	s nrong	to conta	minatio	n with D	٨c		

Lucerne is prone to contamination with PAs

85% of PAs is of senecionine type, mostly originating from Senecio vulgaris

WAGENINGEN <mark>UR</mark>

RIKILT

Animal transfer study

Effect of the rumen

Levels decrease quickly in the rumen

 Efficient extraction of PA-plant material
 Fast transfer to the intestinal tract

Fast reduction (or transfer/degradation) of PANOs (<1% 2.5 h after administration)

PAs in milk – Ragwort (*Jacobaea vulgaris*)

3 Cows fed by gavage

- 4 Days 200 g dried material (1% of feed intake) in the morning
- Morning and evening milk analysed

PAs in milk – Common groundsel (*Senecio vulgaris*)

- 4 Days: 200 g dried material (1% of feed intake) in the morning
- Morning and evening milk analysed

PAs in milk – Vipers bugloss (*Echium vulgare*)

- 4 Days: 200 g dried material (1% of feed intake) in the morning
- Morning and evening milk analysed

Mass balance PAs

Treatment (n=3)	PAs consumed (mg)		Excreted (%)			
		Milk	Urine	Faeces	Total	Total
Ragwort	753±78	0.37±0.11	21.3±3.9	12.2±1.8	33.9±4.4	4.5%
Common groundsel	558±33	0.05±0.05	12.5±2.0	3.4±1.2	16.0±3.1	2.9%
Vipers bugloss	335±39	0.16±0.09	6.6±2.0	12.5±2.4	19.3±0.9	5.8%

- Only small part of PAs is recovered
- Excretion is fast: in urine max conc <5 h</p>
- Hydroxylated compounds formed
- Milk and faeces: only PA FBs, urine: 80% PANOs

Effect of processing: Dairy production

- NIZO pilot facilities, Ede, the Netherlands
- Ragwort contaminated milk
- Samples from intermediate and end products

RIKILT

WAGENINGEN <mark>UR</mark>

Ragwort PAs: transfer to cheese and yoghurt

- PAs stable during pasteurisation/UHT process
- Cheese and yogurt production: ca. 50% reduction of PAs

Conclusions transfer studies

Carry-over rate to milk
0.05% for ragwort, vipers bugloss
0.01% for common groundsel

 PAs containing hydroxyl groups are preferably transferred
Jacoline: 5 % based on presence in ragwort
Only PA FBs, no PANOs

PAs are relatively stable during dairy processing and cheese production

www.efsa.europa.eu/publications

EFSA supporting publication 2015:EN-859

EXTERNAL SCIENTIFIC REPORT

Occurrence of Pyrrolizidine Alkaloids in food¹

Patrick P.J. Mulder^a, Patricia López Sánchez^a, Anja These^b, Angelika Preiss-Weigert^b, Massimo Castellari^c

^a RIKILT – Wageningen UR, Wageningen, the Netherlands

^bFederal Institute for Risk Assessment (BfR), Berlin, Germany

^c Institute for Research and Technology in Food and Agriculture (IRTA), Monells, Spain

Bundesinstitut für Risikobewertung

Sampling of animal-derived products

Requirements

Very low LOQs

דוואופ

GENINGEN UR

- 0,05-0,1 µg/L in milk
- 0,25-0,5 µg/kg in meat, egg, yoghurt, cheese
- 0,25-1 µg/kg in liver

In-house validated methods

- Broad scope: 35 PAs
- MMS calibration
- Cheese and liver samples were done with std addition

Survey results: Animal derived products

	Samples analysed	Samples > LOQ	% > LOQ	Highest conc. (µg/kg)
All animal-derived food products	746	13	1.7	0.17
Milk and milk products	268	11	4.1	0.17
Pasteurised and UHT milk	182	11	6.0	0.17
Fermented milk products	27	0		
Cheese	34	0		
Milk powder (infant formula)	25	0		
Fresh eggs	205	2	1.0	0.12
Meat and meat products	273	0	0.0	<0.1
Beef meat	80	0		
Pork meat	79	0		
Poultry meat (chicken breast)	83	0		
Liver (beef, pork, chicken)	31	0		

➢Only limited exposure to PAs

Survey results: Animal derived products

Sample	Origin	Description	Organic/ Non-organic	Pyrrolizidine alkaloid	Conc. (µg/L)
FB14/0204	Germany	Semi-skimmed milk, past.	Non-organic	Senkirkine	0.05
FB14/0210	Germany	Skimmed milk, past.	Non-organic	Otosenine	0.08
FB14/0211	Germany	Semi-skimmed milk, past.	Organic	Otosenine	0.06
FB14/0235	Germany	Semi-skimmed milk, past.	Organic	Otosenine	0.11
IRTA 510	Greece	Skimmed milk, UHT	Non-organic	Senkirkine	0.16
IRTA 514	Greece	Whole milk, UHT	Non-organic	Senkirkine	0.06
IRTA 652	Spain	Goat milk, UHT	Non-organic	Retrorsine	0.11
IRTA 153	Spain	Semi-skimmed milk, UHT	Organic	Jacoline	0.06
RIK M21	Netherlands	Semi-skimmed milk, past.	Organic	Jacoline	0.05
RIK M20	Netherlands	Whole milk, past.	Non-organic	Lycopsamine	0.12
IRTA 639	Spain	Whole milk, past.	Organic	Lycopsamine Echimidine	0.11 0.06
					S inq
		Possible PA plant sources <i>S jac</i>			
	T Geningen <mark>ur</mark>		E vul	S off	S aq

Conclusions

Compared to other food sources animal derived products do not strongly attribute to the overall exposure to PAs in food products (compared to consumption of tea and herbal supplements)

Nevertheless efforts should be made to reduce the contamination of milk products by PAs

- Good Agricultural Practices
- Better product control

Questions?

Please contact me at: Patrick.mulder@wur.nl

