Bacterial Next Generation Sequencing - nur mehr Daten oder auch mehr Wissen?

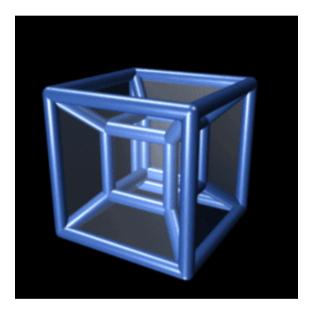
Dag Harmsen Univ. Münster, Germany dharmsen@uni-muenster.de

Commercial Disclosure

Dag Harmsen is co-founder and partial owner of a bioinformatics company (Ridom GmbH, Münster, Germany) that develops software for DNA sequence analysis. Recently Ridom and Life Technologies (Carlsbad, CA, USA) partnered and released SeqSphere⁺ software to speed and simplify bacterial typing.

CROUTONS LETTUCE Argentina, Australia, Brazil, Canada, Canada, Chile, Dominican China, France, India, Mexico, Republic, Mexico, Peru, USA Netherlands, Poland, Russia, Switzerland, Uruguay, USA, Vietnam The Well-Traveled Salad. Do You Know Where Your Food Has Been? As consumers, many of us fail to recognize that even our domestic and local food supplies are part of a global network. The daily activity of consuming food directly links our CUCUMBERS health as humans to the health of crops and produce, food Canada, Honduras, India, TOMATOES Mexico, Spain, USA animals, and the environments in which they are produced. Canada, Dominican Republic, Holland, Israel, Italy, Mexico, USA FETA CHEESE Canada, Denmark, Egypt, Germany, ONIONS Greece, Israel, Italy, Turkey, UK, USA Canada, China, Germany, India, VINAIGRETTE SPROUTS OLIVES Argentina, Brazil, Canada, Chile, China, Argentina, Australia, Bangladesh, MANDARIN ORANGES France, Germany, Greece, India, Indonesia, Canada, China, Egypt, France, Greece, Israel, Mexico, Spain, KE Israel, Mexico, Morocco, South Italy, Mexico, Morocco, Peru, Portugal, Spain, India, Morocco, Nepal, Pakistan, Africa, Spain hailand, Tunisia, Turkey, USA, Vietnam South Africa, Spain, Turkey, USA

APRILOTHENT PROMITTED


A "One Health" approach to food safety—bringing together expertise and resources from the clinical, veterinary, wildlife health, and ecology communities—has the potential to reveal the sources, pathways, and factors driving the outbreaks of foodborne illness and possibly prevent them from occurring in the first place. NOTE: Countries are listed in alphabetical order and not by volume of export.

www.iom.edu

OF THE NATIONAL ACADEMIES

INSTITUTE OF MEDICINE

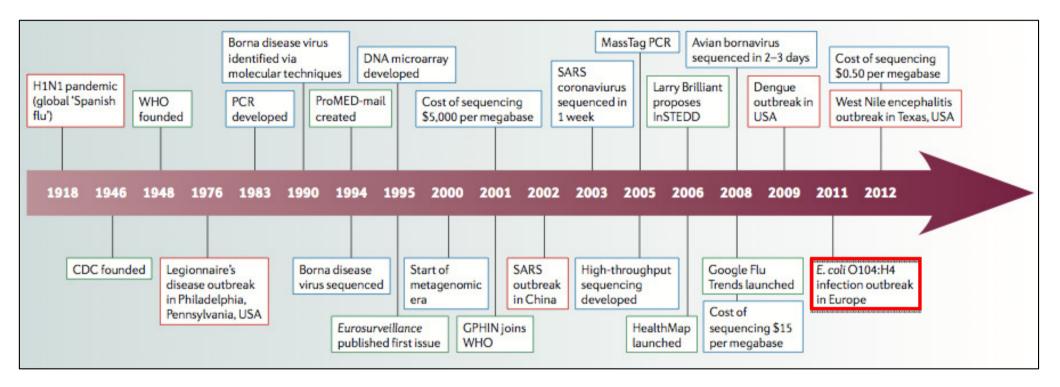
Fourth Dimension Needed for More Specific Surveillance

Place, Time, 'Person' ... Type!

Fourth Dimension Reloaded Next Generation Sequencing - Bench-top Machines

Ion Torrent Personal Genome Machine (PGM)

- Affordable
- Speed
- Simple workflow

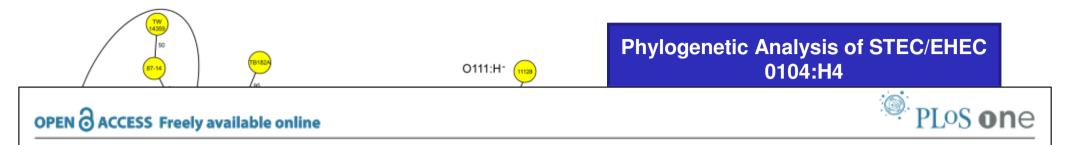


Roche/454 GS Junior

illumina MiSeq Personal Sequencing System

Timeline – Microbial Surveillance and Disease

Red boxes indicate disease outbreaks, blue boxes indicate technological advances, and green boxes indicate events relating to surveillance. *E. coli, Escherichia coli*; <u>GPHIN</u>: Global Public Health Intelligence Network; <u>InSTEDD</u>: Innovative Support to Emergencies, Diseases and Disasters; <u>ProMED-mail</u>: Program for Monitoring Emerging Infectious Diseases; SARS: severe acute respiratory syndrome.


Lipkin (2013). Nature Rev. Microbiol. 11: 133 [PubMed].

Epidemiology: food supply chain analysis, etc.

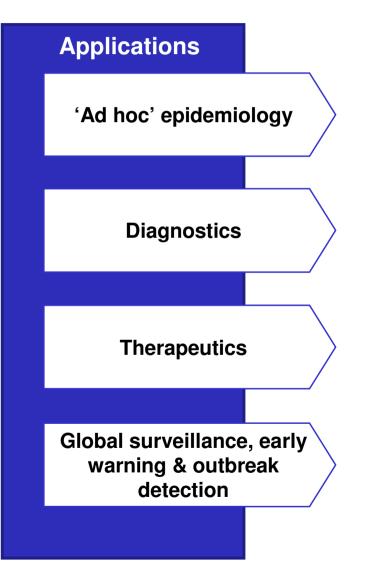
Bioinformatics: new tool developments and evaluation data-sets

Laboratory: nearly real-time prospective microbial genomics & platform comparisons

Prospective Genomic 'Ad Hoc' Epidemiology

Prospective Genomic Characterization of the German Enterohemorrhagic *Escherichia coli* O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

Alexander Mellmann^{1®}, Dag Harmsen²*[®], Craig A. Cummings^{3®}, Emily B. Zentz⁴, Shana R. Leopold¹, Alain Rico⁵, Karola Prior², Rafael Szczepanowski², Yongmei Ji³, Wenlan Zhang¹, Stephen F. McLaughlin³, John K. Henkhaus⁴, Benjamin Leopold¹, Martina Bielaszewska¹, Rita Prager⁶, Pius M. Brzoska³, Richard L. Moore⁴, Simone Guenther⁵, Jonathan M. Rothberg⁷, Helge Karch¹

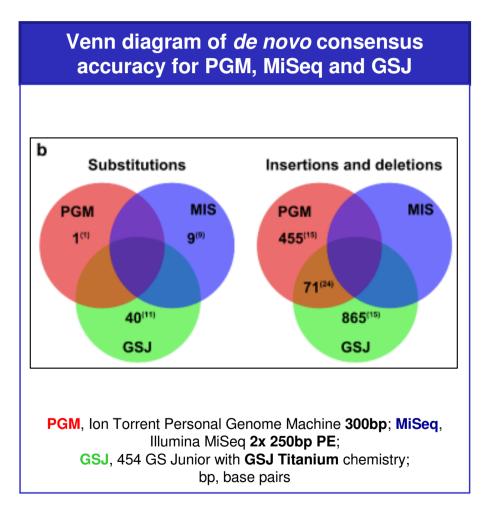

1 Institute of Hygiene, University Münster, Münster, Germany, 2 Department of Periodontology, University Münster, Münster, Germany, 3 Life Technologies, Foster City, California, United States of America, 4 OpGen, Gaithersburg, Maryland, United States of America, 5 Life Technologies, Darmstadt, Germany, 6 Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany, 7 Ion Torrent by Life Technologies, Guilford, Connecticut, United States of America

EAEC strain 55989 share the same MLST ST 678. However, the three strains are clearly separated by MLST+.

FACULTY#100

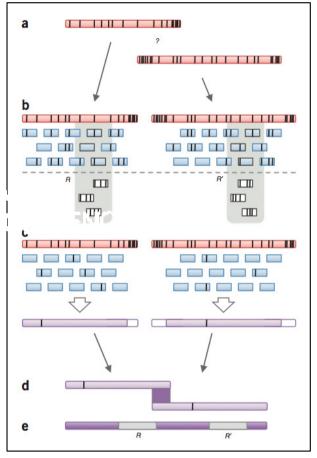
Rapid NGS Applications in Clinical & Public Health Microbiology

Details

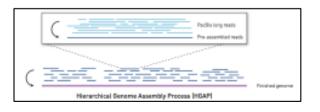

- Introduction of benchtop Next Generation Sequencing (NGS) machines, enables small- and medium-sized laboratories ('democratizing of NGS') to perform 'ad hoc' genomic prospective epidemiology
- Speciation / identification & pathogenicity profiling
- Molecular diagnostic screening tests
- Ultra-deep sequencing for pathogen discovery from human tissues (e.g., hemorrhagic viruses)
- Susceptibility profiling
- Vaccine preventability
- Reverse vaccinology (rationale vaccine design)
- Non-targeted new drug detection
- Standardized Whole Genome Shotgun [WGS] NGS for detection of transmission between individuals
- Outbreak detection, i.e., establishing the spread of particular strains locally or regionally
- Longer-term and evolutionary studies to identify the emergence of particularly pathogenic or virulent variants

Laboratory Improvements (since June 2011)

Loman et al. (2012). Nature Biotechnology 30: 562 [PubMed].


It's the Consensus Genome-wide Gene by Gene *de novo* Consensus Accuracy

Details Consensus errors were analyzed for **4,632** coding NCBI Sakai reference genes retrieved from MIRA de novo assemblies using **SeqSphere**⁺ for all 3 platforms confirmed Number of variants by bidirectional Sanger sequencing indicated in parentheses Validation of the 8 substitution and 15 indel variants identified using all 3 NGS platforms, suggested that either the Sakai experienced micro-evolutionary strain changes or the genome sequence deposited in 2001 contains sequencing errors


Laboratory: Towards Finished Genomes (chromosome & plasmids)

- Fast & easy mate-pair protocols (insert > 5kb)
- Hybrid 2nd- & 3rd generation assemblies

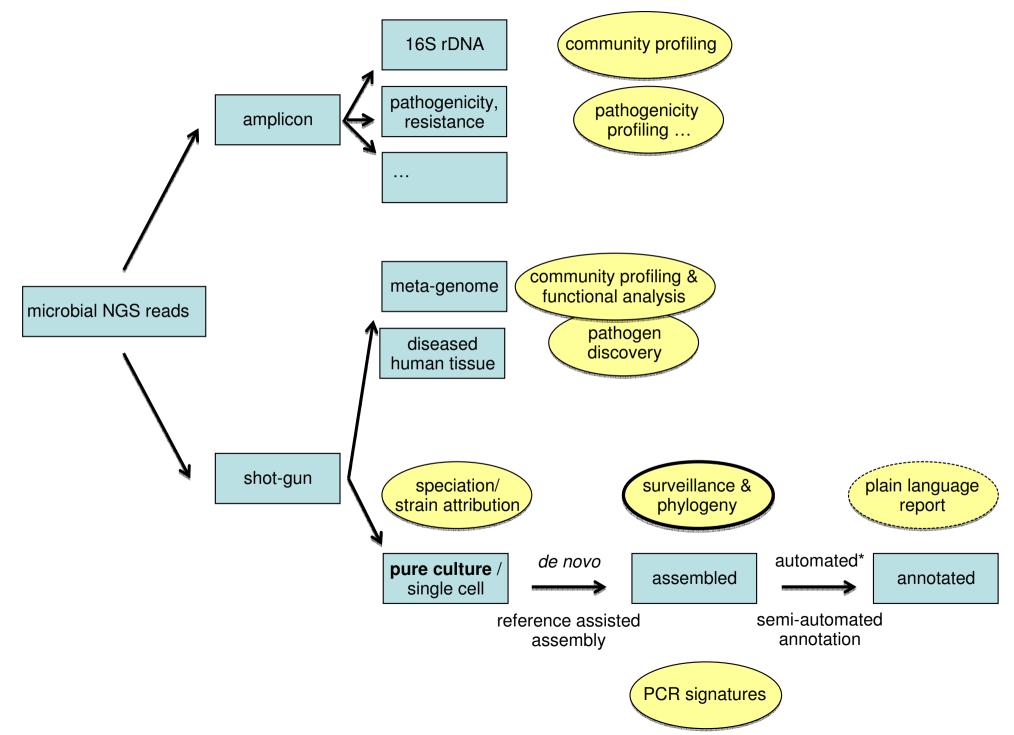
• HGAP – Hierarchical Genome-Assembly Process (10kb seeds)

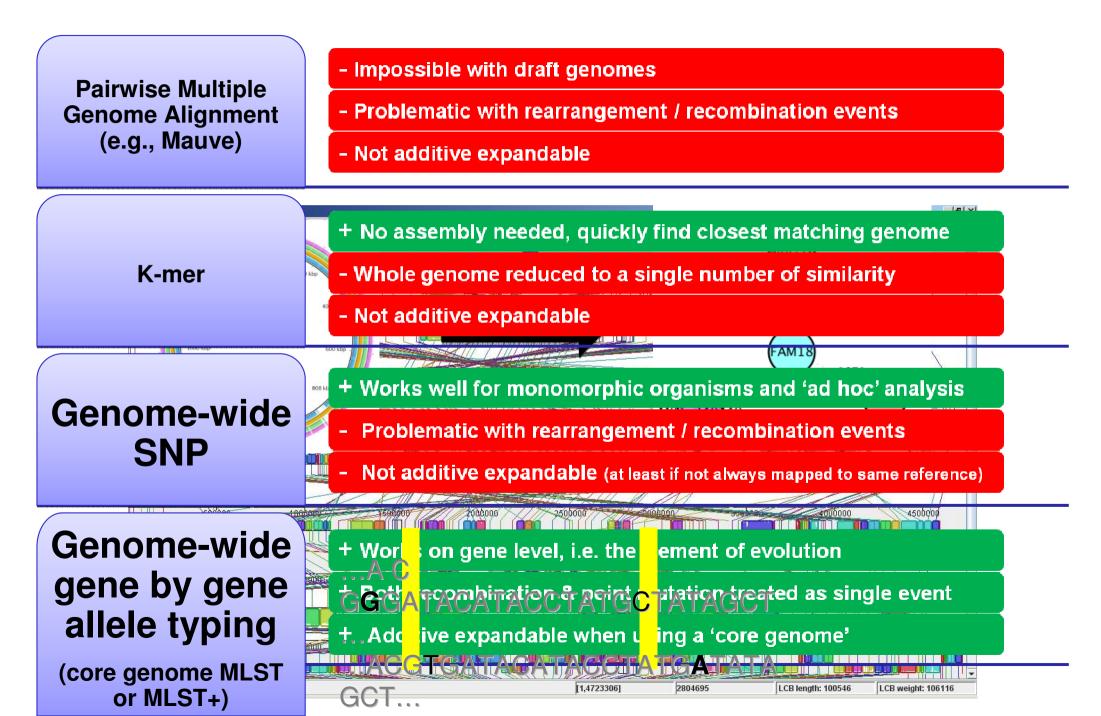
Chin et al. (2013). Nature Methods 10: 563 [PubMed].

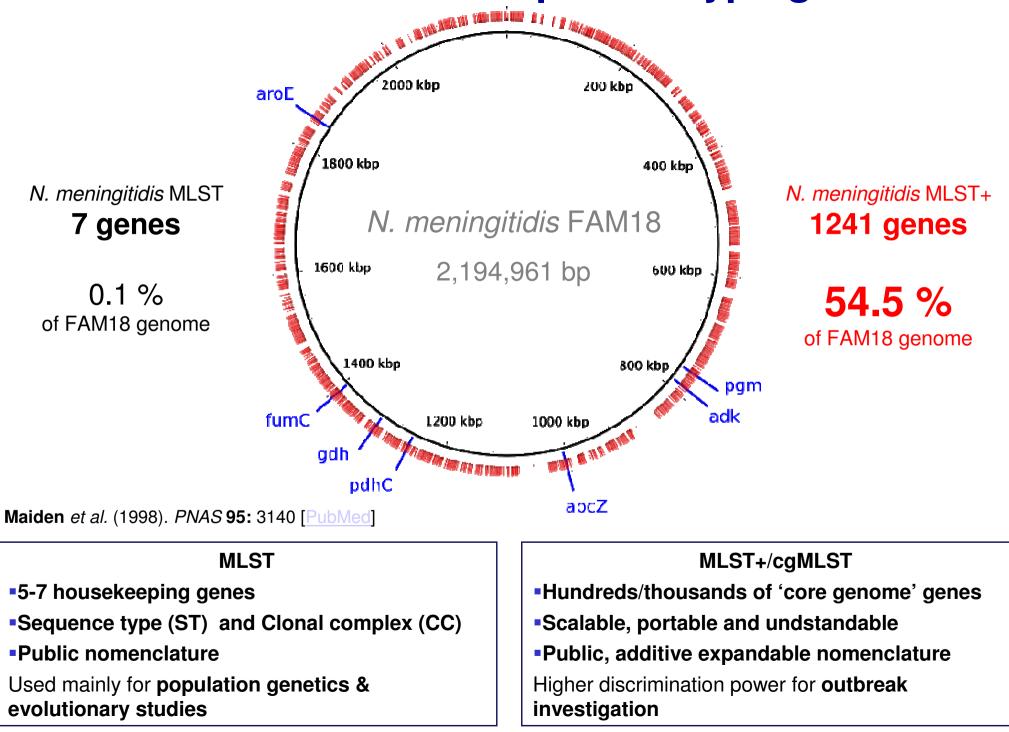
Koren et al. (2012). Nature Biotechnology 30: 693 [PubMed].

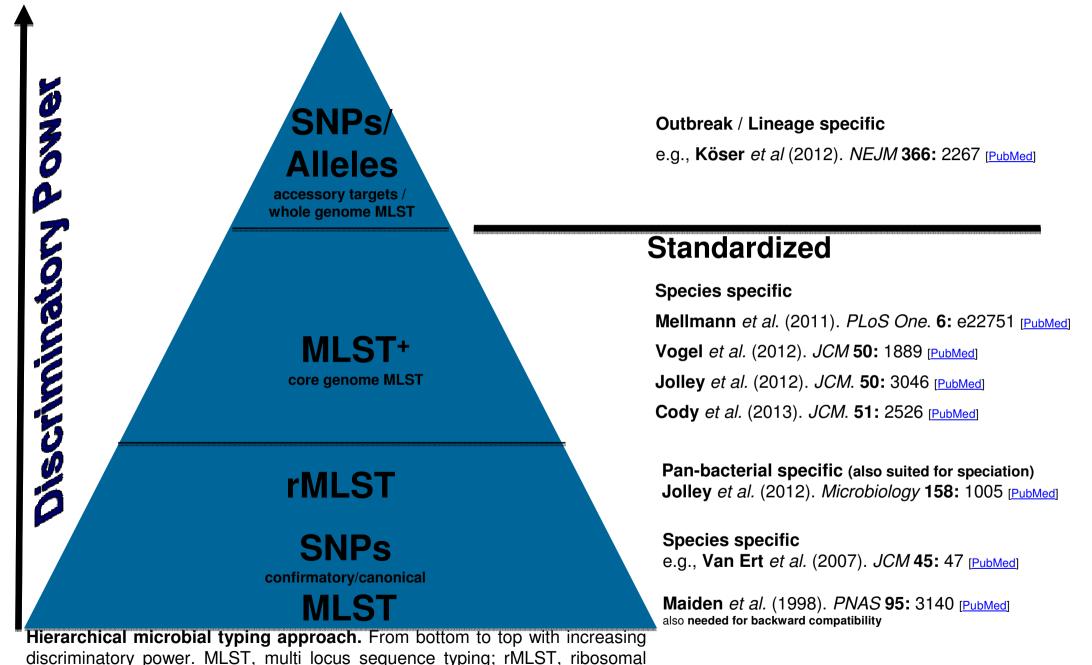
genia

NANOPORE


Current NGS Bottlenecks


Bioinformatics Challenges


Microbial Bioinformatics Data & Workflow


Microbial NGS Sequence Typing

The Militiz LGener Stique Mc & Typlin & T+

Standardized Hierarchical Microbial Typing

MLST; SNP, single nucleotide polymorphism.

Maiden et al. (2013). Nature Rev. Microbiol. 11: 728 [PubMed].

Antibiotic Resistance by NGS

Antibiotic Resistance Genes Databases

Published online 2 October 2008

Nucleic Acids Research, 2009, Vol. 37, Database issue D443–D447 doi:10.1093/nar/gkn656

ARDB—Antibiotic Resistance Genes Database

Bo Liu¹ and Mihai Pop^{1,2,*}

¹Center for Bioinformatics and Computational Biology and ²Department of Computer Science, University of Maryland, College Park, MD 20742, USA

ARDB: http://ardb.cbcb.umd.edu/

Liu et al (2008). NAR 37: D443 [PubMed]

Journal of

Antimicrobial

Chemotherapy

J Antimicrob Chemother 2012; **67**: 2640–2644 doi:10.1093/jac/dks261 Advance Access publication 10 July 2012

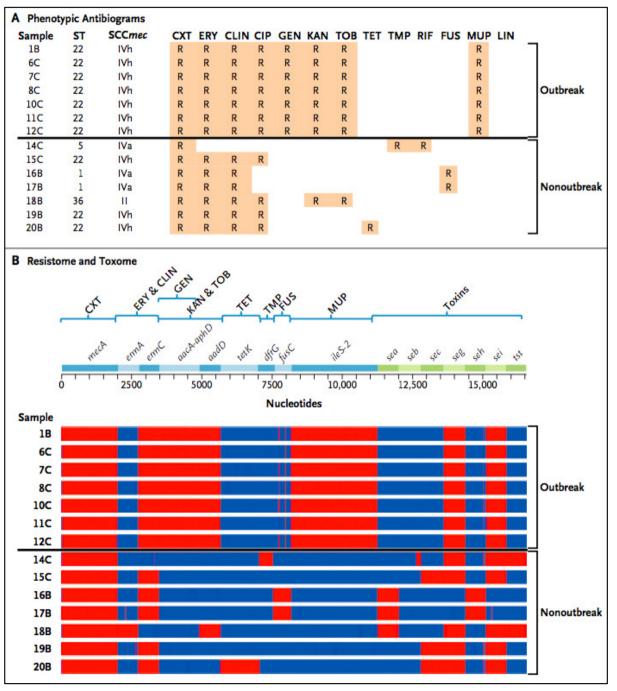
Identification of acquired antimicrobial resistance genes

Ea Zankari^{1,2}*, Henrik Hasman¹, Salvatore Cosentino², Martin Vestergaard¹, Simon Rasmussen², Ole Lund², Frank M. Aarestrup¹ and Mette Voldby Larsen²

¹National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; ²Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

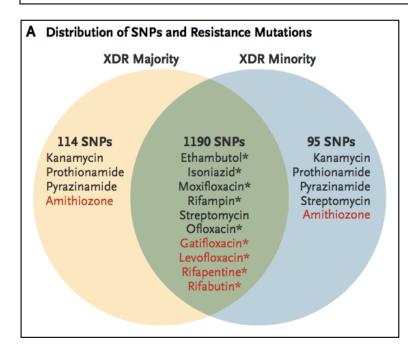
Zankari et al (2012). J Antimicrob Chemother 67: 2640 [PubMed]

ResFinder: http://cge.cbs.dtu.dk/services/ResFinder/



Center for Genomic Epidemiology

Absence/Presence - a Sense of , Plain Language Report'

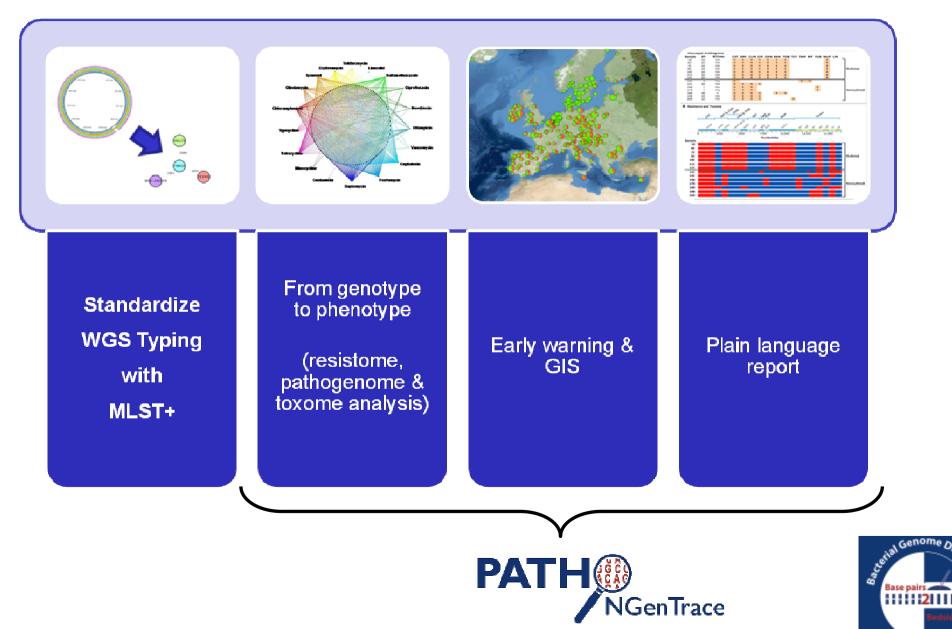

Phenotypic antibiograms, resistome, and toxome of **MRSA** hospital outbreak

Köser et al (2012). NEJM 366: 2267 [PubMed]

Advanced Antibiotic Resistance NGS Demonstrations

Table 1. Comparison of WGS and Reference Laboratory Testing of Carbapenem-Resistant Gram-Negative Bacteria

Organism	Isolate No.	Phenotypic Resistance to Carbapenems and Third-Generation Cephalosporins	Attributable Resistance Mechanism According to Reference Laboratory ^a	Dominant Resistance Mechanism Based on WGS ^b	Abbreviations: CAZ, ceftazidime; CTX, cefotaxime; ESBL, extended-spectrum β-lactamase; IPM, imipenem; ETP, ertapenem; MEM, meropenem; WGS, whole-genome sequencing.
Acinetobacter baumannii	AB223	MEM, IPM ^c	OXA-23 carbapenemase	OXA-23 carbapenemase	
Enterobacter cloacae	EC1a ^d	ETP, MEM, IPM, CTX, CAZ	IMP-1 carbapenemase	IMP-1 carbapenemase	
E cloacae	EC302	ETP, CTX, CAZ	No carbapenemase genes detected. AmpC activity present	No carbapenemase genes detected. OmpF porin loss	 ^a See eMethods in the Supplement. ^b For a more comprehensive list see eMethods and eTable 2 in the Supplement. ^c Ertapenem has no activity against A baumannii; no EUCAST (European Committee on Antimicrobial Susceptibility Testing) susceptibility breakpoints available for cefotaxime and ceftazidime. ^d Isolate from patient EC1 described in <i>E cloacae</i> outbreak.
Klebsiella pneumoniae	KP652	ETP, CTX, CAZ	No carbapenemase genes detected. ESBL activity consistent with CTX-M. ETP resistance consistent with porin loss	No carbapenemase genes detected. CTX-M-15 ESBL with OmpK36 porin loss	
Escherichia coli	Eco216	ETP, CTX, CAZ	No carbapenemase genes detected. ESBL activity present. ETP resistance consistent with porin loss	No carbapenemase genes de- tected. CTX-M-15 ESBL with OmpF porin loss	



Reuter et al (2013). JAMA Intern Med. 173: 1397 [PubMed]

The numbers refer to the number of single nucleotide polymorphisms (SNPs) that were shared by the two strains of extensively drug-resistant (XDR) *M. tuberculosis* isolated from a single patient (mixed infection) or were unique to one strain as compared with the *M. tuberculosis* H37Rv reference genome. The reference laboratory had reported resistance to nine antibiotics (black type).

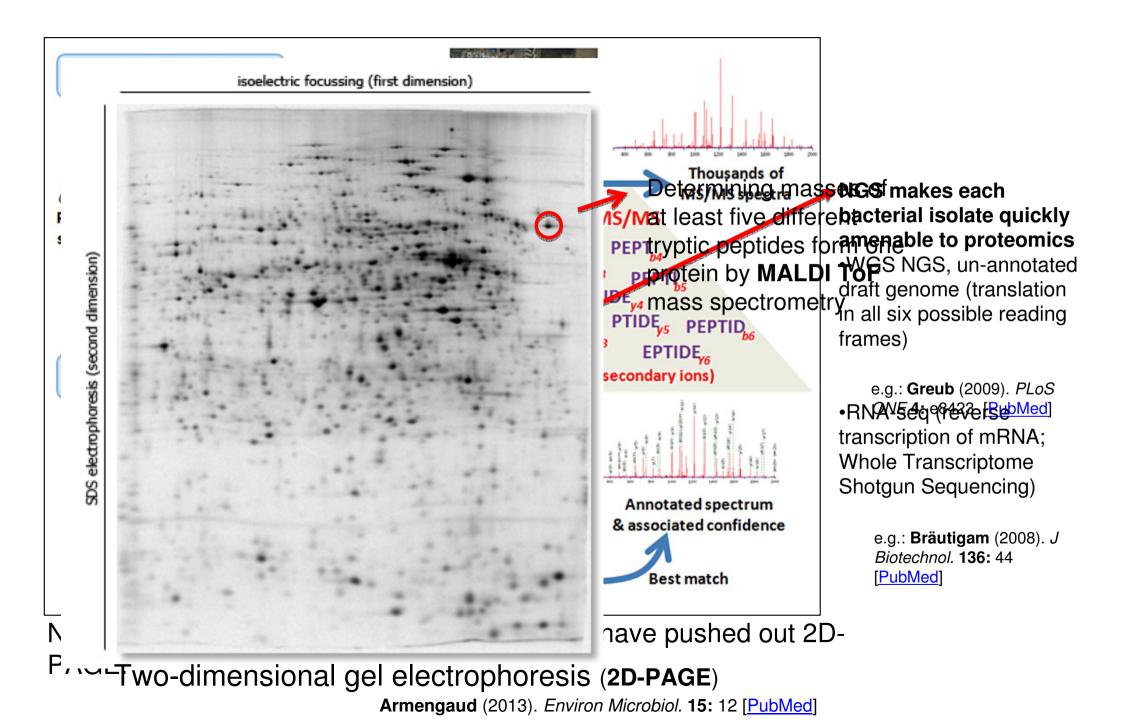
Köser et al (2013). NEJM 369: 290 [PubMed]

Future NGS Bioinformatic Developments

http://patho-ngen-trace.eu/

Outlook

Assuring Quality of NGS in Clinical Laboratory Practice


Table 1 Selecte clinical use	d workgroup rec	ommendations for establishing NGS test systems for	GMI		
Requirements for test establishment	Objective	NGS-specific recommendations ^a			
Validation	Document reli- ability of the platform, test, and informatics pipeline before testing of patient specimens	 Platform validation: establish that the system provides reliable sequence analysis across the genomic regions targeted by the test. Test validation: establish that the system correctly identifies disease-associated (and other) variants in targeted regions of the genome (Supplementary Guidelines, section 4). Informatics pipeline validation: establish that the algorithm(s) reliably analyze platform data to produce an accurate sequence. Establish and validate alternate methods (for example, Sanger sequencing) to derive high-ouality sequence data for problematic genomic regions in the sequence data for problematic genomic regions. 	Global Microbial Identifie		
Quality control	Document reli- ability of the sequence analy- sis during patient testing	 Utilize a co in, that min test is desig During pati scores, dep bias and tra compared t CAP Publishes Accreditation Checklist for NGS in Clinical Labs 			
Proficiency testing	The independent assessment of test performance	 PT challeng associated genomic rei sequence a Electronic s and variant additional d PT program by each reci laboratory p August 01, 2012 CAP Publishes Accreditation Labs By Monica Heger The College of American Pathologists has purse sequencing for clinical lab accreditation. The NG molecular pathology checklist for accrediting clinical lab 	blished a checklist specific to next-generation SS-specific checklist is part of CAP's revised		
Reference materials	The use of mate- rials for quality management of the analytical phase of testing	 RMs with both naturally occurring and disease-associated sequence variations are needed for test validation, QC procedures and the independent assessment of test performance. Synthetic DNA and electronic reference data files may serve as RMs for rare or challenging sequence variations. Efforts should be undertaken to establish a suitable NGS RM and the sequence of the RM should be refined as the technology changes. Such a RM should be annotated to indicate regions of high and low sequence reliability. 	http://w		
^a See Supplementary G	uidelines for complete	recommendations. RM, reference material.			

/ww.globalmicrobialidentifier.org/

http://www.cap.org/

Transition from Geno- to Phenotype: Proteomics & Transcriptomics

Bacterial Next Generation Sequencing - nur mehr Daten oder auch mehr Wissen?

Dag Harmsen Univ. Münster, Germany dharmsen@uni-muenster.de

