

Antibiotikaeinsatz in der Geflügelhaltung und Resistenzsituation in Österreich – eine Zusammenhangsanalyse

A. Griesbacher, H. Sun, P. Much, R. Fuchs, S. Weber, K. Fuchs

AGES / Integrative Risikobewertung, Daten und Statistik

BfR-Symposium Antibiotikaresistenz in der Lebensmittelkette Berlin, 2. November 2015

Wir haben untersucht...

Hat die Einsatzmenge an Antibiotika bei Geflügel Einfluss auf die Resistenzbildungen bei Keimen?

Datengrundlage

- Datenbank PHD ("Poultry Health Data") der QGV
 - Allgemeine Herdendaten
 - Antibiotikaverschreibungen 2013 und 2014
- Datenbank LISA ("Laborinformationssystem AGES")
 - Ergebnisse von Resistenztestungen
 - Herkunft der Probe
- Anzahl an Isolaten (Österreichisches Resistenzmonitoring)

	Masthuhn	Pute
C. jejuni	313	73
E. coli	317	125

Bestimmung der Resistenzen

Getestete Substanzen

C. jejuni	E. coli		
Ciprofloxacin	Ciprofloxacin	Chloramphenicol	
Erythromycin	Erythromycin	Cefotaxim	
Gentamicin	Gentamicin	Sulfametoxazol	
Streptomycin	Streptomycin	Trimethoprim	
Tetrazyklin	Tetrazyklin		

- Einteilung nach gemessenen MHK-Werte in resistent / nicht resistent anhand der ECOFF-Werte
- Definition Multiresistenz
 - → Bei gleichzeitiger Resistenz gegen 3 oder mehr Substanzen

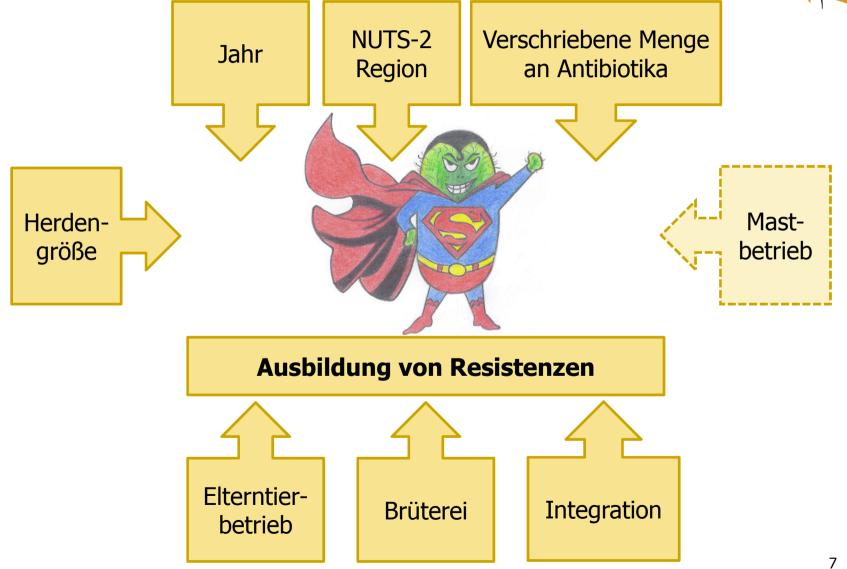
Resistenzscore

- Definition entnommen aus
 - **I. Ruddat:** "Multivariate Analyse der Basistypisierung von Bakterien unter Berücksichtigung epidemiologischer Information" (Hannover, 2013)
- Resistenzscoreberechnung anhand der MHK-Werte
- <u>Berechnung:</u>
 Differenz der gemessenen MHK-Werte zu kleinster Testkonzentration für jede Substanz

 Aufsummierung aller Differenzen und Normierung
- Je geringer Resistenzscore, desto sensibler ist Isolat

Auftreten von Resistenzen

C. jejuni


	Anzahl an Resistenzen			
	0	1	2	3
Masthuhn	22.4%	56.5%	19.2%	1.9%
Pute	32.9%	35.6%	30.1%	1.4%

E. coli

	Anzahl an Resistenzen					
	0	1	2	3	4	≥5
Masthuhn	19.9%	31.2%	18.9%	11.7%	9.1%	9.1%
Pute	33.6%	22.4%	15.2%	14.4%	10.4%	4.0%

Mögliche Einflussfaktoren

Berechnete Modelle

2 Auswertestrategien

Getrennte Modelle für jeden Wirkstoff

Zusammenfassung des Resistenzprofils zu einem Wert

Berechnete Modelle

Getrennte Mcdelle für jeden Virkstoff

Zielgröße:

"Resistenz gegen bestimmtes AB"

Zielgröße:

"MHK-Wert" (logarithmiert)

Berechnete Modelle

Zusammenfassung des Resistenzprofils zu einem Wert

Zielgröße:

"Multiresistent"

Zielgröße:

"Anzahl der Resistenzen"

Zielgröße:

"Resistenzscore"

Signifikante Ergebnisse - Masthühner

- Modellierung "Multiresistenz"
 - Nur für *E. coli* möglich
 - Keine sig. Einflüsse gefunden
- Modellierung "Resistenz gegen bestimmten Wirkstoff"/ Modellierung "Anzahl der Resistenzen"/ Modellierung "Resistenzscore"
 - Unterschiede zwischen Brütereien
 - Unterschiede zwischen Integrationen
- Modellierung "MHK-Werte" (logarithmiert)
 - Verteilung der MHK-Werte oft ungünstig
 - Teilweise sehr gering besetzte Kategorien
 - Modelle oft nicht berechenbar, da keine Konvergenz

Signifikante Ergebnisse – Puten

Modellierung "Multiresistenz"

- Nur für *E. coli* möglich
- Anzahl Behandlungen → häufigeres Auftreten von Multiresistenzen bei mehr Behandlungen

Variable	Koeff b	Exp(b)	p-Wert
Anzahl Behandlungen	0.263	1.300	0.008
B301	0.941	2.562	0.085

Signifikante Ergebnisse – Puten

Modellierung "Anzahl der Resistenzen"

- Anzahl Behandlungen → mehr Resistenzen bei mehr Behandlungen
- Unterschiede zwischen Elterntierbetrieben (C. jejuni)
- Unterschiede zwischen Region (*E. coli*)

	Variable	Koeff b	Exp(b)	p-Wert
C. jejuni	Anzahl Behandlungen	0.090	1.094	0.041
	E1544	-1.102	0.332	0.066

	Variable	Koeff b	Exp(b)	p-Wert
E. coli	Anzahl Behandlungen	0.087	1.091	0.030
	nuts2	1.155 – 1.529	3.174 – 4.614	0.014 - 0.061

Signifikante Ergebnisse – Puten AGES

Modellierung "Resistenzscore"

- Auswertung nur für *C. jejuni* möglich
- Anzahl Behandlungen → mehr Behandlungen gehen mit höherem Resistenzscore einher
- Unterschiede zwischen Elterntierbetrieben

Variable	Koeff b	p-Wert
Anzahl Behandlungen	0.043	0.024
E1544	-0.423	0.002

Signifikante Ergebnisse – Puten

Modellierung "Resistenz gegen bestimmten Wirkstoff"

- Anzahl Behandlungen → mehr Resistenzen bei mehr Behandlungen
- tw. Unterschiede zwischen Brütereien bzw. Region

Modellierung "MHK-Werte" (logarithmiert)

- Verteilung der MHK-Werte oft ungünstig
- Teilweise sehr gering besetzte Kategorien
- Modelle nicht berechenbar, da keine Konvergenz

Zusammenfassung

Masthühner

- Teilweise Unterschiede zwischen Brütereien
- Teilweise Unterschiede zwischen Integrationen

Puten

- Starke Hinweise auf Zusammenhang zwischen AB-Einsatz und Ausbildung von resistenten Keimen
- Teilweise regionale Unterschiede gefunden
- Teilweise Unterschiede zwischen Brütereien bzw.
 Elterntierbetrieben

Allgemein

- Kein Einfluss von Jahr
- Kein Einfluss von Herdengröße

Danksagung

Ein großer Dank geht an

die österreichische Qualitätsgeflügelvereinigung

für die Zurverfügungstellung der Daten

Danke für Ihre Aufmerksamkeit!

Statistische Planung und Analyse • Kompetenter Partner bei Forschungsprojekten

Kontaktieren Sie uns: statistik@ages.at

