

Opinion 065/2025

[doi <https://doi.org/10.17590/20260120-150527-0>](https://doi.org/10.17590/20260120-150527-0)

19 December 2025

Update (2025): maximum levels proposed for iodine in foods, including food supplements

→ Update and supplement to the opinion No. 006/2024 of the BfR of 22 February 2024

Iodine is a vital trace element that the body cannot produce by itself and must therefore be regularly taken up with food. It is essential for the production of thyroid hormones, which play a central role in regulating metabolism and are necessary for processes such as normal growth, bone formation and the development of the nervous system.

According to representative data from the Robert Koch Institute, iodine intake is below the estimated average requirement in about one-third of adults and just under 45 percent of children and adolescents in Germany. To improve supply, voluntary fortification of salt with iodine is recommended in Germany. The German Federal Institute for Risk Assessment (BfR) does not currently recommend the enrichment of other food for general consumption with iodine.

However, food products that are marketed/consumed as substitutes for milk and dairy produce could be exempted from the current practice (of only enriching salt) and enriched directly with iodine in the future. In these cases, the BfR considers a maximum amount of 14 µg per 100 g or 100 ml (corresponding to the median natural iodine concentration in milk and dairy products) to be appropriate and harmless to health in order to compensate for insufficient iodine intake due to (partial) avoidance of conventional milk and dairy produce.

For food supplements, a maximum amount of 100 µg iodine per recommended daily intake of a product is recommended for all age groups from 15 years of age. As pregnant and breastfeeding women have an increased iodine requirement, a maximum value of 150 µg iodine per recommended daily intake of a food supplement is proposed for these groups.

The accompanying main opinion "Updated maximum intake recommendations for vitamins and minerals in food supplements and enriched food" can be found here:

1 Result

The German Federal Institute for Risk Assessment (BfR) recommends a maximum amount of 100 micrograms (μg) of iodine per recommended daily intake of a food supplement. In view of the increased iodine requirements of pregnant and breastfeeding women, a maximum value of 150 μg iodine per recommended daily intake of a dietary supplement is proposed for these groups.

As part of iodine prophylaxis, iodine fortification of salt is recommended in Germany (currently legally permitted maximum content: 25 mg iodine per kg of salt). This leaves no room for further iodine fortification of other food for general consumption. It is therefore not recommended (Table 1).

Since milk and dairy produce are one of the main sources of iodine, food products consumed as substitutes for milk and dairy produce could be exempted from the current practice and fortified directly with iodine. In these cases, iodine fortification should correspond to the median natural iodine concentration in milk and dairy products as a whole (Table 1).

Table 1: Proposed maximum levels

Food category	Maximum levels
Food supplement (per recommended daily intake of a product)*	100 μg
Food supplement for pregnant and breastfeeding woman (per recommended daily intake of a product)	150 μg
Salt (per 100 g)	2500 μg^{**}
Food products marketed as substitutes for milk and dairy products (per 100 g or 100 ml)	14 μg
Other food for general consumption	No addition

* The maximum levels proposed for food supplements refer to adolescents aged 15 years and above and adults. Model calculations by the BfR have shown that even an increase in the current maximum level for iodine in salt from 25 to 30 mg per kg is harmless to health for both adults and children at the current level of iodised salt use in industrially and artisanally produced food (BfR, 2021 and 2022).

2 Rationale

2.1 Tolerable Upper Intake Level¹ (UL) and reference intake values

The former Scientific Committee on Food (SCF) of the European Commission has set an UL of 600 µg per day for adults, an UL of 500 µg per day for adolescents aged 15 to 17, and ULs between 200 and 450 µg per day for children aged 1 to 14 (SCF, 2002; Table 2).

In Germany, an UL of 500 µg per day was previously set for adults due to long-term iodine deficiency and the resulting increased health risk in cases of undiagnosed functional thyroid autonomy (especially in older people who had been exposed to iodine deficiency for a long time) (D-A-CH, 2015). The current opinion by the German Nutrition Society (DGE) and the Austrian Nutrition Society (ÖGE) is now based on the UL of the European Food Safety Authority (EFSA) (DGE/ÖGE, 2025).

In 2025, the DGE and ÖGE revised the reference intake values for iodine. The new recommendations are based on the average iodine requirement and were determined using balance and radioiodine studies. An intake of 90 µg per day is now recommended for children aged 1 to 6, and 120 µg per day for children aged 7 to 12. For children aged 13 and above and adults, the recommended intake is now 150 µg per day. An iodine intake of 220 µg per day is recommended for pregnant women and 230 µg per day for breastfeeding women (DGE/ÖGE, 2025; Table 2).

In 2014, EFSA set adequate intake levels (AI) for iodine of 90 µg per day for children aged 1 to 10, 120 µg per day for children aged 11 to 14, 130 µg per day for adolescents (aged 15 to 17) and 150 µg per day for adults (aged 18 and over) derived. For pregnant and breastfeeding women, an AI of 200 µg per day has been derived (EFSA, 2014; Table 2).

¹ Tolerable Upper Intake Level = tolerable daily chronic total intake of a nutrient

Table2: Reference intake values and UL

Age groups (in years)	Reference intake values		UL (SCF, 2002)
	Intake recommendations (DGE/ÖGE, 2025)	Adequate intake EFSA, 2014	
in µg per day			
1 to 3	90	90	200
4 to 6	90	90	250
7 to 10	120	90	300
11 to 12	120	120	450
13 to 14	150	120	450
15 to 17	150	130	500
18 to 65 and older	150	150	600
Pregnant women	220	200	600
Breastfeeding women	230	200	600

2.2 Exposure

In Germany, the voluntary use of iodised table salt in households, restaurants, communal catering and food production is recommended as part of iodine deficiency prevention. However, the exact degree of use of iodised table salt is not known. A representative market survey on the use of iodised salt, conducted by the University of Giessen on behalf of the former Federal Ministry of Nutrition and Agriculture (BMEL), indicates that 29 % of artisanal and industrially produced meat, bread and dairy products to which salt is added are produced with iodised salt (Bissinger et al., 2018).

In model calculations by the Max Rubner Institute (MRI) from 2011, consumption data from the Diet History Interviews (DISHES) of the National Nutrition Survey (LOD) II were combined with the nutrient contents of the Federal Food Code (BLS) 3.01 to estimate the iodine intake of the German population. Since the BLS does not take iodised salt into account, various theoretical degrees of iodised salt use in food were modelled (0 %, 30 %, 80 % and 100 %) (MRI, 2011). These models took into account the currently maximum permitted level of iodine addition of 25 mg per kg of salt. Since a usage rate of approximately 30 % for iodised salt appears to be closest to reality according to the market survey conducted by the University of Giessen (Bissinger et al., 2018), only the estimated iodine intakes based on a 30 % usage rate from the MRI models are shown below (Table 3).

A more recent estimate by the BfR from 2021 on iodine intake in the German population is based on data from 24-hour recalls from NVS II and iodine content data from the BfR-MEAL

study (BfR, 2021). The food pools analysed in the MEAL study also take into account the use of iodised salt in industrial and artisanal food in accordance with their market shares.

In order to also take into account the use of iodised table salt in households in the exposure assessment, an additional scenario with 'iodised salt in households' was calculated. It was estimated that women take up a median of approximately 18 µg of iodine per day and men approximately 21 µg of iodine per day via iodised salt in households. In addition, the calculations were carried out taking into account the age groups from the German Health Interview and Examination Survey for Adults (DEGS) in order to enable a comparison with the biomarker-based DEGS study. Detailed information on this can be found in the BfR opinion from 2021 (BfR, 2021).

The estimated iodine intake was calculated in Table 3 below. For this purpose, only the content data of conventionally produced food were taken into account for the estimate based on the MEAL study.

Table3: Estimated iodine intake in adolescents and adults (a) with the assumption of a theoretical utilisation rate of iodised table salt of 30 % based on NVS II (Diet History Interviews, DHI) and BLS 3.01 and (b) based on NVS II (24-hour recalls, 24h) and BfR-MEAL occurrence data

Age in years (NVS II age groups)	N	NVS II (DHI) – BLS 3.01 30% iodised salt use (MRI, 2011) in µg per day	Age in years (DEGS I age groups)	N	NVS II (24h) – the BfR- MEAL Iodised salt according to market share, conventional food, with iodised salt in the household (BfR, 2021) in µg per day	Tolerable Upper Intake Level (UL) (SCF, 2002) in µg per day		
Men		P50	P95		P50	P95	UL (years)	
14-18	712	167	297	14-17	375	128	238	450 (14) 500 (15-17) 600 (18)
19-24	510	175	377	18-29	1117	136	250	600
25-34	690	172	322	30-39	1044	140	239	600
35-50	2079	169	299	40-49	1321	142	243	600
51-64	1633	158	272	50-59	971	136	223	600
65-80	1469	149	246	60	947	134	236	600
				70-79	558	128	225	600
				80	12	138	192	600
Women		P50	P95		P50	P95	UL (years)	
14-18	700	119	223	14-17	369	95	174	450 (14) 500 (15-17) 600 (18)
19-24	510	121	239	18-29	1066	110	184	600
25-34	972	133	222	30-39	1034	123	197	600
35-50	2694	137	232	40-49	1289	119	196	600
51-64	1840	131	224	50-59	987	120	195	600
65-80	1562	120	195	60-69	995	120	194	600
				70-79	730	117	204	600
				80	21	116	346	600

According to MRI modelling from 2011, under the assumption of a 30 % utilisation rate of iodised salt, the calculated median iodine intake (P50) for 14- to 18-year-old adolescents is 167 µg (m) and 119 µg (f) per day. Under these conditions, men and women aged 19 to 80 take up a median of 149 to 175 µg (m) and 120 to 137 µg (f) per day, respectively (MRI, 2011; Table 3). In the 95th percentile (P95) under these conditions, adolescents between the ages of 14 and 18 years take up 297 µg (m) and 223 µg (f) per day, respectively. Under these conditions, men aged 19 to 80 take up 246 to 377 µg of iodine per day. The 95th percentile for women aged 19 to 80 is 195 to 239 µg of iodine per day (MRI, 2011; Table 3).

According to the BfR models from 2021, the median (P50) iodine intake for 14- to 17-year-old adolescents is 128 µg (m) and 95 µg (f) per day. The median intake for 18- to 80-year-old men and women is 128 to 142 µg (m) and 110 to 123 µg per day (f) respectively (the BfR, 2021; Table 3). In the 95th percentile (P95), adolescents between the ages of 14 and 17 take up 238 µg (m) and 174 µg (f) per day, respectively. Men and women aged 18 to 80 take up 223 to 250 µg (m) and 184 to 346 µg (f) per day in the 95th intake percentiles (BfR, 2021; Table 3).

In addition, the German Health Interview and Examination Survey for Adults (DEGS) estimated the daily iodine intake of adults based on iodine excretion in urine. According to this, men and women aged 18 to 79 years consume a median of between 115 and 146 µg per day and between 98 and 139 µg per day, respectively. The 95th percentile intake for men and women is therefore 324 µg per day and 405 µg per day, respectively (Johner et al., 2016). However, the 95th percentile values were not stratified by age. Since the biomarker-based DEGS study reflects total iodine intake and thus already takes into account the potential intake of iodine-containing food supplements, this study is not suitable for calculating a residual amount for the addition of iodine to food supplements.

No model calculations based on the BLS and with the assumption of different theoretical degrees of iodine salt consumption were performed for children. However, based on consumption data from the German Children's Nutrition Study for Recording Food Consumption (KiESEL; BfR, 2022) and the German nutrition study conducted by the RKI as a KiGGS module (EsKiMo II; RKI, 2021) in combination with the nutrient content database of the MEAL study (BfR, 2023), the BfR carried out estimates of iodine intake for children aged 0.5 to 11 years².

The MEAL study takes into account the use of iodised salt in industrially and artisanally produced food in accordance with the market share of iodised salt. However, in order to also include the use of iodised salt in households in the estimates, a corresponding scenario was created and the following additional iodine intakes from iodised salt in households were taken into account: Girls: 3 to 6 years: 8 µg, 7 to 10 years: 12 µg, 11 to 13 years: 14 µg; Boys: 3 to 6 years: 11 µg, 7 to 10 years: 13 µg, 11 to 13 years: 17 µg iodine.

No total salt intake figures were available for children aged 0 to 2 years, which is why the percentage of salt used in the household (10 to 11 %) could not be calculated. The iodine intake figures calculated for these age groups therefore do not include iodine intake from iodised salt in the household. However, it can be assumed that salt consumption through household salting is very low at this age. More detailed information on this can be found in

² The BfR did not have any EsKiMo II data available for estimating the intake for older children (12 to 17 years).

the BfR opinion from 2022 (BfR, 2022). Table 4 shows the estimated total iodine intake of children aged 0.5 to 11 years.

Table4: Iodine intake via food (LM) with the use of iodised salt in the household (HH), based on KiESEL and EsKiMo II combined with MEAL content data

	N	P50	P95	UL
				(SCF, 2002)
µg per day				
KiESEL-MEAL				
0.5 to < 1 year*	57	86.6	192.9	n.a.
1 to 2 years*	308	69.5	118.7	200
3 to 5 years	588	85.0	132.3	200 (3 years) 250 (4–5 years)
EsKiMo II-MEAL				
6 to 8 years	594	98.4	146.8	250 (6 years) 300 (7–8 years)
9 to 11 years	596	104.9	154.5	300 (9–10 years) 450 (11 years)

n.a.: an UL has not been derived for this age group

* without iodised salt in the household

According to the BfR models from 2022, the calculated iodine intakes for 0.5 to under 1-year-olds are 86.6 µg per day on average and 69.5 µg per day for 1 to 2-year-olds, whereby iodine intake from iodised salt in the household could not be taken into account for these age groups due to a lack of data.

The model calculations also show that 3- to 5-year-olds take up a median of 85 µg per day, 6- to 8-year-olds take up 98.4 µg per day, while 9- to 11-year-olds take up a median of 104.9 µg per day. In the 95th percentile (P95), 0.5- to under 1-year-olds take up 192.9 µg and 1- to 11-year-olds take up between 118.7 and 154.5 µg per day (BfR, 2022; Table 4).

In addition, in Wave 2 of the "Study on the Health of Children and Adolescents in Germany" (KiGGS wave 2), the daily iodine intake of children and adolescents was estimated on the basis of iodine excretion in urine. Based on this, boys and girls aged 3 to 17 years take up a median of 69.6 to 112.0 µg (m) and 62.5 to 94.4 µg (f) of iodine per day, respectively (RKI, 2019). In the 95th percentile, the estimated iodine intake for children and adolescents aged 6 to 17 years is between 180.0 and 220.9 µg per day (Esche and Remer, 2019; BfR, 2022).

Further modelling by the MRI and the BfR to estimate iodine intake in children and adults takes into account a possible reduction in salt consumption and an increase in the iodine content of salt from 25 µg to 30 µg per kg of salt and was discussed in the BfR opinions from 2021 and 2022 and the MRI opinion from 2020 (BfR, 2021; BfR 2022; MRI, 2020).

These model calculations showed that an increase in the current maximum amount of iodine in salt from 25 to 30 mg per kg would be harmless to the health of both adults and children, given the current level of iodised salt use in industrially and artisanally produced food (BfR, 2021; BfR 2022).

2.3 Aspects considered in deriving maximum levels for food supplements

The exact level of iodised salt use in the food industry and in households is not known. However, a representative market survey conducted by the University of Giessen indicates that 29 % of artisanal and industrially produced meat, bread and dairy products to which salt is added are produced with iodised salt (Bissinger et al., 2018). From the BfR's point of view, the theoretically estimated iodine intake of the MRI is therefore closest to the actual iodine intake when modelled at a 30 % utilisation rate of iodised salt (MRI, 2011; BfR, 2021).

The combination of data from consumption studies (NVS II, KiESEL, EsKiMo II) with the BfR's MEAL data also provides a good basis for estimating the iodine intake of the German population, as the MEAL study takes into account the use of iodised salt in industrially and artisanally produced food according to their market shares. Iodine intake through the use of iodised salt in the household was modelled and subsequently added up.

Based on a 30 % utilisation rate of iodised salt, according to the MRI model scenario, adults (aged 19–80) in the 95th percentile of intake would take up a maximum of 377 µg of iodine per day (19–24-year-old men). This means that even in the age group with the highest observed iodine intake, there would still be a difference of slightly more than 200 µg up to the UL of 600 µg per day. For 15- to 17-year-olds, with an UL of 500 µg per day, a 30 % utilisation rate of iodised salt would result in a maximum intake of 297 µg of iodine per day, leaving also a difference of approximately 200 µg.

The BfR models, taking into account the MEAL study data, showed that 80-year-old women with a daily iodine intake of 346 µg per day in the 95th percentile had the highest iodine intake. This would still leave a difference of more than 200 µg up to the UL of 600 µg per day. However, this group only has a very small number of participants (21), so this percentile value is associated with greater uncertainty. For all other adult participants, iodine intakes between 184 µg and 250 µg per day were calculated at the 95th percentile. This leaves a difference of at least 350 µg up to the EFSA UL of 600 µg per day.

Based on the BfR models, the difference for adolescents aged 15 and over is approximately 250 µg up to the UL of 500 µg per day derived for this age group.

2.3.1 Maximum amount of iodine in food supplements

Based on the lowest residual amount_{food supplements (FS)} determined of approximately 200 µg per day³ for adolescents between 15 and 17 years of age and taking into account an uncertainty factor of 2, with a view to possible multiple exposure to iodine-containing FS (Römer and Heuer, 2017) and other scientific uncertainties, a maximum amount of 100 µg per recommended daily intake is recommended for iodine for all age groups from 15 years of age.

In view of the increased iodine requirements of pregnant and breastfeeding women (DGE/ÖGE, 2025), a maximum value of 150 µg iodine per recommended daily intake of a FS is proposed for these groups.

³ $UL_{15-17\text{ years}} - P95_{14-18\text{ years}} = \text{residual amount}_{\text{total}} \rightarrow 500\text{ }\mu\text{g/day} - 297\text{ (rounded to 300) }\mu\text{g/day} = 203\text{ (rounded to 200) }\mu\text{g/day}$

2.4 Aspects considered in deriving maximum levels in food for general consumption

As part of iodine prophylaxis, iodine fortification of salt is recommended in Germany. The maximum content currently permitted by law is 25 mg iodine per kg of salt. The BfR's model scenarios from 2021 and 2022 have shown that under the current conditions of iodised salt prophylaxis, the risk of exceeding the UL is extremely low for both adults and children. However, even an increase to 30 mg per kg of salt would be harmless to the health of both adults and children, given the current assumed iodine salt usage rate of 30 % in industrially and artisanally produced food (BfR, 2021 and 2022). Further iodine fortification of other food is not recommended.

As milk and dairy products are one of the main sources of iodine, population groups that refrain from consuming milk and dairy products in the long term (e.g. due to a vegan diet or other reasons) and do not compensate for this with iodine from other relevant sources are at increased risk of iodine deficiency. From the BfR's point of view, this could be countered by directly enriching food products that are marketed/consumed as substitutes for milk and dairy products with iodine in future.

The iodine fortification of such substitute products should correspond to the natural iodine concentrations in milk and dairy products⁴. According to MEAL data, the median iodine content across all milk and dairy products is 14 µg per 100 g. Taking into account the respective iodine contents and the estimated consumption of individual milk/dairy products, the BfR assumes that the consumption of substitute products for milk and dairy products enriched with 14 µg iodine per 100 g would not lead to higher iodine intake overall than the consumption of milk and dairy products as a whole. It can also be assumed that such iodine-enriched substitute products for milk/dairy products would not lead to additional iodine intake in people who consume conventional milk/dairy products, as they would presumably not consume corresponding plant-based substitute products or would only consume them in insignificant amounts in addition to milk and dairy products. The BfR therefore considers a maximum level of 14 µg per 100 g or 100 ml for products marketed as substitutes for milk and dairy products to be appropriate and safe for health in order to compensate for insufficient iodine intake due to the (partial) avoidance of conventional milk and dairy products.

⁴ According to MEAL data from the BfR, the iodine content of milk and dairy products commonly consumed in Germany, such as cow's milk, yoghurt and cheese (Statista, 2023), is 13–14 µg per 100 g, whereby the iodine content in fresh and semi-hard cheese was taken into account (BfR, 2023). The concentrations in processed cheese (24 µg per 100 g), goats cheese (37 µg per 100 g) and sheep cheese (65 µg per 100 g) are higher. Cream, on the other hand, has a relatively low iodine content of 5 µg per 100 g on average (the BfR, 2023). However, cream is consumed in much smaller amounts than milk, yoghurt and cheese (Statista, 2023).

Further information on the BfR website on iodine proposed maximum levels

FAQ: Iodine intake in Germany on the decline again - tips for a good iodine intake
<https://www.bfr.bund.de/en/release/iodine-intake-in-germany-on-the-decline-again-tips-for-a-good-iodine-intake/>

microco.info on iodine
<https://www.microco.info/minerals/iodine/>

3 References

BfR (2021). Opinion No. 005/2021 of the BfR dated 9 February 2021. Declining iodine intake in the population: model scenarios to improve iodine intake.
<https://www.bfr.bund.de/cm/343/ruecklaeufige-jodzufuhr-in-der-bevoelkerung-modellszenarien-zur-verbesserung-der-jodaufnahme.pdf>; (in German) last accessed: 29 September 2025.

BfR (2022). Declining iodine intake in the population: Model scenarios to improve iodine intake in children and adolescents. BfR Opinion No. 026/2022 of 17 October 2022.
<https://www.bfr.bund.de/en/opinions/declining-iodine-intake-in-the-population-model-scenarios-to-improve-iodine-intake-in-children-and-adolescents/> last accessed: 29 September 2025.

BfR (2022). Kinder-Ernährungsstudie zur Erfassung des Lebensmittelverzehrs (KiESEL). Forschungsbericht Teil 1: Ergebnisse des Fragebogens.
<https://www.bfr.bund.de/cm/350/kinder-ernaehrungsstudie-zur-erfassung-des-lebensmittelverzehrs-kiesel.pdf>; (in German) last accessed: 29 September 2025

BfR (2023). BfR MEAL Study – Iodine: Substance concentration in food. Public Use File:
http://www.bfr-meal-studie.de/en/a_z_microsite_index_en.html?az_char=i#fragment-3 last accessed: 09.01.2026.

Bissinger K, Busl L, Dudenhöfer C, Fast D, Heil E, Herrmann R, Jordan I, Pfisterer A (2018). Repräsentative Markterhebung zur Verwendung von Jodsalz in handwerklich und industriell gefertigten Lebensmitteln - Abschlussbericht zum Forschungsprojekt zur Bereitstellung wissenschaftlicher Entscheidungshilfe für das Bundesministerium für Ernährung und Landwirtschaft (BMEL). (Förderkennzeichen: 2815HS023) - Laufzeit: 2/2017-4/2018.
<https://ilupub.ub.uni-giessen.de/server/api/core/bitstreams/4fcf3c60-057c-4b8b-a1e4-341c4ec0a619/content>; (in German) last accessed: 29 September 2025.

DGE/ÖGE (2025). Iodine – New edition of the DGE/ÖGE reference values for iodine
<https://www.dge.de/wissenschaft/referenzwerte/jod/> (in German)

D-A-CH (2015). Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährung. Referenzwerte für die Nährstoffzufuhr. 2. Auflage, 1. Ausgabe 2015, Neuer Umschau Buchverlag

EFSA (2014). European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Iodine. The EFSA Journal. 12: 3660.

http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/3660.pdf; last accessed: 29 September 2025.

Esche J, Remer T (2019). Abschlussbericht - Biomarker-basierte Langzeitanalysen zur Ermittlung des Anteils von Jodsalz an der Salzaufnahme und der Jodversorgung in der deutschen Bevölkerung - Förderkennzeichen 2817HS007 - Berichtszeitraum: Januar 2018 - August 2019.

https://service.ble.de/ptdb/index2.php?detail_id=443116&ssk=9ddea1dad7&site_key=145&stichw=2&zeilenzahl_zaehter=659&NextRow=100; (in German), letzter Zugriff: 29.09.2025

Johner SA, Thamm M, Schmitz R, Remer T (2016). Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment. Eur J Nutr. 55: 1275-82.

MRI (2011). Max Rubner Institute. Iodine intake of the population in Germany – recalculation based on BLS 3.01. Unpublished report.

MRI (2020). Modellszenarien für die Jodzufuhr in Deutschland. Stand: Mai 2020.

https://www.mri.bund.de/fileadmin/MRI/Institute/EV/MRI_Jodbericht_Modellszenarien_bfrei.pdf; (in German), letzter Zugriff: 18.09.2025.

RKI (2019). „Monitoring der Jod- und Natriumversorgung bei Kindern und Jugendlichen im Rahmen der Studie des Robert Koch-Instituts zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS Welle 2)“. Abschlussbericht.

https://service.ble.de/ptdb/index2.php?detail_id=47144&site_key=145&zeilenzahl_zaehter=592&NextRow=330; (in German), letzter Zugriff: 29.09.2025.

RKI (2021). EsKiMo II - Die Ernährungsstudie als KiGGS-Modul.

https://edoc.rki.de/bitstream/handle/176904/6887.2/EsKiMoll_Projektbericht.pdf?sequence=3&isAllowed=y; (in German), letzter Zugriff: 29.09.2025.

Statista (2023). Pro-Kopf-Konsum von Milch und Milcherzeugnissen in Deutschland nach Art im Jahr 2023. <https://de.statista.com/statistik/daten/studie/318237/umfrage/pro-kopf-konsum-von-milch-und-milcherzeugnissen-in-deutschland-nach-art/>; (in German), letzter Zugriff: 29.09.2025

SCF (2002). Scientific Committee on Food. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Iodine. https://ec.europa.eu/food/fs/sc/scf/out146_en.pdf; last accessed: 29 September 2025.

About the BfR

The German Federal Institute for Risk Assessment (BfR) is a scientifically independent institution within the portfolio of the German Federal Ministry of Agriculture, Food and Regional Identity (BMELH). It protects people's health preventively in the fields of public health and veterinary public health. The BfR provides advice to the Federal Government as well as the Federal States ('Laender') on questions related to food, feed, chemical and product safety. The BfR conducts its own research on topics closely related to its assessment tasks.

This text version is a translation of the original German text which is the only legally binding version.

Legal notice

Publisher:

German Federal Institute for Risk Assessment

Max-Dohrn-Straße 8-10

10589 Berlin, Germany

T +49 30 18412-0

F +49 30 18412-99099

bfr@bfr.bund.de

bfr.bund.de/en

Institution under public law

Represented by the President Professor Dr Dr Dr h. c. Andreas Hensel

Supervisory Authority: Federal Ministry of Agriculture, Food and Regional Identity

VAT ID No. DE 165 893 448

Responsible according to the German Press Law: Dr Suzan Fiack

valid for texts produced by the BfR
images/photos/graphics are excluded unless otherwise indicated

BfR | Identifying Risks –
Protecting Health