Transmission of livestock-associated MRSA to humans via poultry meat is possible, but the risk is low

BfR Communication 005/2017 of 26 April 2017

Staphylococcus (S.) aureus is a widespread bacterium that colonises the skin and mucous membranes of humans and animals. Around 30% of all people carry *S. aureus* on their skin and/or in their mucous membranes. This colonisation generally goes unnoticed. *S. aureus* is, however, also frequently involved in inflammation of the skin and/or soft tissue. The methicillin-resistant variant of *S. aureus* (MRSA) is resistant to all so-called beta-lactam antimicrobials, in other words penicillins and cephalosporins. These bacteria frequently also exhibit resistance to other classes of antimicrobials. MRSA is also detected in livestock and food. However, clinical data show that the strains found in livestock ("livestock-associated" MRSA, LA-MRSA for short) are currently of only secondary importance for infections in humans. The exception are people who have frequent contact with livestock (livestock professionals such as farmers and vets). They can be carriers of LA-MRSA. Transmission of LA-MRSA to humans via food is something that had not been observed before. Based on the findings of a research cooperation, scientists from the German Federal Institute for Risk Assessment (BfR) and the Statens Serum Institute (SSI) in Copenhagen (Denmark) conclude that it is possible for a certain type of LA-MRSA to be transmitted to humans via poultry meat. Previously, few cases of human infection with this type of LA-MRSA (so-called CC9/CC398) had been described in Denmark. On the whole, however, the BfR still assesses the risk of LA-MRSA transmission to humans as a result of contact with or consumption of (raw) poultry meat as low.

Together with the Statens Serum Institute (SSI) in Copenhagen (Denmark), the National Reference Laboratory for coagulase positive staphylococci including *S. aureus* at the German Federal Institute for Risk Assessment (BfR) investigated Methicillin-resistant *Staphylococcus aureus* (MRSA) strains of a very specific LA-type (CC9/CC398) isolated from colonised or infected patients. These strains were compared with strains that had been isolated from different kinds of animals, food and other sources (Larsen et al., 2016). The background to this study was that cases of CC9/CC398 MRSA were observed in humans in Denmark although there was no known reservoir in the country where this specific LA-type could have originated from. None of the patients infected with these strains had had direct contact with livestock. Neither had strains of this type been previously detected in livestock in Denmark.

The SSI looked at CC9/CC398 MRSA isolated from twelve infection cases in humans in Denmark. At the same time, it also examined an international collection of 185 (methicillin-resistant and methicillin-sensitive) *S. aureus* strains of different origins (humans, animals, food and the environment) that were compiled specifically for this investigation. The collection contained both CC9/CC398 strains and – for the purpose of comparison – strains of CC398, which account for the majority of LA-MRSA types in livestock. Using whole genome sequencing and phylogenetic strain analysis, it was possible to assign 10 isolates from the infection cases to a group of 49 very closely related CC9/CC398 strains in the strain collection. The strains possessed almost identical properties and characteristics, and were designated "ΦSa3 clade".

Besides the isolates from infection cases in humans, 95% of the isolates from poultry or poultry meat also belonged to this "ΦSa3 clade". Only 7% of the isolates in this group were of other origin. Some of the strains from human infections even displayed poultry associated genes. From the findings of their research the involved scientists concluded that CC9/CC398-MRSA from poultry have adapted to humans. The authors also assume that the
strains may have been transmitted via poultry meat to the people concerned. They emph-

asise, however, that the results are not sufficient to change the current assessment that food-

borne transmission of LA-MRSA plays only a minor role in the spread of livestock-associated

MRSA in humans.

The findings also show, however, that MRSA are versatile bacteria that can adapt to different

habitats. This is why the research team at the SSI is convinced that it is essential to continue

intensive monitoring of \textit{S. aureus} at the "human-animal" interface. This monitoring may facili-

tate early detection of evolutionary and epidemiologic changes of MRSA and appropriate

interventions.

The BfR has conducted an additional own study on CC9/CC398 MRSA. In this study further

strains of CC9/CC398 MRSA with the same properties as the isolates detected in cases of

human infections in Denmark in were identified. The majority of these strains were isolated

from turkey meat within the framework of national zoonosis monitoring. Tracing of the turkey

meat samples from German retail suggests an epidemiological link to Poland as the source

of entry into the food chain (Fetsch et al. 2017).

Taken together the results of both studies (Larson et al., 2016 and Fetsch et al., 2017), indi-

cate that a certain LA-MRSA type (CC9/CC398) can be transmitted from animals to humans

via food, in particular turkey meat. At present, it is not clear whether this transmission may be

the result of consumption and/or handling of (raw) poultry meat. It is also unclear which other

factors facilitate transmission and, potentially, subsequent infection with CC9/CC398 MRSA.

There is currently no indication that other LA-MRSA types may be transmitted to humans via

food. However, data are insufficient to allow for a reliable assessment of the importance of

this transmission route.

The BfR still considers direct contact to colonized animals the main pathway for the trans-

mission of LA-MRSA from animals to humans. The findings do, however, underline the po-

tential of MRSA to adapt and mutate. Further investigations are also needed to determine

whether these changes may affect the likelihood of transmission or the severity of the ill-

nesses caused.

In view of the study results of Larsen et al. (2016) and Fetsch et al. (2017), the BfR recom-

mends continued intensive national monitoring of MRSA in livestock and food. Efforts to pre-

vent entry into the food chain should be intensified as early as at the primary production

stage. In addition, close cooperation between the human medicine and veterinary disciplines

in the spirit of the "One Health" concept is essential. This should also comprise further com-

parative studies of isolates from humans, animals and food. Particular emphasis should be

placed on the comparison of strains from the poultry food chain.

References:

Larsen et al. 2016: Evidence for Human Adaptation and Foodborne Transmission of Live-

15;63(10):1349-1352

Fetsch et al. 2017: Turkey meat as source of CC9/CC398 Methicillin-resistant Staphylococ-

cus aureus (MRSA) in humans? Clin Infect Dis. 2017 Jan 1;64(1):102-103
More information about MRSA on the BfR website

http://www.bfr.bund.de/en/a-z_index/methicillin_resistant_staphylococcus_aureus__mrsa_-130063.html

About the BfR

The Federal Institute for Risk Assessment (BfR) is a scientifically independent institution within the portfolio of the Federal Ministry of Food and Agriculture (BMEL) in Germany. It advises the Federal Government and Federal Laender on questions of food, chemical and product safety. The BfR conducts its own research on topics that are closely linked to its assessment tasks.

This text version is a translation of the original German text which is the only legally binding version.