Lead in game in Sweden

National Food Agency:

Dr. Emma Halldin Ankarberg, Dr. Rickard Bjerselius, Guidance Department

Dr. Barbro Kollander, Science Department
Dr. Salomon Sand, Risk benefit Assessment Department
Krister Scherling, Food Control Department
Carmina Ionescu, Food Standards Department
Lukas Linné, Communications Department

Swedish Association for Hunting and Wildlife Management:

Dr. Fredrik Widemo

The National Veterinary Institute:

Dr. Erik Ågren
Background

- Studies from e.g. Germany, Spain, USA, Norway and Efsa have shown elevated levels of lead in game.

- Studies indicate that consumption of game is positively correlated with increased lead levels in blood.

- New toxicological evaluations of lead (Efsa, 2010; JECFA, 2011, NTP 2012), leading to withdrawal of TWI, and concluding no “safe level” for lead.

- Efsa conclude that exposure of lead to pregnant women (fetuses) and children in Europe is close to, or over, the health based reference point, 0,5 µg Pb/kg b.w. /day.
Lead in game – a Swedish problem?

Results from European studies, lead in game meat (mg/kg)

<table>
<thead>
<tr>
<th>Animal</th>
<th>Ammunition</th>
<th>No of samples</th>
<th>Median mg/kg</th>
<th>Mean mg/kg</th>
<th>Std deviation mg/kg</th>
<th>No of samples exceeding ML 0.1 mg/kg</th>
<th>Maximum mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFSA<sup>a</sup></td>
<td>game</td>
<td>-</td>
<td>0.02</td>
<td>3.15</td>
<td>-</td>
<td>-</td>
<td>867</td>
</tr>
<tr>
<td>BfR<sup>b</sup></td>
<td>boar</td>
<td>bullet</td>
<td>0.02</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NVI<sup>c</sup></td>
<td>minced moose meat</td>
<td>bullet</td>
<td>0.3</td>
<td>5.6</td>
<td>20</td>
<td>31</td>
<td>110</td>
</tr>
<tr>
<td>IREC<sup>d</sup></td>
<td>bird</td>
<td>shot</td>
<td>-</td>
<td>2.55</td>
<td>0.75</td>
<td>55</td>
<td>-</td>
</tr>
</tbody>
</table>

^a EFSA, 2010a. EFSA panel on contaminants in the food chain (CONTAM); Scientific opinion on lead in food. EFSA J. 8(4), 1570.

^b Bundesinstitut fur Risikobewertung, "Bleibelastung von Wildbret durch Verwendung", Stellungnahme Nr. 040/2011

^c Norwegian Veterinary Institute, Lindboe. M., et al. Lead concentration in meat from lead-killed moose and predicted human exposure using Monte Carlo simulation. Food Additives and Contaminants (2012) 1-6, iFirst

Lead in game – The Problem

Roe deer shot with a lead bullet

Photo: The National Veterinary Institute, 2012
Lead in game – why is this a matter of concern in Sweden and for NFA?

• 300 000 licensed hunters in Sweden.

• Approximately 600 000-900 000 persons (7-10 % of the Swedish population) as potential high consumers of game (i.e. non commercial).

• Annual “production” of game meat in Sweden correspond to approximately 12 % of the production of beef.

• EFSAs opinion on lead 2010, “no safe level”
Three questions to answer

1) Elevated levels of lead in Swedish moose meat?
 - Sampling, X-ray and analysis
 (Swedish Association for Hunting and Wildlife Management and The Swedish National Veterinary Institute)

2) Risk for human health?
 - Exposure- and risk assessment
 (National Food Agency)

3) Manage the risk?
 - Risk management options
 * Dialogue with companies?
 * Legislation?
 * Control?
 * Consumer advice?
 (National Food Agency)
Sampling and X-ray of minced moose meat

Done in collaboration with the National Veterinary Institute (SVA) and Swedish Association for Hunting and Wildlife Management (SJF)

- SJF collect 48 minced moose meet from private freezers from north to south in Sweden.
- 6 samples are bought in groceries.
- Total of 54 samples of minced moose meat.

- SVA perform X-ray of the samples.
- Detect fragments of metal in 19 samples out of 54 (35%).
Analysis of lead in moose meat – preparation and analytical methods (NFA)

Lead fragments probably not evenly distributed in the meat packages
=> All the meat (i.e. 200-600 g) in each package was therefore extracted
=> 15 % \(\text{HNO}_3 \) used to dissolve the lead fragments
=> Stand for 20 hrs., with occasional stirring
=> Sample from the extraction solution taken for analysis

Two methods were used:
• Direct use of the extract, ICP-AES, Spektro Ciros CCD (Uppsala university)
• Accredited method at NFA with micro wave digestion and analysis with ICP-MS, Agilent 7700x
Analytical results – lead in minced moose

33% of the analysed moose meat have Pb-levels above the ML for beef meat (0,1 mg/kg).

54% of the analysed moose meat above LOD (0,02 mg/kg).

46% of the analysed moose meat below LOD (not quantified numbers!).

Background level in moose not shot with lead ammo. 0,002 mg/kg (ICP-MS)

Max value 31 mg/kg
Environmental contamination (background levels) of lead in game meat from Sweden

Results from game meat analysed for Pb in 2011. The meat is collected from areas of the animal not in vicinity of the area were the shot hit the animal.

<table>
<thead>
<tr>
<th>Species (whole meat)</th>
<th>Number of samples</th>
<th>Median (mg Pb/kg f.w.)</th>
<th>Max (mg Pb/kg f.w.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moose</td>
<td>71</td>
<td><0.02</td>
<td>0.143</td>
</tr>
<tr>
<td>Boar</td>
<td>19</td>
<td><0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Roe deer</td>
<td>16</td>
<td><0.02</td>
<td><0.02</td>
</tr>
</tbody>
</table>

Probably not a problem in Sweden, since the Pb-level in 105 analyses out of 106 are below the LOQ of 0.02 mg/kg f.w.

1) Elevated levels of lead in Swedish minced moose meat due to lead ammunition?

Minced moose meet:
54 % with lead levels above 0.02 mg/kg f.w.

Whole meet from moose, boar and roe deer (background levels):
0.009 % with lead levels above 0.02 mg/kg f.w.

YES

Next step:
Exposure- and risk assessment of lead from minced moose meat
Documented adverse health effects from lead are neurotoxicological, renal and cardiovascular.

No safe level could be established, but a reference point (RP) was established (BMDL$_{0.1}$) to a blood lead level at 12 µg/L, which corresponds to a dietary intake of 0.5 µg Pb/kg b.w./day (effects on IQ).

Moreover, Efsa concludes that in infants, children and pregnant women, there is potential concern at current levels of exposure to lead for effects on neurodevelopment.

A margin of exposure (MOE) of 10 or greater should be sufficient to ensure that there is no appreciable risk of a clinically significant effect on IQ.

A work should continue to reduce exposure to lead, from both dietary and non-dietary sources.

Other new toxicological evaluations of lead and its adverse health effects.

• **National Toxicology Program (NTP)**, U.S. Department of Health and Human Services, Monograph on health effects of low-level lead, June 2012,
Lead exposure in Sweden

- Most of the exposure of lead via food comes from cereals, drinks and vegetables.
- Other sources are shellfish, game liver and mushrooms.
- Mean intake of lead from all food sources in adults: 7-11 µg per person and day (Becker et al. 2011, Food Market Basket 2012).

Blood lead levels in Swedish school children
Strömberg et al, 2008
Worst case modeling of the moose results - risk characterization

• Based on NFA food consumption survey for 4-year old children, the minced beef consumption was "replaced" with minced moose meat.

• The mean concentration, 0,9 mg Pb /kg f.w., was used in the modeling.

• It was assumed that all metallic lead was dissolved.

• Both normal and high consumers were used in the modeling.

But, the modeling is not only a worst case scenario, since it ONLY consider lead exposure from minced moose meat!
The risk for a “high consumer” child to be exposed to elevated lead levels from minced moose meat during 1 month above RP at 9 days out of 30 days when minced moose meat is consumed.
Are there uncertainties?

- Bio accessibility
- Bio availability
- Recipes
- Fasting vs. full stomach
- Portion size
- Consumption
- Iron status
- Calcium status
- Analytical uncertainty
- Blood lead levels
- Iron status
Dissolved lead and uptake of lead fragments in the stomach/intestine

Dissolved metallic lead in the stomach and intestine
• The accessibility is dependent on the acidity of the food (recipes) what, and how much you eat and the size of the lead particles.
• According to Mateo et al, 2011, the amount of dissolved lead is 6.75 %, 4.51 % and 0.7 % in meat, cooked in vinegar, wine or uncooked, respectively.

Uptake of dissolved lead from the stomach and the intestine
• Efsa reports that the uptake of dissolved lead in the stomach and intestine is 10-15 % in adults and 50 % in children.
• Efsa used an uptake of 50 % in the calculation of RP 0,5 μg Pb/kg b.w./day
Preliminary NFA results
- solubility of lead in 0,1 M HCl

The amount of dissolved lead in percent as a function of time
• 0,1 M HCl is the approx. conc. in the stomach
• the duration of food in the stomach is approx. 4 hrs.

4 hrs. in the 0,1 HCl result in 7,5 % dissolved Pb
Risk management question

How much of the lead exposure is acceptable to come from lead in game meat?

“A margin of exposure (MOE) of 10 or greater should be sufficient to ensure that there is no appreciable risk of a clinically significant effect on IQ.” (Efsa-opinion 2010)
Solubility and uptake – considerations for the risk management based on the present results

Percent of RP (0.5 μg Pb/kg b.w./day), with different levels of solubility of the metallic lead, 1%, 5% and 10%.

<table>
<thead>
<tr>
<th>Lead in minced moose meat (μg Pb/kg)</th>
<th>Lead per portion (μg Pb/65 g)</th>
<th>Percent of RP when 1% Pb is dissolved for uptake</th>
<th>Percent of RP when 5% Pb is dissolved for uptake</th>
<th>Percent of RP when 10% Pb is dissolved for uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>99,8</td>
<td>6,5</td>
<td>0,7</td>
<td>3,6</td>
<td>7,2</td>
</tr>
<tr>
<td>106,0</td>
<td>6,9</td>
<td>0,8</td>
<td>3,8</td>
<td>7,7</td>
</tr>
<tr>
<td>112,3</td>
<td>7,3</td>
<td>0,8</td>
<td>4,1</td>
<td>8,1</td>
</tr>
<tr>
<td>135,1</td>
<td>8,8</td>
<td>1,0</td>
<td>4,9</td>
<td>10</td>
</tr>
<tr>
<td>169,8</td>
<td>11,0</td>
<td>1,2</td>
<td>6,1</td>
<td>12</td>
</tr>
<tr>
<td>176,2</td>
<td>11,5</td>
<td>1,3</td>
<td>6,4</td>
<td>13</td>
</tr>
<tr>
<td>298,5</td>
<td>19,4</td>
<td>2,2</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>398,2</td>
<td>25,9</td>
<td>2,9</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>697,8</td>
<td>45,4</td>
<td>5,0</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>816,8</td>
<td>53,1</td>
<td>5,9</td>
<td>29</td>
<td>59</td>
</tr>
<tr>
<td>884,5</td>
<td>57,5</td>
<td>6,4</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>904,6</td>
<td>58,8</td>
<td>6,5</td>
<td>33</td>
<td>65</td>
</tr>
<tr>
<td>1450,0</td>
<td>94,3</td>
<td>10</td>
<td>52</td>
<td>105</td>
</tr>
<tr>
<td>2540,0</td>
<td>165,1</td>
<td>18</td>
<td>92</td>
<td>183</td>
</tr>
<tr>
<td>2540,0</td>
<td>165,1</td>
<td>18</td>
<td>92</td>
<td>183</td>
</tr>
<tr>
<td>3402,4</td>
<td>221,2</td>
<td>25</td>
<td>123</td>
<td>246</td>
</tr>
<tr>
<td>3402,6</td>
<td>221,2</td>
<td>25</td>
<td>123</td>
<td>246</td>
</tr>
<tr>
<td>30000,0</td>
<td>1950,0</td>
<td>217</td>
<td>1083</td>
<td>2167</td>
</tr>
</tbody>
</table>

Red: above Efsa MOE level

28% above Efsa MOE level

22% above Efsa MOE level

11% above Efsa MOE level
Does game meat significantly contribute to blood lead levels?

- Significant increase of blood lead levels have been shown in persons consuming game meat compared to non-consumers of game meat (Iqbal et al. 2009, Tsuij 2008).

- Pigs fed game meat containing lead fragments show significant increased blood lead levels (Hunt et al. 2009).

- Preliminary NFA results: game consumption and blood lead levels are positively correlated.
Preliminary NFA results
- median Pb blood levels vs. game consumption

<table>
<thead>
<tr>
<th>Game consumption</th>
<th>Women</th>
<th></th>
<th>Men</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (n)</td>
<td>Percent (%)</td>
<td>Number (n)</td>
<td>Percent (%)</td>
</tr>
<tr>
<td>Never (1)</td>
<td>34</td>
<td>24</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>< 1 time/month (2)</td>
<td>80</td>
<td>57</td>
<td>72</td>
<td>58</td>
</tr>
<tr>
<td>> 1 time/month (3)</td>
<td>26</td>
<td>19</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td></td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>

P (Anova) for game consumption:
Women: 0.0008 (0.0041)
Men: 0.0217 (0.0676)

Efsa RP for fetus/child effects on IQ, 12 μg Pb/L blood
Efsa RP for adult kidney effects, 15 μg Pb/L blood

Bjermo et al., 2013, in press (Food and Chemical Toxicology)
Risk assessment – Conclusions

- "High consumers" of game meat, e.g. hunters and their families, are at risk for elevated exposure to lead due to game consumption.

- In these consumer groups, the exposure to lead from game meat can contribute to exceeding of the health based reference points for lead.
Where are we in the process?

Analysis finalized
Are there elevated levels of lead in Swedish minced moose?

YES

Risk assessment finalized
Could this exposure cause health effects?

YES, especially for fetuses and small children

Next step
Risk management

How should NFA manage this risk?

* Dietary advice?
* Dialogue with game slaughter houses?
* Legislation?
* Control?
Rationale for risk management

- There are approximately 600,000 - 900,000 potential consumers of game in Sweden.

- NFA has documented a source of lead exposure via game meat in Sweden.

- Based on the lead level distribution in the 54 moose meat packages, the risk of consuming a package with elevated lead levels was high, approx. 9 out of 30 occasions would result in moose meat with elevated lead levels.

- Even if the accessibility of lead is set to 1%, the study shows that approximately 10% of the collected samples has lead levels above the MOE of 1/10 of RP.

- NFA finds it unacceptable that the food commodity “game meat” by itself contribute with as much as 10-28% of the RP.

- Very specific and known source of the “contaminant”

- Possible to permanently risk reduce (e.g. improved cutting routines or choose lead free ammunition)
Risk management decision

”NFA decide that this route of lead exposure should be communicated and that consumer advices should be formulated to limit the lead exposure via game meat”
Dietary advice

1. For pregnant women, women who plan children in the near future and children < 7 years –
 Avoid consumption of meat from areas close to the wound channel, from game shot with lead ammunition.

2. For hunters, their families and other high consumers
 Limit consumption to once a week, of meat from areas close to the wound channel, from game shot with lead ammunition.

The advice published June 25, 2012
Risk management – by the Swedish Association for Hunting and Wildlife Management

Advice to hunters

1. Improved cleaning practices when game is prepared for butchering
 Remove at least 5 cm unaffected meat around the wound channel"

2. Consider choice of ammunition

3. Be aware of shot placement
Subsequent risk management activities
- Follow-up studies 1(2)

NFA will, in cooperation with, the National Veterinary Institute and Swedish Association for Hunting and Wildlife Management follow up the results from present studies

Prospective blood lead level study directed to high consumers of game meat (e.g. hunters families)
Status – ongoing, results in late 2013 – 2014

Study bio accessibility of metallic lead
Status – ongoing, preliminary results presented at this meeting, results 2013
Follow-up studies 2(2)

Lead from rifle ammunition in other game species than moose
Status: Ongoing, results 2014

Lead from shot gun ammunition in game
Status: Ongoing, results 2014

"Cutting study" of game meat
Status – Ongoing (but very difficult to perform), results 2014
Thank you for your attention!