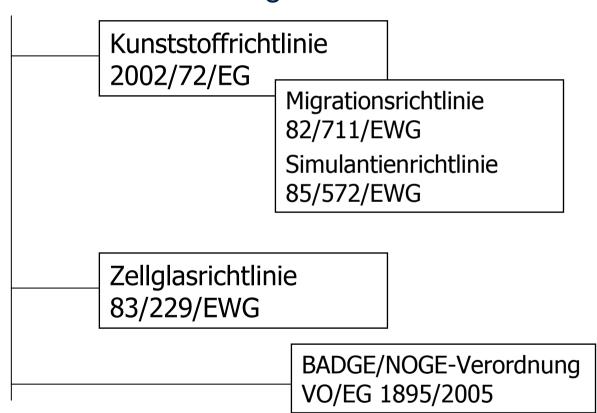


Kombinierte Anwendung von chemischer Analytik und Biotests auf Verpackungsmaterialien

Thomas J. Simat

TU-Dresden Professur für Lebensmittelkunde und Bedarfsgegenstände


BfR-Symposium – 50 Jahre Kunststoffkommission, Berlin, 25. April 2007

Rechtliche Grundlagen

- EU Rahmenverordnung 1935/2004/EG
 - Definition ,Materialien und Gegenstände im Lebensmittelkontakt'
 - Anforderungen für Übergänge auf Lebensmittel
 - → keine Gesundheitsgefährdung
 - → Gute Herstellpraxis
 - → keine sensorische Beeinträchtigung der Lebensmittel

Rechtliche Grundlagen

EU Rahmenverordnung 1935/2004/EG

Rechtliche Grundlagen

- kein harmonisiertes Recht für
 - andere Materialien als Kunststoffe und Zellglas:
 - → Papier/Pappe
 - → Lacke/Coatings
 - → Druckfarben
 - → Klebstoffe
 - → Silikon
 - → Elastomere/Kautschuk

auch nicht 'geprüfte' Substanzen werden im Lebensmittelkontakt eingesetzt

Analytik von Lebensmittelkontaktmaterialien

Gesamtmigrat

Polarität: verschiedene Simulantien Absorbierbarkeit: </>

Analytisches Screening

Einzelsubstanzen toxikologisch relevante

Biotest-Detektion

Substanzgruppen

Rechtlich geregelte Substanzen Substanzen mit Toxdaten

QSAR-Schätzung

Biologisches Screening

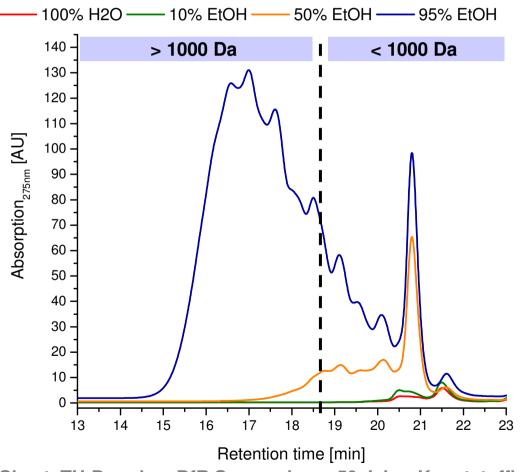
Organismen Zellen Rezeptoren

- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität

Exposition

Gesamtmigrat

Gesamtmigrat

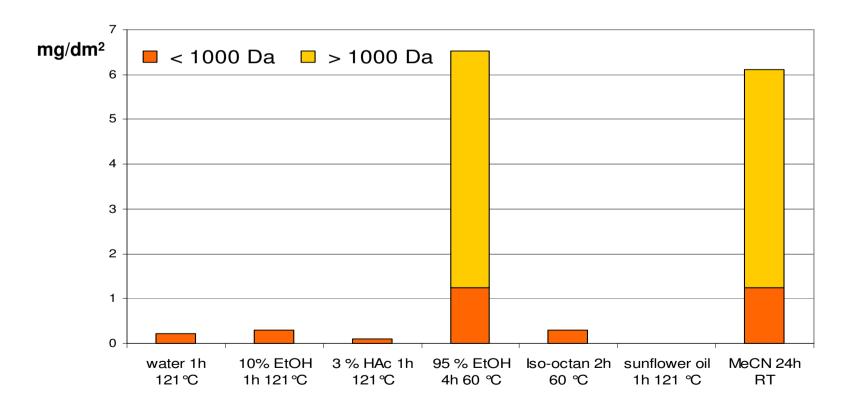

Polarität: verschiedene Simulantien Absorbierbarkeit: </>

- Polarität
 - (Ersatz)simulantien für fettige Lebensmittel Olivenöl; Ethanol, i-Octan
 - Simulantien
 Wasser, 3%-ige Essigsäure, 10% und 50% Ethanol
- Absorbierbarkeit im Gastro-Intestinaltrakt
- Veränderungen der Substanzen bis zur Absorption
 - Magensäure
 - Enzyme

Gesamtmigrat

Beispiel: Analytik von Coatings

SEC von Gesamtmigraten eines Epoxy-Anhydrid-Coatings



T.J. Simat, TU-Dresden, BfR Symposium - 50 Jahre Kunststoffkommission 2007

Gesamtmigrat

Beispiel: Analytik von Coatings

Gravimetrische Bestimmung
 Abhängigkeit vom Simulanz und Molekulargewicht

Analytik von Lebensmittelkontaktmaterialien

Gesamtmigrat

Polarität: verschiedene Simulantien Absorbierbarkeit: </>

Analytisches Screening

Einzel- toxikologisch Biotestsubstanzen relevante Detektior Substanzgruppen

Rechtlich Substanzen QSAR
geregelte mit Toxdaten Schätzung
Substanzen

Biologisches Screening

Organismen Zellen Rezeptoren

- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität

Exposition

Migrat – Substanzspezifische Analytik

Beispiel: Analytik von Coatings

- Spezifische Migrationslimits für:
 - Bisphenol A
 - Σ(BADGE + Hydrolyseprodukte)
 - Σ(BADGE, BADGE*2HCI, BADGE*HCI*H₂O)
 - Trimellitsäureanhydrid

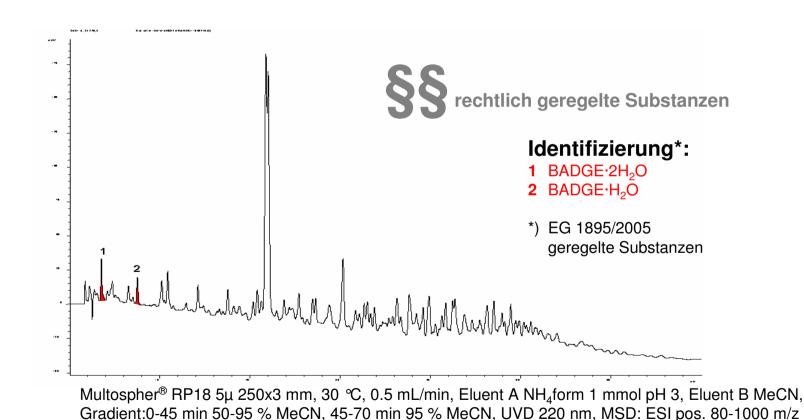
	SML (mg/kg)	Migrat (mg/kg)	
BPA	0,6	0,014	
BADGE	9	0,03	
BADGE-2H ₂ O	9	0,05	
TMA	5,0	0,48	

0,6 mg/kg

9 mg/kg bzw.

9 mg/6dm²

1 mg/kg bzw.


1 mg/6 dm²

5 mg/l

Migrat – Substanzspezifische Analytik

Beispiel: Analytik von Coatings

EtOH-Migrat (< 1000 Da) eines Epoxyanhydrid-Coatings

Identifizierung ,unbekannter Substanzen im Migrat

- z.T. sind durch rechtliche Regelungen nur ein geringer
 Teil der migrierenden Substanzen erfasst
 - für einige Bereiche (Druckfarben, Klebstoffe etc.) gibt es keine substanzrechtlichen Regelungen
 - Reaktionsprodukte sind i.d.R. nicht reguliert
 - Folge: ,forest of unknown peaks'
- Lösungsansätze für 'unbekannte Substanzen'
 - Summenbestimmung relevanter Substanzgruppen
 - Analytisches ,non-target 'Screening
 - Einsatz von Biotests als zusätzlichen Detektor
 - Direkte Risikoabschätzung durch eine Biotestbatterie

Analytik von Let

Lösungsansätze für 'unbekannte Substanzen'

- Summenbestimmung relevanter Substanzgruppen
- Analytisches ,non-target' Screening
- Einsatz von Biotests als zusätzlichen Detektor
- Direkte Risikoabschätzung durch eine Biotestbatterie

Polarität: verschiedene Simuranus

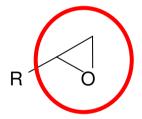
pierdarkeit: </>

Analytisches Screening

Einzel- toxikologisch Biotestsubstanzen relevante Detektion Substanzgruppen

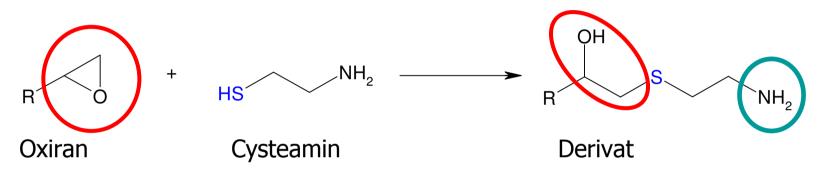
Rechtlich Substanzen QSARgeregelte mit Toxdaten Schätzung Substanzen

Biologisches Screening


Organismen Zellen Rezeptoren

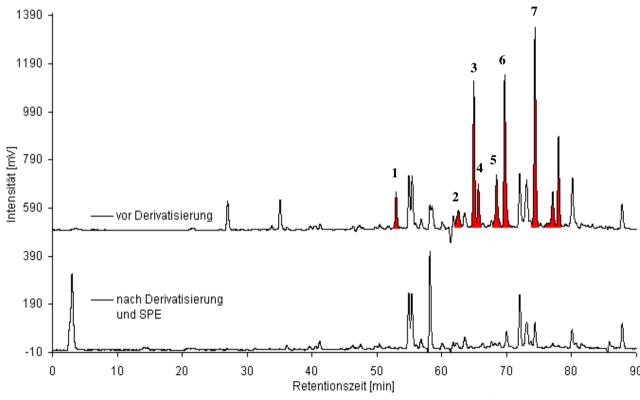
- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität

Exposition


Toxikologisch relevante Substanzklassen

- Substanzen lassen sich aufgrund ihrer Struktur bzw.
 Strukturelemente verschiedenen Klassen toxikologischer Relevanz zuordnen:
 - z.B. nach dem Entscheidungsbaum nach Cramer
 - Epoxidgruppen gehören dabei in die Cramer-Klasse III:
 - Die Exposition mit einer Substanz aus dieser Klasse sollte unter 90 μg/Tag liegen

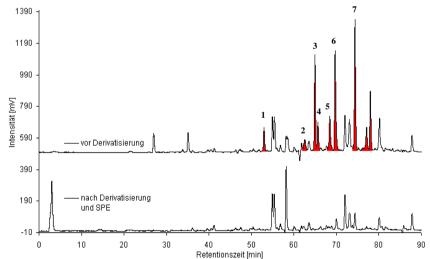
Summenbestimmung toxikologisch relevanter Substanzklassen


Spezifische Bestimmung oxiranhaltiger Substanzen

- hohe Spezifität für Oxirangruppen
- die Derivate lassen sich aufgrund der Aminogruppe durch einen Ionentauscher aus dem Gemisch abtrennen
 - → dadurch lassen sich die Peaks erkennen, die noch eine reaktive Oxirangruppe enthielten

Summenbestimmung toxikologisch relevanter Substanzklassen

 EtOH-Migrat (< 1000 Da) eines Coatings (BPA-Harz als Binder)



Wermann et al., Poster LC-Tag 2006

Summenbestimmung toxikologisch relevanter Substanzklassen

Auswertung

für BPA basierende Lacke: die Menge der oxiranhaltigen Substanzen (rot) können mit Hilfe einer BADGE-Kalibrierung als BADGE-Äquivalente abgeschätzt werden

Wermann et al., Poster LC-Tag 2006

Analytik von Let

Lösungsansätze für 'unbekannte Substanzen'

- Summenbestimmung relevanter Substanzgruppen
- Analytisches ,non-target Screening
- Einsatz von Biotests als zusätzlichen Detektor
- Direkte Risikoabschätzung durch eine Biotestbatterie

Polarität: verschiedene Sil...

AUTOUIT NO TOU BU

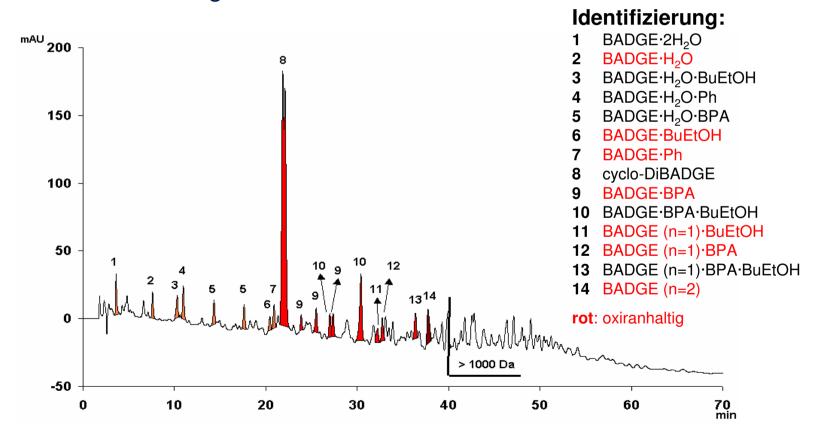
Analytisches Scroning

Einzel- toxikologisch substanzen relevante Substanzgruppen Biotest-Detektion

Biologisches Screening

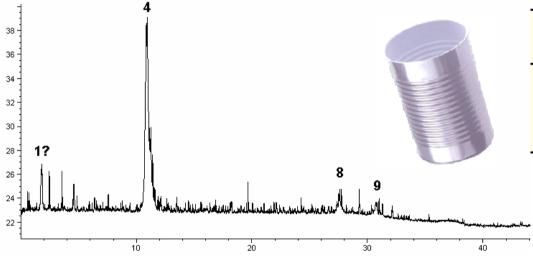
Organismen Zellen Rezeptoren

- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität


Rechtlich geregelte Substanzen Substanzen mit Toxdaten

QSAR-Schätzung

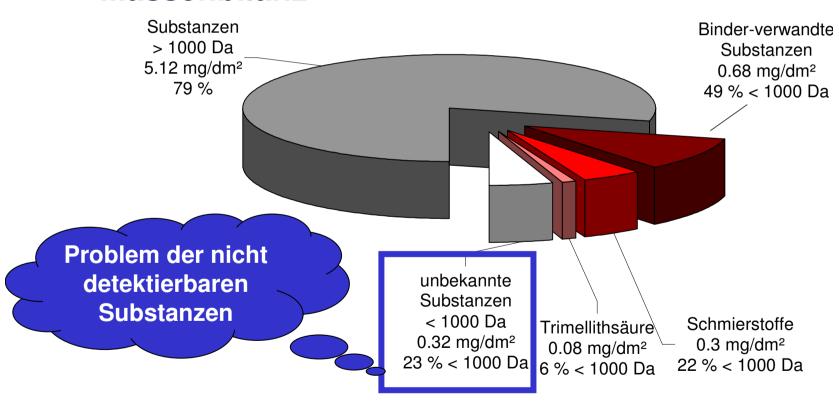
Exposition


Identifizierung ,unbekannter' Substanzen im Migrat

 EtOH-Migrat eines Epoxyanhydrid-Coatings RP-HPLC-Screening

Identifizierung ,unbekannter' Substanzen im Migrat

 EtOH-Migrat eines Epoxyanhydrid-Coatings NP-HPLC-Screening


No.	Subst.	Subst. Content* (mg/sdm)	
4	TAG	0.1	
8	1,3-DAG	< 0.1	
9	1,2-DAG	< 0.1	

Coating was produced with carnauba wax and a mixture of MAG, DAG, and TAG

Diol-Column, Gradient: Isooctane/0.1% HOAc in tert.-Butylmethylether

Identifizierung ,unbekannter' Substanzen im Migrat

EtOH-Migrat eines Epoxyanhydrid-Coatings
 Massenbilanz

Identifizierung ,unbekannter Substanzen im Migrat

Fazit für das analytische Screening:

- + ein großer Anteil der migrierenden Substanzen kann aufgeklärt werden
- zur Risikoabschätzung muss nach toxikologischen Daten gesucht werden bzw. mit Hilfe von QSAR-Datenbanken eine Schätzung vorgenommen werden
- Quantifizierungen sind nur als Abschätzungen möglich
- ein Teil des Migrats wird nicht detektiert und bleibt unbekannt

Analytik von Let

Lösungsansätze für 'unbekannte Substanzen'

- Summenbestimmung relevanter Substanzgruppen
- Analytisches ,non-target' Screening
- Einsatz von Biotests als zusätzlichen Detektor
- Direkte Risikoabschätzung durch eine Biotestbatterie

Polarität: verschiedene Si

Analytisches Screening

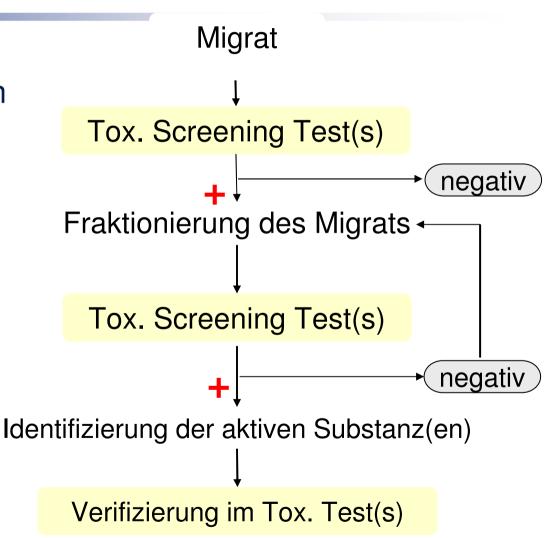
Einzel- toxikologisch substanzen relevante Substanzgruppen

Biotest-Detektion

Biologisches Screening

Organismen Zellen Rezeptoren

- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität

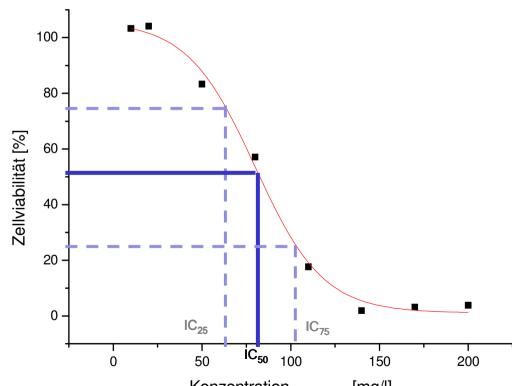

Rechtlich geregelte Substanzen Substanzen mit Toxdaten

QSAR-Schätzung

Exposition

Anwendung von Biotests als zusätzlichen "Detektor"

Einsatz von Biotests
 als Detektoren für den
 Nachweis relevanter
 Substanzen
 (analog dem US EPA Konzept
 ,Toxicity Identification and
 Evaluation, TIE)



Anwendung von Biotests als zusätzlichen "Detektor"

Prinzip Neutralrot-Test **Zugabe von Testsubstanzen** gelöst in DMSO (1%DMSO) Ausstreuen der Zellen Anwachsphase, 3h 48h, 37°C, 5% CO₂ Waschen und Extraktion des **Photometrische** Farbstoffs aus den Zellen **Bestimmung des** Anfärbung der Zellen mit Neutralrot **Farbstoffs** 3h, 37°C, 5% CO₂

Anwendung von Biotests als zusätzlichen "Detektor"

- Auswertung
 - Sigmoidales Fitting mittels OriginPro Software
 - Berechnung des IC25, IC50, IC75
 - Angabe in MW+/-SD

Beispiel: Coatingmigrate

- Migrat in 95% EtOH (4h, 60 ℃)
- Zellkultur Hep G2 (Leberzellen)

Beispiel: Coatingmigrate

Spezifische Migrationslimits für:

Bisphenol A

9 mg/kg bzw.

• $\Sigma(BADGE + Hydrolyseprodukte)$

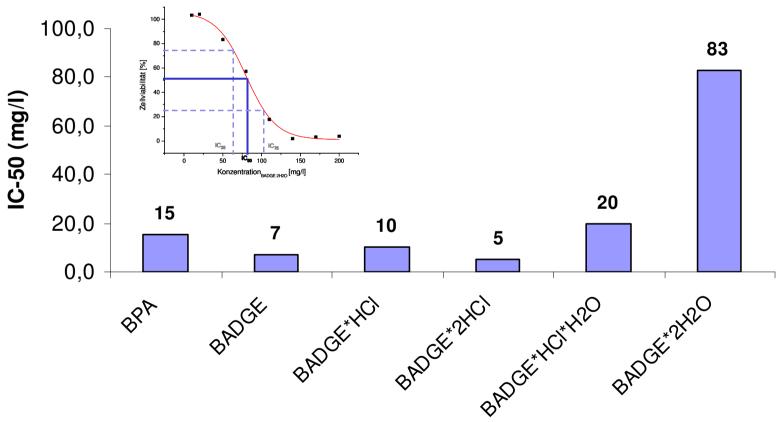
9 mg/6dm²

0,6 mg/kg

• $\Sigma(BADGE, BADGE*2HCI, BADGE*HCI*H₂O)$

1 mg/kg bzw.

1 mg/6 dm²

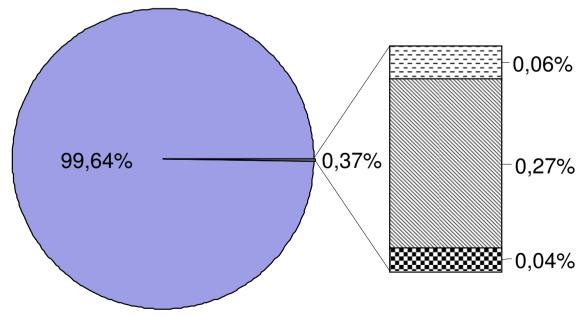

Trimellitsäureanhydrid

5 mg/l

	SML (mg/kg)	Migrat (mg/kg)	
BPA	0,6	0,014	
BADGE	9	0,03	
BADGE-2H ₂ O	9	0,05	
TMA	5,0	0,48	

Beispiel: Coatingmigrate

IC₅₀ der rechtlich geregelten Substanzen im NRT (Hep-G2)

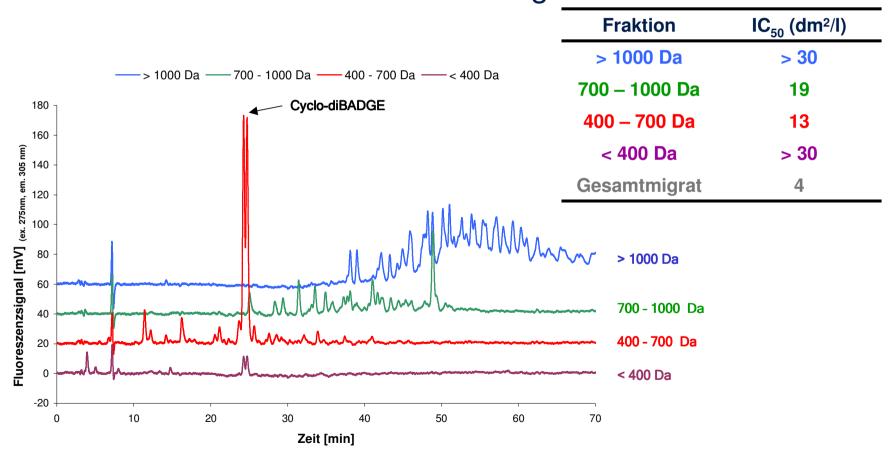


 TMA induziert keinen cytotoxischen Effekt in diesen Zelltest bis zu einer Konzentration von 2000 mg/l.

Beitrag der rechtlich geregelten Substanzen zur Gesamttoxizität

- ca. 0,5 % des Effektes im Neutralrot-Test kann auf die gesetzlich geregelten Substanzen (BPA, BADGE, BADGE 2*H₂O) zurückgeführt werden
- über 99 % des Effektes muss auf andere Bestandteile des Migrates zurückzuführen sein

☐ BPA ■ BADGE ■ BADGE * 2 H2O ■ nicht aufgeklärte Toxizität



Identifizierung der zytotoxisch wirkenden Substanzen

- Fraktionierung des Migrates
- Isolierung einer Substanz
- Verifizierung des Effektes

Fraktionierung des Gesamtmigrates

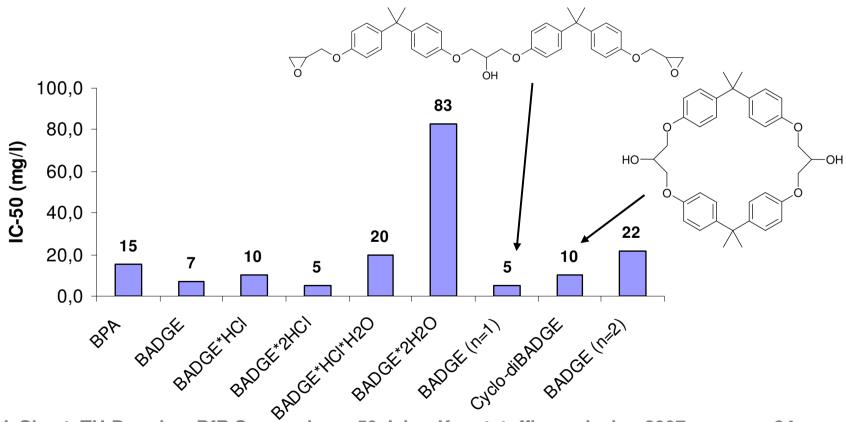
RP-HPLC nach SEC-Fraktionierung

Isolierung von Cyclo-diBADGE und anderen Oligomeren

- Isolierung von Cyclo-diBADGE aus einem epoxidhaltigem Harz
 - 1. Schritt: Fraktionierung mittels SEC-HPLC-UVD
 - 2. Schritt: Reinigung über Semi-Präp.-RP-HPLC-UVD
 - 3. Schritt: Charakterisierung

RP-HPLC-UVD/FLD/MS

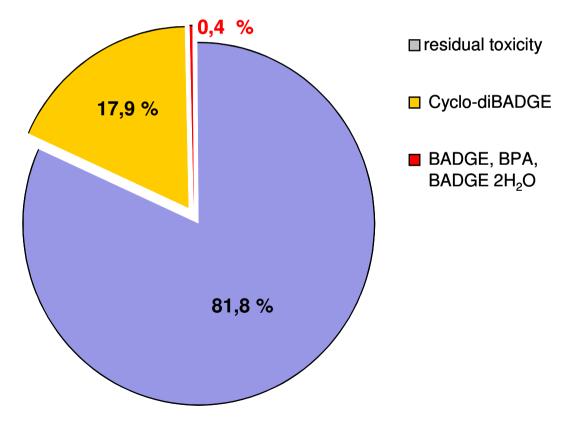
NMR


Elementaranalyse

IR

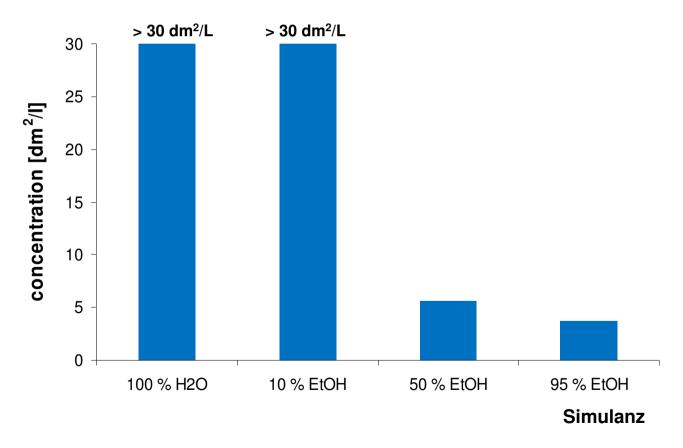
Schmelzpunkt

Verifizierung des cytotoxischen Effektes von Cyclo-diBADGE


 IC₅₀ der rechtlich geregelten Substanzen sowie der BADGE-Oligomere im NRT (Hep-G2)

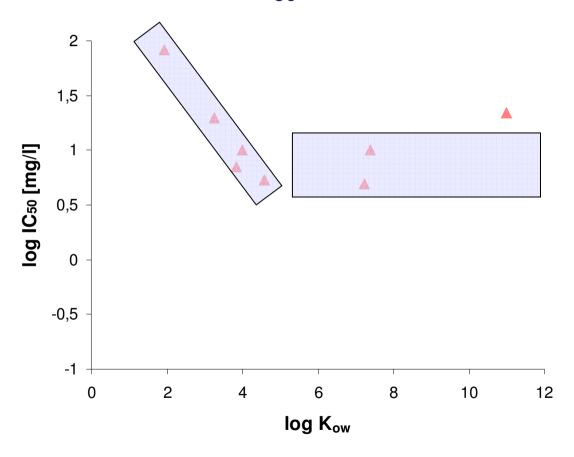
T.J. Simat, TU-Dresden, BfR Symposium - 50 Jahre Kunststoffkommission 2007

Abschätzung des Anteils am Gesamteffekt


 Anteil von cyclo-diBADGE und der rechtlich geregelten Substanzen am Effekt eines Coatingmigrates im NRT

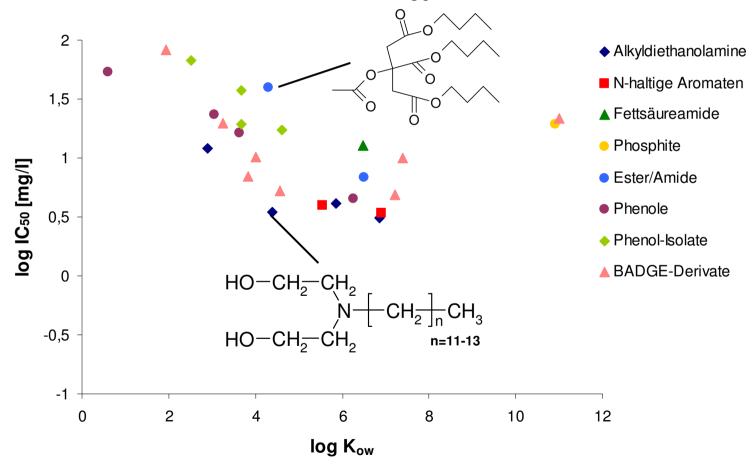
T.J. Simat, TU-Dresden, BfR Symposium - 50 Jahre Kunststoffkommission 2007

Gesamteffekt im Migraten mit unterschiedlichen Simulantien


 in den polaren Migraten kann kein cytotoxischer Effekt nachgewiesen werden

Aussagekraft von Biotests

Neutralrottest


Abhängigkeit des IC₅₀ von der Lipophilie der Substanz

Aussagekraft von Biotests

Neutralrottest

Nicht nur Abhängigkeit des IC₅₀ von der Lipophilie der Substanz

T.J. Simat, TU-Dresden, BfR Symposium - 50 Jahre Kunststoffkommission 2007

Analytik von Lebe

Lösungsansätze für 'unbekannte Substanzen'

- Summenbestimmung relevanter Substanzgruppen
- Analytisches ,non-target' Screening
- Einsatz von Biotests als zusätzlichen Detektor
- Direkte Risikoabschätzung durch eine Biotestbatterie

Polarität: verschiedene Simurantier

ardarkeit. </>

Analytisches Screening

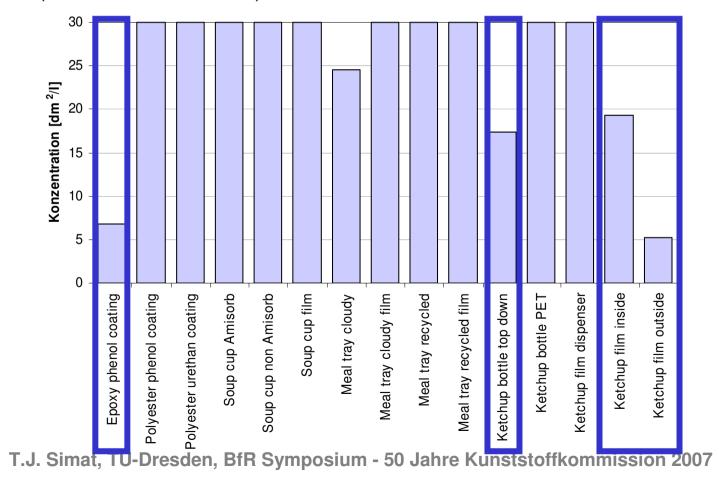
Einzel- toxikologisch D Esubstanzen relevante

Biotest-Detektion

Substanzgruppen

Rechtlich Substanzen QSARgeregelte mit Toxdaten Schätzung Substanzen

Biologisches Screening


Organismen Zellen Rezeptoren

- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität

Exposition

Screening

 Biotest-Screening zur Priorisierung einer Probe (95% EtOH-Extrakte)

Analytik von Let

Lösungsansätze für 'unbekannte Substanzen'

- Summenbestimmung relevanter Substanzgruppen
- Analytisches ,non-target' Screening
- Einsatz von Biotests als zusätzlichen Detektor
- Direkte Risikoabschätzung durch eine Biotestbatterie

Polarität: verschiedene Si

Analytisches Screening

Einzel- toxikologisch Biotestsubstanzen relevante Detektion Substanzgruppen

Rechtlich geregelte Substanzen

Substanzen Smit Toxdaten S

QSAR-Schätzung

Biologisches Screening

Organismen Zellen Rezeptoren

- Mutagenität, Genotoxizität
- Cytotoxizität
- Endokrine Wirksamkeit
- AH-Rezeptoraktivität

Exposition

EU-Projekt BioSafePaper

- Einsatz von Biotests zur Beurteilung von Papier und Pappe im Lebensmittelkontakt (EU-Projekt BioSafePaper)
 - Entwicklung und Standardisierung einer einfachen Biotestbatterie
 - Risikobewertung ausgehend von den Ergebnissen der Biotests

Validierung im EU-Projekt BioSafePaper

- Einsatz von Standardsubstanzen zur Qualifizierung der Biotests für die Testbatterie
 - 2,4-Diaminotoluol
 - Mix aus Phthalaten (DiBP, DBP, DEHP)
 - Benzo(a)pyren
 - •

Validierung im EU-Projekt BioSafePaper

Empfindlichkeit der Biotests

		Detection Limits ³		Legal Limit
Substance	Test	Aqueous Extracts (mg/L) ¹	EtOH extract (corr. for 40g/L) ^{1,2} (mg/L)	
2,4- diamino toluene	Ames Test	(25)	1	
	Comet	122	240	0.02 mg/kg in food (2002/72/EC)
	assay			
	RNA- synthesis	525	1050	
	Neutral- Red-assay	120	480	

¹) CEN definition: 40 g paper is in extracted with 1 L water
²) concentrated ethanol extracts: 100 g paper is extracted in 1 L EtOH, then concentrated 10-fold
→ concentration factor 25 compared with aqueous extracts, but only 1% solutions can be applied
³) grammages of investigated paper and board: 70 – 700 g/m² corresponds to 4 – 40 g/6 dm²

^{= 4 - 40} g/kg food, therefore the CEN extraction procedure may overestimate the papermass to volume ratio 10-fold

Schlussfolgerungen: EU-Projekt BioSafePaper

Kann der Biotest-Entscheidungsbaum aus dem Projekt BioSafePaper als globaler Ansatz für die Sicherheit von Lebensmittelkontaktmaterialien angewandt werden (vollständiger Ersatz apparativer Analytik)?

Definitiv, nein!

Die Empfindlichkeit der Biotests liegen für viele Substanzen um Zehnerpotenzen über den gesetzlichen Limits

Schlussfolgerungen: EU-Projekt BioSafePaper

Kann der Biotest-Ansatz für den Ausschluss der Anwesenheit von mutagen wirkenden Substanzen aus Migraten angewandt werden?

Vielleicht!

- die Empfindlichkeit des Ames Test muss erhöht werden
- Migrate müssen stärker konzentriert werden
- Validierung muss an potentiell in diesen FCM enthaltenen Mutagenen erfolgen
- realistisch wird eine Nachweisgrenze abgeschätzt von primären aromatischen Aminen im Bereich von 50 200 μg/L

Danke!

unseren Kooperationspartnern

LUA Dresden

- Meinen Mitarbeitern