Die Anwendung des TTC-Konzepts zur Beurteilung der Toxizität von Chemikalien

Dr. Inge Mangelsdorf

Übersicht

Vorstellung TTC

Überprüfung Cramer-Klassen (Forschungsprojekt ITEM)

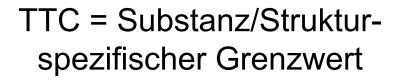
Anwendung von TTC für Haarfarben

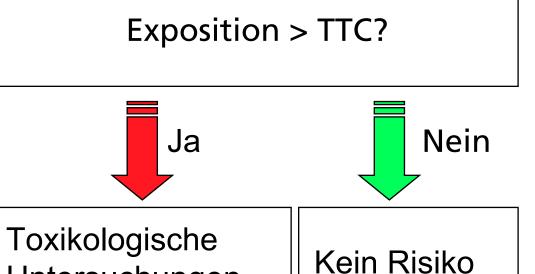
TTC = Threshold of Toxicological Concern

Grenzwerte für Substanzen mit

- bekannter Struktur
- fehlenden toxikologischen Daten

Mehrere TTCs (Entscheidungsbaum)
Jeweiliger TTC abgeleitet aus Daten zu Stoffen mit ähnlicher Struktur
Statistik: 5tes Perzentil der NOELs + Sicherheitsfaktoren


Berücksichtigte Wirkungen:


- Wiederholte Verabreichung
- Kanzerogenität
- Neurotoxizität
- Reproduktionstoxizität

Risikoabschätzung bei Anwendung des TTC

(Kroes et al. 2004)

Untersuchungen

Overview on current TTC values (for oral Uptake)

(Kroes et al., 2004)

Special structural classes e.g. TCDD, steroids, aflatoxin like, Azoxy-like or nitroso compounds.

No TTC, compound specific data required

Alerts for carcinogenicity/mutagenicity

TTCgenotoxic 0,15 µg/person/d

No alerts for carcinogenicity/mutagenicity

TTCgeneral 1,5 µg/person/d

Organophosphates

TTCorganophosphates 18 µg/person/d

Classification according to Cramer decision tree

Class 3 toxic 90 µg/person/d Class 2 moderate 540 µg/person/d Class 1non toxic 1800 µg/person/d

Basis für Ableitung der TTCs

Aufnahme μg/Person/Tag	Basis für Ableitung	Substanzen Zahl
TTC _{genotoxic} 0,15	Kanzerogenitätsstudien	730
TTC _{general} 1,5		
TTC _{organophosphates} 18	Neurotox Untersuchungen CHE Hemmung Gehirn	19
Class 3 toxic 90	vorwiegend	137
Class 2 _{moderate} 540	wiederholte Verabreichung PSM, LM-Inhaltsstoffe	28
Class 1 _{non toxic} 1800	"Munro"-Datenbank	448

Overview on current TTC values

(Kroes et al., 2004)

Special structural classes e.g. TCDD, steroids, aflatoxin like, Azoxy-like or nitroso compounds.

No TTC, compound specific data required

Alerts for carcinogenicity/mutagenicity

TTCgenotoxic 0.15 µg/person/d

No alerts for carcinogenicity/mutagenicity

TTCgeneral 1.5 µg/person/d

Organophosphates

TTCorganophosphates 18µg/person/d

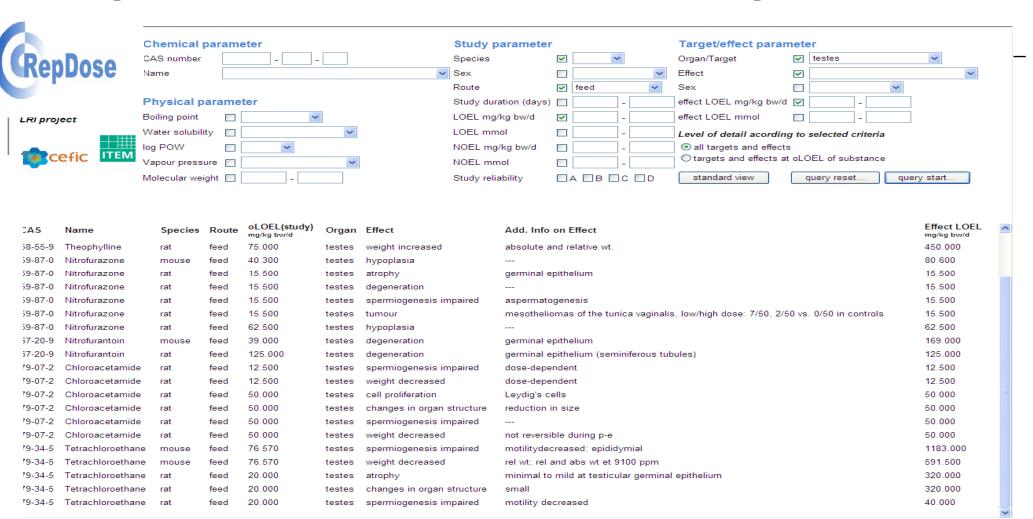
Classification according to Cramer decision tree

Class 3 toxic 90 µg/person/d Class 2 moderate 540 µg/person/d Class 1non toxic 1800 µg/person/d

Überprüfung der TTC-Werte für Cramer Klasse 1, 2, 3 mit RepDose

Inhalt von RepDose und Munro

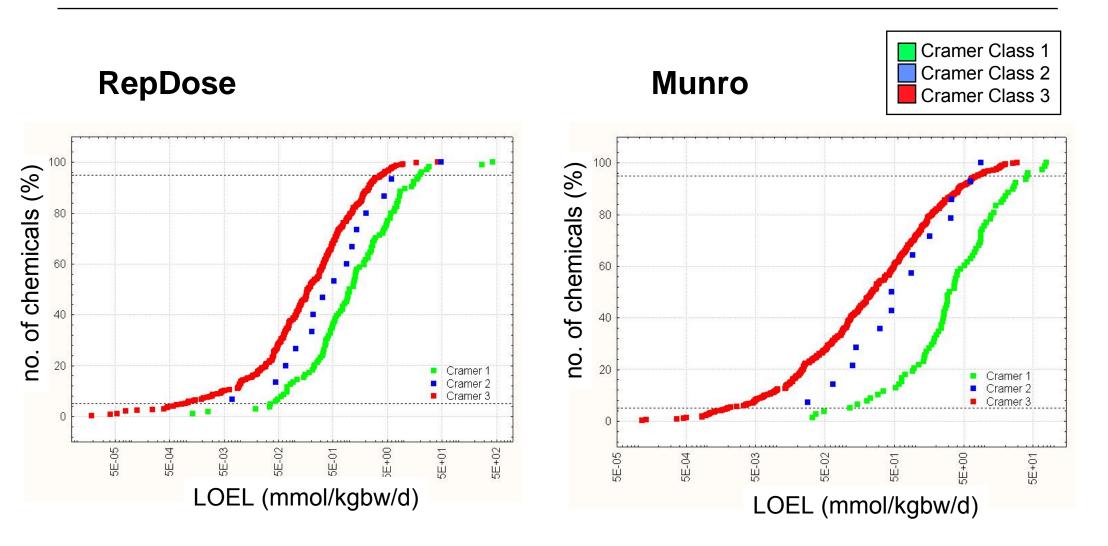
	RepDose	Munro
Chemikalien	Altstoffe	"Industrial chemicals, pharmaceuticals, food substances, environmental, agricultural consumer chemicals"
Datenquellen	IPCS, MAK, BUA, OECD, EU, NTP, BG Chemie	JECFA, IRIS, NTP, DART


Inhalt RepDose und Munro

		RepDose		Munro
		Number of		Number of
		Chemicals	Studies	Chemicals
Overall		578	1625	541
LOEL values		553	553	475
NOEL values		340	340	255
Species	Rat	561	1218	434
	Mouse	289	494	75
Route	Oral	543	1122	540
	Inhalation	255	590	
Exposure duration	Subacute	258	382	22
	Subchronic	282	509	172
	Chronic	242	456	190

Nur etwa 100 Chemikalien gemeinsam in beiden Datenbanken

RepDose – www.fraunhofer-repdose.de

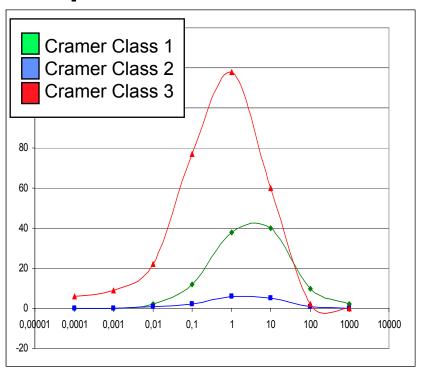

Distribution of LOELs in RepDose and Munro

Distribution in RepDose (oral) and Munro is similar

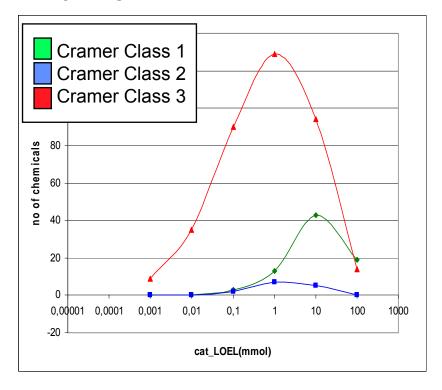
Kumulative Verteilung der Chemikalien in den 3 Cramer Klassen

Comparison RepDose and Munro 5th Percentiles of Distribution

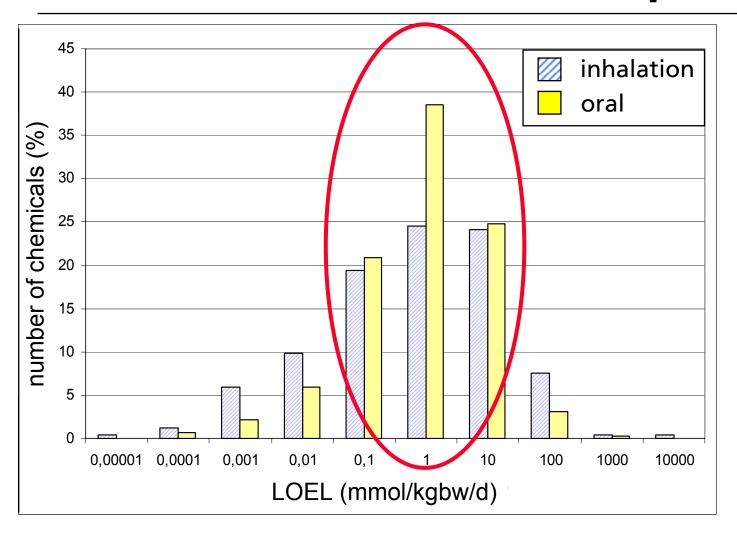
		All data	Cramer class 1	Cramer class 2	Cramer class 3
RepDose oral	Number of chemicals	413	104	15	294
	5 % (mmol/kg bw/d)	0,002	0,04	0,007	0,001
Munro	Number of chemicals	463	78	14	371
	5 % (mmol/kg bw/d)	0,004	0,11	0,03	0,002


Niedrigere Werte in RepDose, Unterschiede vernachlässigbar,

RepDose bestätigt Ergebnisse von Munro



Verteilung in Cramer Klassen


RepDose

Munro

Distribution of LOELs in RepDose

most chemicals have a moderate toxicity

but

Cramer classification

24 % Cramer class 14 % Cramer Class 272 % Cramer Class 3

Analysis of Cramer Decision Tree

1. Is the substance a normal constituent of the body (F) or an optical isomer of such?

This question throws into class I all normal constituents of body tissues and fluids, including normal metabolites. Hormones are excluded, as are, by implication, the metabolites of environmental and food contaminants or those resulting from disease states. ...proceed to....

2

I

N

NO

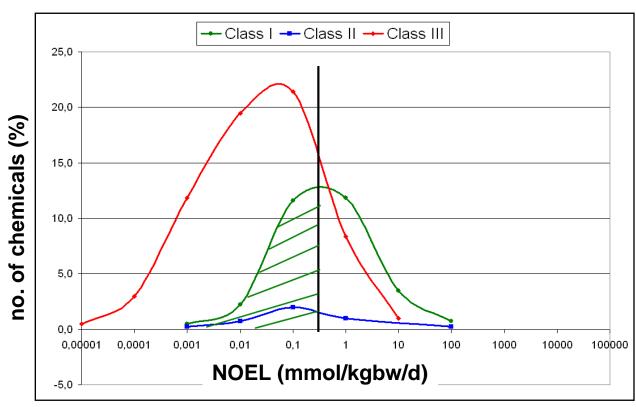
YES

(2)

(Class I)

e.g. Formaldehyde is assigned to Cramer Class I

 \longrightarrow


Potential for improvement

Analysis of outliers

Cramer Class I → cut off ≤ 0.1 mmol/kg bw/d (~ 15 mg/kg bw/d)
Cramer class III → cut off > 0.01 mmol/kg bw/d (~)

	N _{all}	N _{outlier}
Cramer Class I	122	57
Cramer Class II	17	undefined
Cramer Class III	266	124

Identification of structures for chemicals of Class I with low NOAELS

TTC für Haarfarben?

Dermale Aufnahme von Haarfarben

Substanz	In vivo/in vitro	Spezies	Relative Absorption (% der Dosis)
P-Phenylen- diamin	In vivo In vitro	Mensch	0,43 2,4
Imezine BD	In vitro	Mensch	0,9
Acit Yellow 23	In vitro	Schwein	0,26
Catechol	In vitro	Mensch	1,9

Daten aus Kroes et al., (2007), 30 min Exposition, 24 h Aufnahme

Aufnahme max 2,4 % der Dosis

Dermale Aufnahme i.A. geringer als orale Aufnahme

Korrektur für nicht-kontinuierliche Exposition

TTC für Lebensmittel: kontinuierliche Exposition

Kosmetika/Haarfarben seltenere Exposition Korrekturfaktoren (Reduktion der Exposition)

Exposition 1x pro Woche Faktor 3

Exposition seltener Faktor 10

Vorschlag Kroes et al., 2007

Anwendungsdomäne

Ausgangsverbindungen:

z.B.

Strukturen in Munro und RepDose enthalten

Aromatische Amine (63)

Aromatische Hydroxyverbindungen (52)

$$\begin{array}{c|c} & \text{CH}_3 \\ & + \\ & \text{NH}_2 \end{array} \longrightarrow \begin{bmatrix} \text{Intermediates} \end{bmatrix} \longrightarrow \\ \\ & \text{NH}_2 \end{array}$$

$$H_2N$$
 H_2N
 H_2N
 CH_3
 H_2N
 CH_3
 CH_3

TTC für Haarfarben?

Geringere Aufnahme durch die Haut als durch den GI Trakt

Langsamere Aufnahme/keine Daten

Pfad–zu–Pfad-Extrapolation oral → dermal üblich in Toxikologie aber:

Metabolismus in Haut schwächer/anders als in Leber und Darm

Anderes Expositionsmuster (1 mal alle 3-8 Wochen)

Lokale Effekte nicht bewertbar

Anwendungsdomäne beachten

Anwendung des TTC für Haarfarben

Struktur überprüfen

Bestimmung der Dosis auf der Kopfhaut (äußere Exposition)

Messung/Abschätzung/Berechnung der dermalen Aufnahme

Anwendung von Korrekturfakturen für die Häufigkeit der Exposition

Berechnung der inneren Exposition

Vergleich der Exposition mit TTC Entscheidungsbaum

Kritik des SCCP (2008)

Formeln zur Berechnung der dermalen Aufnahme nicht ausreichend abgesichert

Nur 19 der 250 Kosmetika mit ausführlichen Bewertungen durch SCCP/SCCNFP in Munro enthalten Datenbasis unzureichend für Kosmetika oder Verunreinigungen in Kosmetika

SES3

Schlußfolgerung/Forschungsbedarf

Anwendungsdomäne prüfen Erweiterung der Datenbanken um Daten zu Kosmetika/Haarfarben Überprüfung der Berechnungen zur Aufnahme

SES3

Das ist nur ein porblem, wenn es sich um nicht genotoxische oder substnazen handelt die keinen alert für cancer haben- Wenn also die Cramer klassen anegwendet werden sollen.

für aromatische Amine ist das völlig egal???

Sylvia Escher; 12.10.2009

Zusammenfassung und Schlußfolgerungen

TTC erlaubt die Abschätzung der Toxizität unbekannter Substanzen

- Einfaches Konzept
- Einsparung von Tierversuchen
- Grenzwerte sehr niedrig (Vorsorgeprinzip)

Übertragung des oralen TTC auf dermale Anwendungen prinzipiell möglich

→ Anwendung auch für Kosmetika/Haarfarben

Anwendungsdomäne muss sichergestellt sein

Projektunterstützung

Sylvia Escher
Monika Batke
Annette Bitsch
Nelly Simetska
Inga Tluczkiewicz
Sara Weiss

Sylvia Jacobi Christa Hennes

Dinant Kroese Harry Buist Gerrit Schüürmann

Vielen Dank für Ihre Aufmerksamkeit

